forked from philippe-ostiguy/PyBacktesting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
initialize.py
395 lines (353 loc) · 19.4 KB
/
initialize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#!/usr/local/bin/env python3.7
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
#
# The MIT License (MIT)
# Copyright (c) 2020 Philippe Ostiguy
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
# OR OTHER DEALINGS IN THE SOFTWARE.
###############################################################################
"""Module that declares hyperparamaters and parameters to optimize"""
from dateutil.relativedelta import relativedelta
from date_manip import DateManip as dm
from manip_data import ManipData as md
import pandas as pd
from datetime import datetime
import random
import os
class Initialize():
"""Module to initialize the values.
The __init__ constructor inialize the hyperparameters and others parameters that won't be optimized parameters. The
optimized parameters are in __call__ function.
"""
def __init__(self):
"""
Initialize the hyperparameters and other parameters that won't be optimized.
Parameters
----------
`self.directory` : str
Where the the data are located for training and testing periods
`self.asset` : str
Name of the file where we get the data
`self.is_fx` : bool
Tell if `self.asset` is forex (the data don't have the same format for forex and stocks because they are
from different providers).
`self.dir_output` : str
Where we store the results
`self.name_out` : str
Name of the results file name (csv)
`self.start_date` : datetime object
Beginning date of training and testing period. The variable is already transformed from a str to a
Datetime object
`self.end_date` : datetime object
Ending date of training and testing period. The variable is already transformed from a str to a
Datetime object
`self.is_walkfoward` : bool
Tells if we do an optimization (training and testing) or only a test on the whole period
`self.training_name` : str
If `self.is_foward` is `True`, this is the string added to the result files name for training data
`self.test_name_` : str
If `self.is_foward` is `True`, this is the string added to the result files name for test data
`self.training_` : int
Lenght in months of training period
`self.test_` : int
Lenght in months of testing period (put 9)
`self.name_col` : dict
Says which data we need in our testing
`self.dup_col` : dict
Columns we use to check if the market is closed. Ex: If OHLC are all the same, then the market is closed.
`self.window` : int
Number of data (points) we check before and after a data to check if it is a local min and max
`self.pnl_dict` : dict
Contains the metrics to calculate the strategy performance. The metrics are (keys) :
`self.range_date_` : str
Testing date range
`self.sharpe_ratio_` : float
Sharpe ratio. Did not substract the risk-free rate, only return divided by volality. Reason is that on
Forex or small timeframe, return is low and we can leverage return (or totally
distort it) with margin trading
`self.ann_return_` = float
Annualized return
`self.ann_vol_` = float
Annualized volatility
`self.pour_win_` = float
Ratio of winning trades
`self.max_draw_` = float
Maximum drawdown
`self.nb_trades_` = int
Number of trades during the period
`self.entry_row` : int
Entry row number for a trade
`self.entry_level` : float
Entry level for a trade
`self.exit_row` = int
Exit row number for a trade
`self.exit_level` : int
Exit level for a trade
`self.trade_return` : float
Trade return for a trade
`self.is_detrend` : bool
Default is `False`. Possible to set to yes or no. It tells if we want to de-trend the current series.
If we set it to `True`, make sure to make changes in `Indicator.py` to use `self.series_test` instead of
`self.series` and in `init_operations.py` remove the commented code in function `init_series()` for
`self.series_test`.
`self.p_value` : float
Significance level to test for non stationarity with Augmented Dickey-Fuller. Default is 0.01
`self.period` = int
Order of differencing of the time series. By default 1 (first order differencing)
"""
self.directory = os.path.dirname(os.path.realpath(__file__)) + '/'
self.dir_output = self.directory + 'results/'
self.name_out = 'results'
self.is_fx = True
self.asset = "EURUSD"
self.start_date = datetime.strptime('2020-02-15', "%Y-%m-%d")
self.end_date = datetime.strptime('2020-04-01', "%Y-%m-%d")
self.is_walkfoward = False
self.training_name_ = '_training'
self.test_name_ = '_test'
self.training_ = 18 #Lenght in months of training period (put 18)
self.test_ = 9 #Lenght in months of testing period (put 9)
self.dict_name_ = {self.training_name_:self.training_,self.test_name_:self.test_}
self.train_param= [] #Optimized training parameters used for the test period
# Decide which data type we need in our testing
self.date_name = 'Date'
self.open_name = 'Open'
self.high_name = 'High'
self.low_name = 'Low'
self.close_name = 'Close'
self.adj_close_name = 'Adj Close'
self.name_col = {
self.date_name: [],
self.open_name: [],
self.high_name: [],
self.low_name: [],
self.adj_close_name: []
}
#Columns we use to check if there are duplicate values
self.dup_col = {
self.open_name: [],
self.high_name: [],
self.low_name: [],
self.adj_close_name: []
}
self.window = 6
# Metrics used to calculate the strategy performance
self.pnl_dict = {}
self.range_date_ = 'Date range from '
self.sharpe_ratio_ = 'Sharpe ratio' # Did not substract the risk-free rate, only return divided by vol
self.ann_return_ = 'Annualized return'
self.ann_vol_ = 'Annualized volatility'
self.pour_win_ = '% win' # pourcentage of winning trades
self.max_draw_ = 'Maximum drawdown'
self.nb_trades_ = 'nb_trade'
# Values used to calculate each trade performance
self.entry_row = 'Entry_row'
self.entry_level = 'Entry_level'
self.exit_row = 'Exit_row'
self.exit_level = 'Exit_level'
self.trade_return = 'trade_return'
self.default_data = self.adj_close_name # Value we use by default for chart, extremum, etc.
self.is_detrend = False # Possible to set to yes r no
self.p_value = .01 # significance level to test for non stationarity with Augmented Dickey-Fuller
self.period = 1
#No need to change them. These are variable that we don't need to change
self.name = pd.DataFrame(self.name_col)
self.date_ordinal_name = 'Ordinal Date'
self.marker_ = 'marker_name'
self.color_mark = 'color_mark'
self.marker_signal = 'marker_signal'
self.end_format_ = "%Y-%m-%d" #format when printing date range in csv files with results
def __call__(self):
""" Set values for optimization if we decide to optimize
It is the values that are initialized and used through the system
Parameters
----------
`self.nb_data` : int
Number of data needed to calculate the indicators. Default is 100 but can be 100, 200, 300.
`self.r_square_level` : float
R square level required to trigger a signal. Can be .6 , .7, .8 and .9.
`self.min_data` : int
Number of minimum required between each signal in the same direction to get another signal 100,200 or 300
Entry
`self.enter_dict` : dict
Dictionary containing the possible entry types
`self.enter_ext_name` : str
Name for entering in the market with Fibonnacci extensions. We are using the largest extension of
the previous trend as a reference. Largest extension is in fact the largest setback in the current trend.
Ex : largest extension from previous trend is 1, the system enters in the market when it is `self.enter_ext`
this size (1 by default). So, when this value is reached, it takes the profit.
`self.enter_ext` : float
This is the % of largest extension at which the system enters the market. Can be .882 or .764 or 1
`self.enter_time` : str
Entering the market only if the current setback is a minimum percentage of largest setback
from current trend in term of time.
`self.enter_bool` : bool
Telling if we use this technic or not. Can be set to `True` or `False`
`self.time_ext` : float
Proportion in term in time needed that the current setback most do compared to the largest extension
in therm of time in the current trend to enter the market. It can be .5, .618 .884,1
Exit
Extension
`self.exit_dict` : dict
Dictionary containing the possible ways to exit the market
`self.exit_ext_name` : str
name of the dictionary key to try to exit the market with Fibonnacci extensions
`self.exit_ext` : bool
tells the system if tries to exit (or not) the market using the largest extension as a reference.
It has to be `True` at the moment because it is the only way to exit the market.
Ex : largest extension from preivous trend is 1, the system takes profit when it is
`self.profit_ext` of this size (2.618 by default). So, when this value is reached, it takes the profit.
`self.profit_ext` : float
% of the largest extension from previous trend that the system uses to exit the market to take profit
Default value is 2.618. Possible values are 1.618, 2 , 2.618, 3.382, 4.236.
`self.stop_ext` : float
% of the largest extension from previous trend that the system uses as a stop loss.
Default value is 1.618. Possible values are 1, 1.382, 1.618, 2.
Stop trying to enter
These params are conditions to stop trying to enter the market if the current price reach a % of the
largest extension `self.fst_cdt_ext` goes in the other direction and retraces the last top or bottom
with proportion `self.sec_cdt_ext`, the system stop trying to enter in the market.
`self.bol_st_ext` : bool
Tells the system if it has to stop trying to enter the market using Fibonacci extension techniques.
Can be optimized to `True` or `False`
`self.fst_cdt_ext` : float
% of the largest extension that if the market reaches, the system stops trying to enter the market.
Possible values are .618, .764 or .882
`self.sec_cdt_ext` : float
if the market triggers the first condition, then if it reaches this level in the opposite direction, the
# system stops trying to enter in the market. Can be set to .618, .764, 1 or 1.382
Stop tightening
General
`self.stop_tight_dict` : dictionary
contains the different possibilities to tighten the stop
`self.default_data_` : bool
default data used to determine if the stop loss level must be tightened. It is `True`, then
`self.adj_close_name` is used. Otherwise, `self.low_name` with `self.high_name` (depends if it is
a buy or sell signal).
Stop tightening (technique no 1)
`self.stop_tight_ret` : str
Tightening the stop using Fibonacci retracement condition (contains the condition).
`self.stop_ret_level` : float
Level at which the system tight the stop when it reaches this retracement in the opposite direction.
Ex: Buy signal then, market reaches `self.stop_ret_level` (1 by default) in the other direction.
The system will tighen the stop to the lowest (or highest) point. Default value is 1.
Possible values are 618, .882, 1, 1.618 or 2.
`self.is_true` : bool
Tells the system if it has to use this particular technique to tighten the stop or not. Possible values are
`True` or `False`
Stop tightening (technique no 2)
`self.stop_tight_pour` : str
tightening the stop when the market reaches a certain percentage of the target
`self.is_true` : bool
Tells the system if it has to use this particular technique to tighten the stop or not. Possible values are
`True` or `False`
`self.tight_value` : float
When the market reaches this percentage of the target, we tighten the stop. Possible values are
.5,.618,.764.
`self.pour_tight` : float
Percentage between the current market value and entry value that the current new stop is. Possible values
are .5 or .618.
"""
self.nb_data = 100
self.r_square_level = self.return_value([.6,.7,.8,.9],.7)
self.min_data = self.return_value([100,200,300],100)
#ENTRY
#-----
# All the possible entry types that the system can do (extension, retracement)
self.enter_bool = 'enter_bool' #same key name for all the exit strategy (located in different dictionary)
self.enter_ext_name = 'enter_ext_name'
self.enter_ext = 'enter_ext' #Entering the market with largest extension from setback in current trend
self.stop_ext = 'stop_ext'
self.enter_time = 'enter_time'
self.time_ext = 'time_ext'
self.enter_dict = {self.enter_ext_name :
{self.enter_bool : True, #At the moment, it has to be `True`, no other method to enter
self.enter_ext: self.return_value([.764,.882,1],1)
},
self.enter_time:
{self.enter_bool : self.return_value([False,True],True),
self.time_ext : self.return_value([.5,.618,.882,1],.618)
}
}
#STOP TRY TO ENTER
#--------------
#These params are conditions to stop trying to enter the market if the current
# price reach a % of the largest extension
self.bol_st_ext = self.return_value([True,False],True)
self.fst_cdt_ext = self.return_value([.618,.764,.882],.764)
self.sec_cdt_ext = self.return_value([.618,.764,1,1.382],1)
#STOP TIGHTENING
#---------------
self.stop_tight_ret = 'stop_tight_ret'
self.stop_tight_pour = 'stop_tight_pourentage'
self.is_true = 'is_true'
self.default_data_ = 'default_data_' #adjusted closed
self.stop_ret_level = 'stop_ret_level'
self.tight_value = 'tight_value'
self.pour_tight = 'pour_tight'
self.stop_tight_dict = {self.stop_tight_ret : #Stop tightening technique no 1.
{self.is_true : self.return_value([True,False],True),
self.default_data_ : True,
self.stop_ret_level : self.return_value([.618,.882,1,1.618,2],1)
},
self.stop_tight_pour : #Stop tightening no 2.
{self.is_true : self.return_value([True,False],True), #True or False
self.tight_value : self.return_value([.5,.618,.764],.5),
self.pour_tight : self.return_value([.5,.618],.5)
}
}
# EXIT
# -----
# All the possible ways that the system can exit the market (extension, retracement)
self.exit_name = 'exit_name' #same key name for all the exit strategy (located in different dictionary)
self.exit_ext_bool = 'exit_ext_bool'
self.profit_ext = 'profit_ext'
self.stop_ext = 'stop_ext'
self.exit_dict = {self.exit_name :
{self.exit_ext_bool : True, #It has to be `True` has it the only way for now to exit the
#market
self.profit_ext :self.return_value([1.618,2,2.618,3.382,4.236],3.382),
#also try 2 2.618, 3.382, 4.236
self.stop_ext : self.return_value([1,1.382,1.618,2],1.618) #1,1.382, 1.618, 2
}
}
def return_value(self,first_val,sec_val):
""" Return first value if `True` (we optimize), second if False
"""
return first_val if self.is_walkfoward else sec_val
def optimize_param(self):
""" Tell the parameters we want to optimize.
Store the paramaters to optimize in a list with the name of the parameter to optimize
"""
self.op_param = [[self.exit_dict[self.exit_name],'profit_ext'],
[self.exit_dict[self.exit_name],'stop_ext'],
[self.stop_tight_dict[self.stop_tight_ret],'is_true'],
[self.stop_tight_dict[self.stop_tight_ret],'stop_ret_level'],
[self.stop_tight_dict[self.stop_tight_pour],'is_true'],
[self.stop_tight_dict[self.stop_tight_pour],'tight_value'],
[self.stop_tight_dict[self.stop_tight_pour],'pour_tight'],
['bol_st_ext'],
['fst_cdt_ext'],
['sec_cdt_ext'],
[self.enter_dict[self.enter_ext_name],'enter_ext'],
[self.enter_dict[self.enter_time],'enter_bool'],
[self.enter_dict[self.enter_time],'time_ext'],
['r_square_level'],
['min_data']]