Skip to content

Latest commit

 

History

History
166 lines (137 loc) · 6.97 KB

README.md

File metadata and controls

166 lines (137 loc) · 6.97 KB

LLaVA-Hound:
Video Large Multimodal Models from Large-scale Training

Official implementation for paper:

Direct Preference Optimization of Video Large Multimodal Models from Language Model Reward

Release

Dataset and Model

In Huggingface Repo, we release

Datasets:

  1. Test data: ShareGPTVideo/test_video_and_instruction
  2. Train data ShareGPTVideo/train_video_and_instruction:

Models:

  1. Pre-trained ckpt on large scale video (and image) caption: ShareGPTVideo/LLaVA-Hound-Pretrain
  2. Fine-tuned ckpt on video (and image) instruction: ShareGPTVideo/LLaVA-Hound-SFT
  3. DPO ckpt with 17k video preference data: ShareGPTVideo/LLaVA-Hound-DPO
  4. Additionaly, ShareGPTVideo/LLaVA-Hound-SFT-Image_only

Setup:

# setup requirements
source setup/setup_env.sh

# need to fill in required path and API tokens at
set_path.sh

Inference Example for DPO/SFT Model

cd llava_hound_dpo
sudo apt-get install ffmpeg
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path
from inference.inference_utils import ModelInference, decode2frame

video_path = "examples/sample_msrvtt.mp4"

# options ["ShareGPTVideo/LLaVA-Hound-DPO", "ShareGPTVideo/LLaVA-Hound-SFT", "ShareGPTVideo/LLaVA-Hound-SFT-Image_only"]
model_path = "ShareGPTVideo/LLaVA-Hound-DPO" 
model_name = get_model_name_from_path(model_path)
tokenizer, model, processor, context_len = load_pretrained_model(model_path, model_base = None, model_name=model_name, cache_dir=os.environ['CACHE_DIR'])
inference_model = ModelInference(model=model, tokenizer=tokenizer, processor=processor, context_len=context_len)

# our pipeline
frame_dir, _ = os.path.splitext(video_path)
decode2frame(video_path, frame_dir, verbose=True)
question="What is the evident theme in the video?"
response = inference_model.generate(
    question=question,
    modal_path=frame_dir,
    temperature=0,
)
print(response)

# using decord 
response = inference_model.generate(
    question=question,
    modal_path=video_path,
    temperature=0,
    video_decode_backend="decord",
)
print(response)

Inference Example for Detailed Caption Model

To generate detailed video captions with our pretrained ckpt use

import numpy as np
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path
from inference.inference_utils import ModelInference, decode2frame, detail_templates

video_path = "examples/sample_msrvtt.mp4"

model_path = "ShareGPTVideo/LLaVA-Hound-Pretrain"
model_name = get_model_name_from_path(model_path)
tokenizer, model, processor, context_len = load_pretrained_model(model_path, model_base = None, model_name=model_name, cache_dir=os.environ['CACHE_DIR'])
inference_model = ModelInference(model=model, tokenizer=tokenizer, processor=processor, context_len=context_len)

question = np.random.choice(detail_templates) # use pretrained template questions

# our pipeline
frame_dir, _ = os.path.splitext(video_path)
decode2frame(video_path, frame_dir, verbose=True)
response = inference_model.generate(
    question=question,
    modal_path=frame_dir,
    temperature=0,
)
print(response)

# using decord 
response = inference_model.generate(
    question=question,
    modal_path=video_path,
    temperature=0,
    video_decode_backend="decord",
)
print(response)

Testing with one-line command

# setup data
source setup/setup_test_data.sh

# Eval for official (a subset of 5k qa)
bash test/pipeline/outdomain_official_test_pipeline.sh \
$model_output_name \
$model_name

# Eval for our in-domain
bash test/pipeline/indomain_test_pipeline.sh \
$model_output_name \
$model_name

# Eval for our out-of-domain 
bash test/pipeline/outdomain_test_pipeline.sh \
$model_output_name \
$model_name

Exampe of official testing with dpo model

bash test/pipeline/outdomain_official_test_pipeline.sh \
videollava_dpo \
ShareGPTVideo/LLaVA-Hound-DPO

More details including discussion, other SOTA model testing, customized model testing, refer to test readme

Training

DPO training refer to DPO data setup and training

Pretrain + SFT refer to Pretrain + SFT

Reference

@misc{zhang2024direct,
      title={Direct Preference Optimization of Video Large Multimodal Models from Language Model Reward}, 
      author={Ruohong Zhang and Liangke Gui and Zhiqing Sun and Yihao Feng and Keyang Xu and Yuanhan Zhang and Di Fu and Chunyuan Li and Alexander Hauptmann and Yonatan Bisk and Yiming Yang},
      year={2024},
      eprint={2404.01258},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

Code is build updo the following projects:

Thanks for their great work!