forked from pulp-platform/axi
-
Notifications
You must be signed in to change notification settings - Fork 1
/
axi_isolate.sv
487 lines (454 loc) · 16.6 KB
/
axi_isolate.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
// Copyright (c) 2019-2020 ETH Zurich, University of Bologna
//
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Wolfgang Roenninger <[email protected]>
// - Andreas Kurth <[email protected]>
`include "axi/typedef.svh"
`include "common_cells/registers.svh"
/// This module can isolate the AXI4+ATOPs bus on the master port from the slave port. When the
/// isolation is not active, the two ports are directly connected.
///
/// This module counts how many open transactions are currently in flight on the read and write
/// channels. It is further capable of tracking the amount of open atomic transactions with read
/// responses.
///
/// The isolation interface has two signals: `isolate_i` and `isolated_o`. When `isolate_i` is
/// asserted, all open transactions are gracefully terminated. When no transactions are in flight
/// anymore, the `isolated_o` output is asserted. As long as `isolated_o` is asserted, all output
/// signals in `mst_req_o` are silenced to `'0`. When isolated, new transactions initiated on the
/// slave port are stalled until the isolation is terminated by deasserting `isolate_i`.
///
/// ## Response
///
/// If the `TerminateTransaction` parameter is set to `1'b1`, the module will return response errors
/// in case there is an incoming transaction while the module isolates. The data returned on the
/// bus is `1501A7ED` (hexspeak for isolated).
///
/// If `TerminateTransaction` is set to `1'b0`, the transaction will block indefinitely until the
/// module is de-isolated again.
module axi_isolate #(
/// Maximum number of pending requests per channel
parameter int unsigned NumPending = 32'd16,
/// Gracefully terminate all incoming transactions in case of isolation by returning proper error
/// responses.
parameter bit TerminateTransaction = 1'b0,
/// Support atomic operations (ATOPs)
parameter bit AtopSupport = 1'b1,
/// Address width of all AXI4+ATOP ports
parameter int signed AxiAddrWidth = 32'd0,
/// Data width of all AXI4+ATOP ports
parameter int signed AxiDataWidth = 32'd0,
/// ID width of all AXI4+ATOP ports
parameter int signed AxiIdWidth = 32'd0,
/// User signal width of all AXI4+ATOP ports
parameter int signed AxiUserWidth = 32'd0,
/// Request struct type of all AXI4+ATOP ports
parameter type axi_req_t = logic,
/// Response struct type of all AXI4+ATOP ports
parameter type axi_resp_t = logic
) (
/// Rising-edge clock of all ports
input logic clk_i,
/// Asynchronous reset, active low
input logic rst_ni,
/// Slave port request
input axi_req_t slv_req_i,
/// Slave port response
output axi_resp_t slv_resp_o,
/// Master port request
output axi_req_t mst_req_o,
/// Master port response
input axi_resp_t mst_resp_i,
/// Isolate master port from slave port
input logic isolate_i,
/// Master port is isolated from slave port
output logic isolated_o
);
typedef logic [AxiIdWidth-1:0] id_t;
typedef logic [AxiAddrWidth-1:0] addr_t;
typedef logic [AxiDataWidth-1:0] data_t;
typedef logic [AxiDataWidth/8-1:0] strb_t;
typedef logic [AxiUserWidth-1:0] user_t;
`AXI_TYPEDEF_AW_CHAN_T(aw_chan_t, addr_t, id_t, user_t)
`AXI_TYPEDEF_W_CHAN_T(w_chan_t, data_t, strb_t, user_t)
`AXI_TYPEDEF_B_CHAN_T(b_chan_t, id_t, user_t)
`AXI_TYPEDEF_AR_CHAN_T(ar_chan_t, addr_t, id_t, user_t)
`AXI_TYPEDEF_R_CHAN_T(r_chan_t, data_t, id_t, user_t)
axi_req_t [1:0] demux_req;
axi_resp_t [1:0] demux_rsp;
if (TerminateTransaction) begin
axi_demux #(
.AxiIdWidth ( AxiIdWidth ),
.AtopSupport ( AtopSupport ),
.aw_chan_t ( aw_chan_t ),
.w_chan_t ( w_chan_t ),
.b_chan_t ( b_chan_t ),
.ar_chan_t ( ar_chan_t ),
.r_chan_t ( r_chan_t ),
.axi_req_t ( axi_req_t ),
.axi_resp_t ( axi_resp_t ),
.NoMstPorts ( 2 ),
.MaxTrans ( NumPending ),
// We don't need many bits here as the common case will be to go for the pass-through.
.AxiLookBits ( 1 ),
.UniqueIds ( 1'b0 ),
.SpillAw ( 1'b0 ),
.SpillW ( 1'b0 ),
.SpillB ( 1'b0 ),
.SpillAr ( 1'b0 ),
.SpillR ( 1'b0 )
) i_axi_demux (
.clk_i,
.rst_ni,
.test_i ( 1'b0 ),
.slv_req_i,
.slv_aw_select_i ( isolated_o ),
.slv_ar_select_i ( isolated_o ),
.slv_resp_o,
.mst_reqs_o ( demux_req ),
.mst_resps_i ( demux_rsp )
);
axi_err_slv #(
.AxiIdWidth ( AxiIdWidth ),
.axi_req_t ( axi_req_t ),
.axi_resp_t ( axi_resp_t ),
.Resp ( axi_pkg::RESP_DECERR ),
.RespData ( 'h1501A7ED ),
.ATOPs ( AtopSupport ),
.MaxTrans ( 1 )
) i_axi_err_slv (
.clk_i,
.rst_ni,
.test_i ( 1'b0 ),
.slv_req_i ( demux_req[1] ),
.slv_resp_o ( demux_rsp[1] )
);
end else begin
assign demux_req[0] = slv_req_i;
assign slv_resp_o = demux_rsp[0];
end
axi_isolate_inner #(
.NumPending ( NumPending ),
.axi_req_t ( axi_req_t ),
.axi_resp_t ( axi_resp_t )
) i_axi_isolate (
.clk_i,
.rst_ni,
.slv_req_i ( demux_req[0] ),
.slv_resp_o ( demux_rsp[0] ),
.mst_req_o,
.mst_resp_i,
.isolate_i,
.isolated_o
);
endmodule
module axi_isolate_inner #(
parameter int unsigned NumPending = 32'd16,
parameter type axi_req_t = logic,
parameter type axi_resp_t = logic
) (
input logic clk_i,
input logic rst_ni,
input axi_req_t slv_req_i,
output axi_resp_t slv_resp_o,
output axi_req_t mst_req_o,
input axi_resp_t mst_resp_i,
input logic isolate_i,
output logic isolated_o
);
// plus 1 in clog for accouning no open transaction, plus one bit for atomic injection
localparam int unsigned CounterWidth = $clog2(NumPending + 32'd1) + 32'd1;
typedef logic [CounterWidth-1:0] cnt_t;
typedef enum logic [1:0] {
Normal,
Hold,
Drain,
Isolate
} isolate_state_e;
isolate_state_e state_aw_d, state_aw_q, state_ar_d, state_ar_q;
logic update_aw_state, update_ar_state;
cnt_t pending_aw_d, pending_aw_q;
logic update_aw_cnt;
cnt_t pending_w_d, pending_w_q;
logic update_w_cnt, connect_w;
cnt_t pending_ar_d, pending_ar_q;
logic update_ar_cnt;
`FFLARN(pending_aw_q, pending_aw_d, update_aw_cnt, '0, clk_i, rst_ni)
`FFLARN(pending_w_q, pending_w_d, update_w_cnt, '0, clk_i, rst_ni)
`FFLARN(pending_ar_q, pending_ar_d, update_ar_cnt, '0, clk_i, rst_ni)
`FFLARN(state_aw_q, state_aw_d, update_aw_state, Isolate, clk_i, rst_ni)
`FFLARN(state_ar_q, state_ar_d, update_ar_state, Isolate, clk_i, rst_ni)
// Update counters.
always_comb begin
pending_aw_d = pending_aw_q;
update_aw_cnt = 1'b0;
pending_w_d = pending_w_q;
update_w_cnt = 1'b0;
connect_w = 1'b0;
pending_ar_d = pending_ar_q;
update_ar_cnt = 1'b0;
// write counters
if (mst_req_o.aw_valid && (state_aw_q == Normal)) begin
pending_aw_d++;
update_aw_cnt = 1'b1;
pending_w_d++;
update_w_cnt = 1'b1;
connect_w = 1'b1;
if (mst_req_o.aw.atop[axi_pkg::ATOP_R_RESP]) begin
pending_ar_d++; // handle atomic with read response by injecting a count in AR
update_ar_cnt = 1'b1;
end
end
if (mst_req_o.w_valid && mst_resp_i.w_ready && mst_req_o.w.last) begin
pending_w_d--;
update_w_cnt = 1'b1;
end
if (mst_resp_i.b_valid && mst_req_o.b_ready) begin
pending_aw_d--;
update_aw_cnt = 1'b1;
end
// read counters
if (mst_req_o.ar_valid && (state_ar_q == Normal)) begin
pending_ar_d++;
update_ar_cnt = 1'b1;
end
if (mst_resp_i.r_valid && mst_req_o.r_ready && mst_resp_i.r.last) begin
pending_ar_d--;
update_ar_cnt = 1'b1;
end
end
// Perform isolation.
always_comb begin
// Default assignments
state_aw_d = state_aw_q;
update_aw_state = 1'b0;
state_ar_d = state_ar_q;
update_ar_state = 1'b0;
// Connect channel per default
mst_req_o = slv_req_i;
slv_resp_o = mst_resp_i;
/////////////////////////////////////////////////////////////
// Write transaction
/////////////////////////////////////////////////////////////
unique case (state_aw_q)
Normal: begin // Normal operation
// Cut valid handshake if a counter capacity is reached. It has to check AR counter in case
// of atomics. Counters are wide enough to account for injected count in the read response
// counter.
if (pending_aw_q >= cnt_t'(NumPending) || pending_ar_q >= cnt_t'(2*NumPending)
|| (pending_w_q >= cnt_t'(NumPending))) begin
mst_req_o.aw_valid = 1'b0;
slv_resp_o.aw_ready = 1'b0;
if (isolate_i) begin
state_aw_d = Drain;
update_aw_state = 1'b1;
end
end else begin
// here the AW handshake is connected normally
if (slv_req_i.aw_valid && !mst_resp_i.aw_ready) begin
state_aw_d = Hold;
update_aw_state = 1'b1;
end else begin
if (isolate_i) begin
state_aw_d = Drain;
update_aw_state = 1'b1;
end
end
end
end
Hold: begin // Hold the valid signal on 1'b1 if there was no transfer
mst_req_o.aw_valid = 1'b1;
// aw_ready normal connected
if (mst_resp_i.aw_ready) begin
update_aw_state = 1'b1;
state_aw_d = isolate_i ? Drain : Normal;
end
end
Drain: begin // cut the AW channel until counter is zero
mst_req_o.aw = '0;
mst_req_o.aw_valid = 1'b0;
slv_resp_o.aw_ready = 1'b0;
if (pending_aw_q == '0) begin
state_aw_d = Isolate;
update_aw_state = 1'b1;
end
end
Isolate: begin // Cut the signals to the outputs
mst_req_o.aw = '0;
mst_req_o.aw_valid = 1'b0;
slv_resp_o.aw_ready = 1'b0;
slv_resp_o.b = '0;
slv_resp_o.b_valid = 1'b0;
mst_req_o.b_ready = 1'b0;
if (!isolate_i) begin
state_aw_d = Normal;
update_aw_state = 1'b1;
end
end
default: /*do nothing*/;
endcase
// W channel is cut as long the counter is zero and not explicitly unlocked through an AW.
if ((pending_w_q == '0) && !connect_w ) begin
mst_req_o.w = '0;
mst_req_o.w_valid = 1'b0;
slv_resp_o.w_ready = 1'b0;
end
/////////////////////////////////////////////////////////////
// Read transaction
/////////////////////////////////////////////////////////////
unique case (state_ar_q)
Normal: begin
// cut handshake if counter capacity is reached
if (pending_ar_q >= NumPending) begin
mst_req_o.ar_valid = 1'b0;
slv_resp_o.ar_ready = 1'b0;
if (isolate_i) begin
state_ar_d = Drain;
update_ar_state = 1'b1;
end
end else begin
// here the AR handshake is connected normally
if (slv_req_i.ar_valid && !mst_resp_i.ar_ready) begin
state_ar_d = Hold;
update_ar_state = 1'b1;
end else begin
if (isolate_i) begin
state_ar_d = Drain;
update_ar_state = 1'b1;
end
end
end
end
Hold: begin // Hold the valid signal on 1'b1 if there was no transfer
mst_req_o.ar_valid = 1'b1;
// ar_ready normal connected
if (mst_resp_i.ar_ready) begin
update_ar_state = 1'b1;
state_ar_d = isolate_i ? Drain : Normal;
end
end
Drain: begin
mst_req_o.ar = '0;
mst_req_o.ar_valid = 1'b0;
slv_resp_o.ar_ready = 1'b0;
if (pending_ar_q == '0) begin
state_ar_d = Isolate;
update_ar_state = 1'b1;
end
end
Isolate: begin
mst_req_o.ar = '0;
mst_req_o.ar_valid = 1'b0;
slv_resp_o.ar_ready = 1'b0;
slv_resp_o.r = '0;
slv_resp_o.r_valid = 1'b0;
mst_req_o.r_ready = 1'b0;
if (!isolate_i) begin
state_ar_d = Normal;
update_ar_state = 1'b1;
end
end
default: /*do nothing*/;
endcase
end
// the isolated output signal
assign isolated_o = (state_aw_q == Isolate && state_ar_q == Isolate);
// pragma translate_off
`ifndef VERILATOR
initial begin
assume (NumPending > 0) else $fatal(1, "At least one pending transaction required.");
end
default disable iff (!rst_ni);
aw_overflow: assert property (@(posedge clk_i)
(pending_aw_q == '1) |=> (pending_aw_q != '0)) else
$fatal(1, "pending_aw_q overflowed");
ar_overflow: assert property (@(posedge clk_i)
(pending_ar_q == '1) |=> (pending_ar_q != '0)) else
$fatal(1, "pending_ar_q overflowed");
aw_underflow: assert property (@(posedge clk_i)
(pending_aw_q == '0) |=> (pending_aw_q != '1)) else
$fatal(1, "pending_aw_q underflowed");
ar_underflow: assert property (@(posedge clk_i)
(pending_ar_q == '0) |=> (pending_ar_q != '1)) else
$fatal(1, "pending_ar_q underflowed");
`endif
// pragma translate_on
endmodule
`include "axi/assign.svh"
/// Interface variant of [`axi_isolate`](module.axi_isolate).
///
/// See the documentation of the main module for the definition of ports and parameters.
module axi_isolate_intf #(
parameter int unsigned NUM_PENDING = 32'd16,
parameter bit TERMINATE_TRANSACTION = 1'b0,
parameter bit ATOP_SUPPORT = 1'b1,
parameter int unsigned AXI_ID_WIDTH = 32'd0,
parameter int unsigned AXI_ADDR_WIDTH = 32'd0,
parameter int unsigned AXI_DATA_WIDTH = 32'd0,
parameter int unsigned AXI_USER_WIDTH = 32'd0
) (
input logic clk_i,
input logic rst_ni,
AXI_BUS.Slave slv,
AXI_BUS.Master mst,
input logic isolate_i,
output logic isolated_o
);
typedef logic [AXI_ID_WIDTH-1:0] id_t;
typedef logic [AXI_ADDR_WIDTH-1:0] addr_t;
typedef logic [AXI_DATA_WIDTH-1:0] data_t;
typedef logic [AXI_DATA_WIDTH/8-1:0] strb_t;
typedef logic [AXI_USER_WIDTH-1:0] user_t;
`AXI_TYPEDEF_AW_CHAN_T(aw_chan_t, addr_t, id_t, user_t)
`AXI_TYPEDEF_W_CHAN_T(w_chan_t, data_t, strb_t, user_t)
`AXI_TYPEDEF_B_CHAN_T(b_chan_t, id_t, user_t)
`AXI_TYPEDEF_AR_CHAN_T(ar_chan_t, addr_t, id_t, user_t)
`AXI_TYPEDEF_R_CHAN_T(r_chan_t, data_t, id_t, user_t)
`AXI_TYPEDEF_REQ_T(axi_req_t, aw_chan_t, w_chan_t, ar_chan_t)
`AXI_TYPEDEF_RESP_T(axi_resp_t, b_chan_t, r_chan_t)
axi_req_t slv_req, mst_req;
axi_resp_t slv_resp, mst_resp;
`AXI_ASSIGN_TO_REQ(slv_req, slv)
`AXI_ASSIGN_FROM_RESP(slv, slv_resp)
`AXI_ASSIGN_FROM_REQ(mst, mst_req)
`AXI_ASSIGN_TO_RESP(mst_resp, mst)
axi_isolate #(
.NumPending ( NUM_PENDING ),
.TerminateTransaction ( TERMINATE_TRANSACTION ),
.AtopSupport ( ATOP_SUPPORT ),
.AxiAddrWidth ( AXI_ADDR_WIDTH ),
.AxiDataWidth ( AXI_DATA_WIDTH ),
.AxiIdWidth ( AXI_ID_WIDTH ),
.AxiUserWidth ( AXI_USER_WIDTH ),
.axi_req_t ( axi_req_t ),
.axi_resp_t ( axi_resp_t )
) i_axi_isolate (
.clk_i,
.rst_ni,
.slv_req_i ( slv_req ),
.slv_resp_o ( slv_resp ),
.mst_req_o ( mst_req ),
.mst_resp_i ( mst_resp ),
.isolate_i,
.isolated_o
);
// pragma translate_off
`ifndef VERILATOR
initial begin
assume (AXI_ID_WIDTH > 0) else $fatal(1, "AXI_ID_WIDTH has to be > 0.");
assume (AXI_ADDR_WIDTH > 0) else $fatal(1, "AXI_ADDR_WIDTH has to be > 0.");
assume (AXI_DATA_WIDTH > 0) else $fatal(1, "AXI_DATA_WIDTH has to be > 0.");
assume (AXI_USER_WIDTH > 0) else $fatal(1, "AXI_USER_WIDTH has to be > 0.");
end
`endif
// pragma translate_on
endmodule