-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_model_metrics.py
141 lines (111 loc) · 4.53 KB
/
generate_model_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import json
import logging
import os
from collections import defaultdict
import numpy as np
import pandas as pd
from utils.file_utils import load_config
CONFIG_FILE = "config.yaml"
INCLUDE_REASONING_SAMPLES = False
DECIMAL_PLACES = 2
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
def load_model_json_files(model_path: str) -> list:
json_data = []
for file_name in os.listdir(model_path):
if file_name.endswith(".json"):
with open(os.path.join(model_path, file_name), "r") as file:
data = json.load(file)
json_data.append(data)
return json_data
def extract_model_name(path: str) -> str:
return os.path.basename(path).replace(":", "_")
def aggregate_sentiments(json_data: list) -> dict:
aggregated_data = defaultdict(list)
for data in json_data:
for key, sentiment in data["sentiments"].items():
aggregated_data[key].append(sentiment)
return aggregated_data
def compute_metrics_per_article(aggregated_sentiments: dict) -> dict:
metrics = defaultdict(lambda: defaultdict(list))
for key, sentiments in aggregated_sentiments.items():
for sentiment in sentiments:
if sentiment["valid"]:
metrics[key]["time_taken"].append(sentiment["time_taken"])
metrics[key]["sentiment"].append(sentiment["sentiment"])
metrics[key]["confidence"].append(sentiment["confidence"])
metrics[key]["valid"].append(sentiment["valid"])
aggregated_metrics = {}
for key, values in metrics.items():
valid_count = sum(values["valid"])
total_count = len(values["valid"])
aggregated_metrics[key] = {
"inference_rate": round(np.mean(values["time_taken"]), DECIMAL_PLACES)
if values["time_taken"]
else 0,
"valid_json_rate": round(valid_count / total_count, DECIMAL_PLACES)
if total_count > 0
else 0,
"sentiment_variance": round(np.var(values["sentiment"]), DECIMAL_PLACES)
if values["sentiment"]
else 0,
"mean_sentiment": round(np.mean(values["sentiment"]), DECIMAL_PLACES)
if values["sentiment"]
else 0,
"mean_confidence": round(np.mean(values["confidence"]), DECIMAL_PLACES)
if values["confidence"]
else 0,
}
return aggregated_metrics
def create_xlsx_and_csvs(
model_metrics: dict,
output_file: str,
output_csv_file: str,
):
os.makedirs(os.path.dirname(output_csv_file), exist_ok=True)
writer = pd.ExcelWriter(output_file, engine="xlsxwriter")
# Model Details Sheet
model_details_data = [
{
"Model Name": model,
"Article Key": key,
"Inference Rate (s)": metrics["inference_rate"],
"Valid JSON Rate": metrics["valid_json_rate"],
"Sentiment Variance": metrics["sentiment_variance"],
"Mean Sentiment": metrics["mean_sentiment"],
"Mean Confidence": metrics["mean_confidence"],
}
for model, model_data in model_metrics.items()
for key, metrics in model_data.items()
]
model_details_df = pd.DataFrame(model_details_data)
model_details_df.to_excel(writer, sheet_name="Model Details", index=False)
writer.close()
# Save all model data to a single CSV file
model_details_df.to_csv(output_csv_file, index=False)
def main():
config = load_config(CONFIG_FILE)
models_to_test = config.get("models_to_test", [])
sentiment_save_folder = config.get("sentiment_save_folder", "sentiments")
report_output_file = config.get("report_output_file", "reports/model_metrics.xlsx")
report_output_csv_file = config.get("report_output_csv_file")
if not report_output_csv_file:
raise ValueError("No report output CSV file specified in the config.")
model_paths = [
os.path.join(sentiment_save_folder, model.replace(":", "_"))
for model in models_to_test
]
all_data = {
extract_model_name(path): aggregate_sentiments(load_model_json_files(path))
for path in model_paths
}
logging.info("Loaded model data keys: %s", all_data.keys())
model_metrics = {
model: compute_metrics_per_article(sentiments)
for model, sentiments in all_data.items()
}
# Save the comparison results to an Excel file and a single CSV file
create_xlsx_and_csvs(model_metrics, report_output_file, report_output_csv_file)
if __name__ == "__main__":
main()