From 17ed860c6498416805659d9887373cf966baecf2 Mon Sep 17 00:00:00 2001 From: Susan Li Date: Mon, 30 Aug 2021 12:59:25 -0400 Subject: [PATCH] Add notebook --- Classic LogReg model_update.ipynb | 1184 +++++++++++++++++++++++++++++ 1 file changed, 1184 insertions(+) create mode 100644 Classic LogReg model_update.ipynb diff --git a/Classic LogReg model_update.ipynb b/Classic LogReg model_update.ipynb new file mode 100644 index 0000000..cb7a202 --- /dev/null +++ b/Classic LogReg model_update.ipynb @@ -0,0 +1,1184 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook, I used top 100 ranked hotels, filtered out avg nightly rate outliers, and used hotel names, fitted a classic LogReg model then predict_prob." + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import MinMaxScaler" + ] + }, + { + "cell_type": "code", + "execution_count": 196, + "metadata": {}, + "outputs": [], + "source": [ + "df1 = pd.read_csv('2878240_2020_02_13.csv')\n", + "df2 = pd.read_csv('2878258_2020_02_13.csv')\n", + "\n", + "df1['checkin_date'] = pd.to_datetime(df1['checkin_date'])\n", + "df1['checkout_date'] = pd.to_datetime(df1['checkout_date'])\n", + "df2['checkin_date'] = pd.to_datetime(df2['checkin_date'])\n", + "df2['checkout_date'] = pd.to_datetime(df2['checkout_date'])\n", + "df1.sort_values(by=['checkin_date'], inplace=True)\n", + "df2.sort_values(by=['checkin_date'], inplace=True)\n", + "frames = [df1, df2]\n", + "df = pd.concat(frames)\n", + "\n", + "df = df.drop_duplicates(keep='first')\n", + "df['length_of_stay'] = (df['checkout_date'] - df['checkin_date']).dt.days\n", + "df['avg_nightly_rate'] = df['total_price'] / df['num_of_rooms'] / df['length_of_stay']\n", + "\n", + "df = df.loc[df['rank'] <= 100]\n", + "df1 = df[['searchid', 'purchased', 'rank', 'avg_nightly_rate', 'hotel_name']]\n", + "P = np.percentile(df1['avg_nightly_rate'], [5, 95])\n", + "df1 = df1[(df1['avg_nightly_rate'] > P[0]) & (df1['avg_nightly_rate'] < P[1])]" + ] + }, + { + "cell_type": "code", + "execution_count": 197, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
searchidpurchasedrankavg_nightly_ratehotel_name
244257AB1B34B-3901-47FE-B4DF-0A5F3FC16164False49247.0Grand Hotel& Suites Toronto
244247AB1B34B-3901-47FE-B4DF-0A5F3FC16164False48239.0Toronto Marriott City Centre Hotel
244237AB1B34B-3901-47FE-B4DF-0A5F3FC16164False47216.0The York Boutique Suites
244227AB1B34B-3901-47FE-B4DF-0A5F3FC16164False46204.0Aaira Suites
244217AB1B34B-3901-47FE-B4DF-0A5F3FC16164False45189.0Simply Comfort. Gorgeous Apartments in the Hea...
\n", + "
" + ], + "text/plain": [ + " searchid purchased rank \\\n", + "24425 7AB1B34B-3901-47FE-B4DF-0A5F3FC16164 False 49 \n", + "24424 7AB1B34B-3901-47FE-B4DF-0A5F3FC16164 False 48 \n", + "24423 7AB1B34B-3901-47FE-B4DF-0A5F3FC16164 False 47 \n", + "24422 7AB1B34B-3901-47FE-B4DF-0A5F3FC16164 False 46 \n", + "24421 7AB1B34B-3901-47FE-B4DF-0A5F3FC16164 False 45 \n", + "\n", + " avg_nightly_rate hotel_name \n", + "24425 247.0 Grand Hotel& Suites Toronto \n", + "24424 239.0 Toronto Marriott City Centre Hotel \n", + "24423 216.0 The York Boutique Suites \n", + "24422 204.0 Aaira Suites \n", + "24421 189.0 Simply Comfort. Gorgeous Apartments in the Hea... " + ] + }, + "execution_count": 197, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df1.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 198, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False 0.986439\n", + "True 0.013561\n", + "Name: purchased, dtype: float64" + ] + }, + "execution_count": 198, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df1['purchased'].value_counts() / df1.shape[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Avg nightly rate seems to have a little bit negative effect on purchase, rank does not seem to have effect on purchase." + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rankavg_nightly_rate
purchased
False46.497938304.596275
True47.812500282.140774
\n", + "
" + ], + "text/plain": [ + " rank avg_nightly_rate\n", + "purchased \n", + "False 46.497938 304.596275\n", + "True 47.812500 282.140774" + ] + }, + "execution_count": 134, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df1.groupby('purchased').mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Look at the hotels that have the highest avg purchase rate, none of them were positioned within top 20, and their prices were somewhere in between around 200 dollars and 500 dollars." + ] + }, + { + "cell_type": "code", + "execution_count": 135, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
purchasedrankavg_nightly_rate
hotel_name
Luxury Penthouse In Downtown Toronto0.25000070.250000548.607143
iResidence in Toronto- Vacation Home0.16666785.500000390.314815
Elegant condo with stunning lake & views0.11111151.777778263.000000
Livingsuites Toronto - Front & John0.11111127.555556199.388889
QuickStay - Style in Yorkville (Yonge & Bloor)0.07142987.357143202.982143
Stunning Suites - Beautiful 2bdr Condo0.06451657.451613347.912442
Galaxy Suites - Iceboat Toronto0.06250068.031250204.269271
Rooms in Downtown Heritage House0.05882471.764706177.558824
Sky Suites Yorkville0.05555678.277778425.287478
HomeHop - Ice0.05263268.000000426.658897
Livingsuites Toronto - 20 Blue Jays Way0.05000062.700000234.050000
Galaxy Suites - City View Toronto0.04761966.952381192.750000
QuickStay - Gorgeous 2-Bedroom in the Heart of Downtown0.04545531.318182280.757576
1 Bedroom Flat in Spadina/fort York0.04000081.760000183.139333
elegant condo with panoramic views0.03846279.192308304.666667
QuickStay - Sunlit Luxury Loft on King West0.03703781.777778372.339506
Queen St West Designer Executive Suites0.03571474.928571334.226190
West House by Elevate Rooms0.03571463.928571231.075397
Noel Suites - Air Canada Centre0.03448329.827586247.321648
Diamond Vacation Homes - York Street0.03448333.862069268.574713
\n", + "
" + ], + "text/plain": [ + " purchased rank \\\n", + "hotel_name \n", + "Luxury Penthouse In Downtown Toronto 0.250000 70.250000 \n", + "iResidence in Toronto- Vacation Home 0.166667 85.500000 \n", + "Elegant condo with stunning lake & views 0.111111 51.777778 \n", + "Livingsuites Toronto - Front & John 0.111111 27.555556 \n", + "QuickStay - Style in Yorkville (Yonge & Bloor) 0.071429 87.357143 \n", + "Stunning Suites - Beautiful 2bdr Condo 0.064516 57.451613 \n", + "Galaxy Suites - Iceboat Toronto 0.062500 68.031250 \n", + "Rooms in Downtown Heritage House 0.058824 71.764706 \n", + "Sky Suites Yorkville 0.055556 78.277778 \n", + "HomeHop - Ice 0.052632 68.000000 \n", + "Livingsuites Toronto - 20 Blue Jays Way 0.050000 62.700000 \n", + "Galaxy Suites - City View Toronto 0.047619 66.952381 \n", + "QuickStay - Gorgeous 2-Bedroom in the Heart of ... 0.045455 31.318182 \n", + "1 Bedroom Flat in Spadina/fort York 0.040000 81.760000 \n", + "elegant condo with panoramic views 0.038462 79.192308 \n", + "QuickStay - Sunlit Luxury Loft on King West 0.037037 81.777778 \n", + "Queen St West Designer Executive Suites 0.035714 74.928571 \n", + "West House by Elevate Rooms 0.035714 63.928571 \n", + "Noel Suites - Air Canada Centre 0.034483 29.827586 \n", + "Diamond Vacation Homes - York Street 0.034483 33.862069 \n", + "\n", + " avg_nightly_rate \n", + "hotel_name \n", + "Luxury Penthouse In Downtown Toronto 548.607143 \n", + "iResidence in Toronto- Vacation Home 390.314815 \n", + "Elegant condo with stunning lake & views 263.000000 \n", + "Livingsuites Toronto - Front & John 199.388889 \n", + "QuickStay - Style in Yorkville (Yonge & Bloor) 202.982143 \n", + "Stunning Suites - Beautiful 2bdr Condo 347.912442 \n", + "Galaxy Suites - Iceboat Toronto 204.269271 \n", + "Rooms in Downtown Heritage House 177.558824 \n", + "Sky Suites Yorkville 425.287478 \n", + "HomeHop - Ice 426.658897 \n", + "Livingsuites Toronto - 20 Blue Jays Way 234.050000 \n", + "Galaxy Suites - City View Toronto 192.750000 \n", + "QuickStay - Gorgeous 2-Bedroom in the Heart of ... 280.757576 \n", + "1 Bedroom Flat in Spadina/fort York 183.139333 \n", + "elegant condo with panoramic views 304.666667 \n", + "QuickStay - Sunlit Luxury Loft on King West 372.339506 \n", + "Queen St West Designer Executive Suites 334.226190 \n", + "West House by Elevate Rooms 231.075397 \n", + "Noel Suites - Air Canada Centre 247.321648 \n", + "Diamond Vacation Homes - York Street 268.574713 " + ] + }, + "execution_count": 135, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df1.groupby('hotel_name').mean().sort_values('purchased', ascending=False).head(20)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "According to the above, the number 1 purchased hotel is \"Luxury Penthouse In Downtown Toronto\". The reason is that this hotel was booked once after only 4 searches. We run into the same problems that described in Wayfair paper, that is, if we just simply compare purchase rate between two properties, we will run into assumption that “Luxury Penthouse In Downtown Toronto” is the highest purchased hotel, while in fact, \"Luxury Penthouse In Downtown Toronto\" just got lucky." + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False 3\n", + "True 1\n", + "Name: purchased, dtype: int64" + ] + }, + "execution_count": 121, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df1.loc[df1['hotel_name'] == 'Luxury Penthouse In Downtown Toronto']['purchased'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 123, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False 42\n", + "True 2\n", + "Name: purchased, dtype: int64" + ] + }, + "execution_count": 123, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df1.loc[df1['hotel_name'] == 'QuickStay - Gorgeous 2-Bedroom in the Heart of Downtown']['purchased'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An illustration of the power of position effects for the above 20 hotels - no effect." + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEGCAYAAAB2EqL0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3dd3zV9fX48dfJTW52wgxbZhQXOBBE0VocdeKos9patVq31tZqW0f1p22t7bfuOql1K2qVOkqtE3AwlCWIJAwBgQSBhOzc3PP74/O54RoT8rlJbu79JOf5eOTBvZ+73h9ucs99r3NEVTHGGGNak5LoBhhjjPEHCxjGGGM8sYBhjDHGEwsYxhhjPLGAYYwxxpPURDego/Tp00eHDRuW6GYYY4yvzJ8/f7Oq9vVy3y4TMIYNG8a8efMS3QxjjPEVEVnj9b42JGWMMcYTCxjGGGM8sYBhjDHGEwsYxhhjPLGAYYwxxpO4BgwROVpElotIkYhc38zt14jIUhFZJCJvi8jQqNsaRGSB+zM9nu00xhjTurgtqxWRAHA/cCSwDpgrItNVdWnU3T4DxqlqlYhcAvwZOMO9rVpV94lX+4wxxsQmnj2M8UCRqq5U1TrgOeDE6Duo6ruqWuVe/RgYHMf2GGMSZP6arSxZX5boZph2imfAGASsjbq+zj3WkguAN6OuZ4jIPBH5WEROau4BInKRe595paWl7W+xMSYufj/9c+6csTzRzTDtlBQ7vUXkHGAc8L2ow0NVdb2IjADeEZHFqloc/ThVfRh4GGDcuHFWCcqYJLWlso5gqq2x8bt4voPrgSFR1we7x75FRI4AfgdMUdXayHFVXe/+uxJ4D9g3jm01xsRReXU9lbWhRDfDtFM8A8ZcoFBEhotIEDgT+NZqJxHZF3gIJ1iURB3vKSLp7uU+wMFA9GS5McYnGsLK9toQ1fUNiW6Kaae4DUmpakhELgdmAAFgqqp+LiK3AvNUdTpwJ5ADTBMRgK9UdQqwO/CQiIRxgtqfmqyuMsb4xPaaegCq6ixg+F1c5zBU9Q3gjSbHboq6fEQLj/sQ2DuebTPGdI6yaidgVFvA8D2bhTLGxFUkYFTWhVC1tSl+ZgHDGBNXkYChCrWhcIJbY9rDAoYxJq7Kq3esjrJ5DH+zgGGMiatIDwOgqs6W1vqZBQxjTFx9O2BYD8PPLGAYY+LKAkbXYQHDGBNXNiTVdVjAMMbEVXlUwLC9GP5mAcMYE1flNfXkpjt7hCstYPiaBQxjTFyVVdfTPz8DgGobkvI1CxjGmLgqq65nQI9MwCa9/c4ChjEmrsqq6xmQ5/QwLGD4mwUMY0zchMNKeXU9fXKDpIitkvI7CxjGmLiprAsRVsjPTCM7mGo9DJ+zgGGMiZvIHoz8zDQygwFbVutzFjCMMXETHTCyggHrYficBQxjTNxEAkZeZhqZwVSbw/A5CxjGmLgpj+phZFsPw/csYBhj4iZSCyMvw5nDsIDhbxYwjDFx0ziHkRWZw7AhKT+zgGGMiZuy6npSBHKCqWTZslrfs4BhjImbsup68jLTSEkRsmxZre9ZwDDGxE1ZdT35mWkAtqy2C7CAYYyJm/KaHQEjM5hKdX0D4bAmuFWmrSxgGGPipqy6nryMHT0MgOp662X4lQUMY0zcRA9JZbsBw4al/MsChjEmbsrdSW9whqTAyrT6mQUMY0xcqOp3Jr3ByWBr/MkChjEmLqrrG6hv0KhJbxuS8jsLGMaYuGhMC5LpDEVl25CU71nAMMbERXRqc9gxJGXpQfzLAoYxJi6aBgwbkvI/CxjGmLhouYdhAcOvLGAYY+LiuwHDmcOwISn/soBhjImLSPGk7+z0th6Gb1nAMMbERXR5VoC0QAppAaHSAoZvWcAwxsRFWXU9uempBFKk8VhWMJVqG5LyrbgGDBE5WkSWi0iRiFzfzO3XiMhSEVkkIm+LyNCo284VkRXuz7nxbKcxpuNFpwWJsBTn/ha3gCEiAeB+4BhgD+AsEdmjyd0+A8ap6hjgReDP7mN7ATcDE4DxwM0i0jNebTXGdLzotCARmcEAVZat1rdaDRgisqv77X+Je32MiNzg4bnHA0WqulJV64DngBOj76Cq76pqlXv1Y2Cwe/kHwFuqukVVtwJvAUd7OyVjTDIor6lv3OUdkRUMUFVrQ1J+5aWH8QjwG6AeQFUXAWd6eNwgYG3U9XXusZZcALwZy2NF5CIRmSci80pLSz00yRjTWZrrYVhdb3/zEjCyVHVOk2Md+hVBRM4BxgF3xvI4VX1YVcep6ri+fft2ZJOMMe3UfMAIWAElH/MSMDaLyEhAAUTkVGCDh8etB4ZEXR/sHvsWETkC+B0wRVVrY3msMSZ5tRQwrIfhX14CxmXAQ8BoEVkPXA1c7OFxc4FCERkuIkGcYazp0XcQkX3d556iqiVRN80AjhKRnu5k91HuMWOMD9SGGqipD3930jst1eYwfCy19bugqnqEiGQDKaq6XUSGe3hQSEQux/mgDwBTVfVzEbkVmKeq03GGoHKAaSIC8JWqTlHVLSLy/3CCDsCtqrqlDednjEmASGrzpgEjO91WSfmZl4DxErCfqlZGHXsR2L+1B6rqG8AbTY7dFHX5iJ08diow1UP7jDFJpuku74hMG5LytRYDhoiMBvYE8kXklKib8oCMeDfMGONfLQWMrLRU6kJhQg1hUgOWaMJvdtbD2A04HugBnBB1fDtwYTwbZYzxt/ImmWojGlOc1zeQZwHDd1oMGKr6KvCqiExU1Y86sU3GGJ9rmto8Iit9R8baSBZb4x9e5jA+E5HLcIanGoeiVPX8uLXKGONrLQYMK6Lka176hE8C/XHSdbyPsydiezwbZYzxt6a1MCIy06yIkp95CRijVPVGoFJV/wkch5MU0BhjmlVWXU9mWoBg6rc/YqyH4W9eAka9++82EdkLyAcK4tckY4zfNbfLG5x9GGABw6+8zGE87O62vgFnp3YOcGNcW2WM8bWWAkZkSMqKKPnTTgOGiKQA5W6K8Q+AEZ3SKmOMr7UUMGxIyt92OiSlqmHg153UFmNMF1FeE/pOLQzYETCsrrc/eZnD+J+I/EpEhohIr8hP3FtmjPGt5sqzAmSl25CUn3mZwzjD/feyqGOKDU8ZY1rQ8hyGDUn5WasBQ1VbzUxrjDERoYYwFbWhZgNGIEVIT02h2gKGL1kyF2NMhyqvaT61eURWMEClDUn5kgUMY0yHammXd4TV9fYvCxjGmA7VUh6piKxgwIakfKrVgCGOc0TkJvf6LiIyPv5NM8b4UWPAyNrZkJQFDD/y0sN4AJgInOVe3w7cH7cWGWN8rbUeRmYwYMtqfcpLwJigqpcBNQDuru9gXFtljPGt1gJGts1h+Jan5IMiEsDZe4GI9AXCcW2VMca3ymu89DAsYPiRl4BxD/AvoEBEbgdmAX+Ia6uMMb5VVl1PMJBCemrzHy+2rNa/vGzce1pE5gOHAwKcpKrL4t4yY4wvRdKCiEizt9uyWv/yskpqJLBKVe8HlgBHikiPuLfMGONLTlqQlr+L2rJa//IyJPUS0CAio4CHgCHAM3FtlTHGt1rKIxWRFQwQCit1IZsK9RsvASOsqiHgFOA+Vb0WGBDfZhlj/Kq1gJEZtLreXmwsq2Gvm2cwf83WRDelkddVUmcBPwFec4+1/NtgjOnWyqtDzaY2j8i2IkqeLFy3jYraEEvWlyW6KY28BIzzcDbu3a6qq0RkOPBkfJtljPGr1nsYFjC8KCqpAGBjeU2CW7KDl1VSS4Ero66vAu6IZ6OMMf4UDivlNa3NYUSKKFnA2JniSMAo81HAEJFC4I/AHkBG5LiqWgElY8y3bK8Nodrypj2ILtNqcxg7U1TqBIwNZdUJbskOXoak/gH8HQgB3weeAJ6KZ6OMMf7UmNrcQ8CwHkbLVLWxh7GpvDbBrdnBS8DIVNW3AVHVNar6e+C4+DbLGONHZa3UwoAdQ1I2h9GyjeU1VNY1kJueyoayalQ10U0CvAWMWhFJAVaIyOUicjKQE+d2GWN8qLyVxIOwo4dhy2pbFpnwPnBkb2rqw42BONG8BIyrgCycie/9gR8D58azUcYYf2otUy3YKikvIgFj0qg+AGxIkolvL6uk5roXK3CW2BpjTLNaK54ETnpzsICxM0UlFeRlpLLXoDzAGaLafUBeglvlbZXUrsC1wNDo+6vq5Di2yxjjQ156GBlpKYhgRZR2ori0glEFOQzIzwSSZ2ltqwEDmAY8CDwC2FcCY0yLymvqCaRI427u5ogImWkB62HsRFFJJZNH96VvbjoiPhqSAkKq+ve4t8QY43tl1fXkZaS2mNo8wup6t6ysqp7NFbWMKsghLZBC35x0NiVJwGhx0ltEeolIL+DfInKpiAyIHHOPt0pEjhaR5SJSJCLXN3P7oSLyqYiEROTUJrc1iMgC92d6zGdmjOl0ZdWhnQ5HRWQFU21IqgVFpdsBGNnXWYw6ID+DDUmSHmRnPYz5OGVZI18Vro26TYGd7vR2y7reDxwJrAPmish0N9VIxFfAT4FfNfMU1aq6z05bb4xJKq3lkYrICtqQVEsiK6RGFTgBo39+Bqs2VyaySY1aDBiqOrydzz0eKFLVlQAi8hxwItAYMFR1tXubJcY3pgsoc6vttSYzGKC63gJGc4pLKwmmpjC4ZxYA/fMy+LD4mwS3yuGl4t5l0RX2RKSniFzq4bkHAWujrq9zj3mVISLzRORjETmphbZd5N5nXmlpaQxPbYyJh+0x9DAqa21IqjlFJRWM6JNNIMUZ3Omfn8n2mlBS/H952bh3oapui1xR1a3AhfFrUqOhqjoO+BFwl1sq9ltU9WFVHaeq4/r27dsJTTLG7IzXHobV9W5ZUUlF43AUOHMYkBxpzr0EjIBELXlw5yaCHh63Hqeca8Rg95gnqrre/Xcl8B6wr9fHGmM6n6rGNIdhQ1LfVVPfwNqtVY0T3gD98tyAkQQrpbwEjBnA8yJyuIgcDjwL/MfD4+YChSIyXESCwJmAp9VO7rBXunu5D3AwUXMfxpjkU1XXQCisNundDitLK1Gl+R5GEgQML/swfg1cBFziXn8LeLS1B6lqSEQuxwk4AWCqqn4uIrcC81R1uogcAPwL6AmcICK3qOqewO7AQ+5keArwpyarq4wxScbLLu+IzLRUqpJgTD7ZFJd+e4UUOKukIDmGpHYaMNzhpydU9Wyc3d4xUdU3gDeaHLsp6vJcnKGqpo/7ENg71tczxiROeY33gJGdHqCqvgFVbXWTX3dSVFKBCAzvk914LCMtQI+stKQopLTTISlVbQCGukNKxhjTorKq1mthRGQGA6hCbchW1EcrKq1gSM8sMtK+nVqlf16Gb4akVgKz3d3WjbtHVPX/4tYqY4zvxDIklZW2I8V50w/H7qy4yQqpiAH5GUkxJOVl0rsYeM29b27UjzHGNIopYLgpzpNhb0GyaAgrKzdXNhsw+udn+qOHoaq3dEZDjDH+FlPASHfretvS2kbrtlZRFwozqm8zASMvg80VddSGGkhPTVyPzEs9jHdxckd9i9XDMMZEK6+uRwRyM1of6c6yqnvfEckhNbKFISmAkvJahvTK6tR2RfMyhxGdGDAD+CFg/UhjzLeU14TISU8lJaX1VU+ZaZGqe/ZREtGYdLC5HkbU0tqkDhiqOr/JodkiMidO7THG+JTXXd4Q1cOotR5GRFFJBX1y0pstbxsJGIkupORlSCq69kUKsD+QH7cWGWN8KZaAke3OYVTZHEYjpyxrdrO3RQJGogspeRmSiq6LEQJWARfEs1HGGP+JJWBkuqukrIiSQ1UpKqlgyj4Dm709Nz2V7GAg+XsYHVAXwxjTDZRV11PYzIRtc6L3YRgorailvCbU7PwFOHXQ++VnsLE8sbu9vQxJZQCXApNwehozgQdVNfGLgo0xSaO8ut7TLm9wdnqDBYyIna2QihiQn5HwHoaXjXtPAHsC9wL3uZefjGejjDH+U1Zd3+yEbXPSU1MIpIitknIVl3w36WBT/fMyfTGHsZeq7hF1/V0RscyxxphGNfUN1IbCnucwRISsNEtxHlFcWklOeir93doXzRmQn8Gm7bU0hLWxGl9n89LD+FREDoxcEZEJwLz4NckY4zfl7i5vL9X2IjKDAaotYADOkNTIvtk7zdzbLz+DhrCyuaK2E1v2bV4Cxv7AhyKyWkRWAx8BB4jIYhFZFNfWGWN8IZa0IBHZ6alUWsAA3IDRyoKBAUlQec/LkNTRcW+FMcbXYqmFEZGZFrBltcD2mno2ltd8qyxrc6I3740dstO7xo2XZbVrOqMhxhj/ivQw8jzkkYqwMq2O4lKnasTOJrwhKj1IAgspeRmSMsaYnWrLkFRmMGBDUnhbIQXQKytIMJDChgTWxbCAYYxpt0i1vZjmMIKpNiSFU2UvLSAMbSWpYEqK0C8/PaFLaz0FDBEZKiJHuJczRcQKKBljGpVVOx/8saySsiEpR1FJBcN6Z5MaaP3juH9eYjfvtdpCEbkQeBF4yD00GHglno0yxvhLeU092cEAaR4+9CJsWa2juKSi1QnviP75mQkt1erl3b0MOBgoB1DVFUBBPBtljPGXsur6mHoX4PQwKrv5kFRdKMyaLVWtzl9EDMjPYGNZDarfqWnXKbwEjFpVrYtcEZFUmqnAZ4zpvmLJVBuRFUylpj5MONx9P07WfFNJQ1g9B4z+eRnUhsJsc+eMOpuXgPG+iPwWyBSRI4FpwL/j2yxjjJ+0tYcB3buud5HHFVIRiS6k5CVgXA+UAouBnwNvADfEs1HGGH8pb1MPwzLWRgLGiL7NF05qakep1sTsxfCycS8MPOL+GGPMd5RV17NXjAEjUkTJyVibHodWJb+i0goG9cgkK+htw+OAxs17ickn5aUexmK+O2dRhpOA8DZV/SYeDTPG+EcstTAisq2HQXFp6zmkovXNSSdFErfb20tYexNoAJ5xr58JZAEbgceBE+LSMmOML9Q3hKmsa4h5SKq7F1EKh5XikkrGj+/t+TGpgRT65qYnbA7DS8A4QlX3i7q+WEQ+VdX9ROSceDWss6gqJdtryUgNeC7+YvyrviEMENN+AbNz5Y1pQbznkQIah2G6616Mr8uqqa5v8DzhHZHIvRhe/moCIjI+ckVEDgAC7lXfL6L+uqyGCX94m9cWf53oppg4m79mK4f++V3OnTqnWy/l7GiNeaRi/MIVmfTurnsxGsuyepzwjhiQl5GwFOdeAsbPgMdEZJVbD+Mx4EIRyQb+GM/GdYaB+RlkBwOs2FSR6KaYOFFV/jF7FWc89BE19Q18WPwNU2evSnSzuoy2JB6EqGW13bSHEeuS2oj++YkLGF5WSc0F9haRfPd6WdTNL8SrYZ1FRBhVkMOKku2JboqJg4raENe9tIjXF23giN378dfTxnLNCwu4c8Zyvj+6wHNKBtOy8ho3j1SMk95ZjaukumfAKC6tpGdWGr1zYlsh1j8/g+21ISpqQ+SkxzYM2F5ekw8eh7MH4yoRuUlEbopvszrXqIJc62F0QSs2befE+2bx5uINXHf0aB7+8f7kZ6Xxx1P2JiMtwC9fWEjIndMwbdfWHsaOSe/uOSRVXFIRc+8CopfWdn4vw0vywQeBM4ArAAFOA4bGuV2dqrBfDiXbaxtTNBv/e3XBek68fzZl1fU89bMJXHLYSFJSnHrJBXkZ3HrinixYu42HZ65McEv9r71DUt21h1FU2raA0S+BpVq99DAOUtWfAFtV9RZgIrBrfJvVuQrdN62o1Ial/K4uFObmV5dw1XML2HNgHq9feQgHjezznftNGTuQY/bqz11vrWD5Rnvf2yOySirW1CBpgRSCgZRuGTC2VNaxpbKuTUOiAxrTg3T+XgwvASMSxqpEZCBQDwyIX5M63679nPIeNizlb19vq+b0hz7inx+t4cJDhvPMhQc2fhtrSkS47aS9yM1I5ZoXFjQutzWxK6uuJz01hYy0QOt3bsJJcd79hqQaV0i1o4exKQFLa70EjH+LSA/gTuBTYDU7NvF1CYN6ZJKRlsKKEgsYfvXBl6Ucd89Mikoq+PvZ+/G74/Zoda9F75x0bj95Lz7/upz73y3qpJZ2PW3JIxXRXYsoFZe6K6Ta0MPISAvQMystIZv3dvoXJSIpwNuquk1VX8KZuxitqp4mvUXkaBFZLiJFInJ9M7cfKiKfikhIRE5tctu5IrLC/Tk3hnOKWUpKZKWUBQy/CYeVu/+3gnP/MYeC3AymX34wx+ztvQN89F4DOHGfgdz3ThFL1pe1/gDzHW3JVBuR2U0DRlFJBZlpAQb1yGzT4/vnZybfHIabePD+qOu1TZbVtkhEAu5jjwH2AM4SkT2a3O0r4Kc06bGISC/gZmACMB64WUR6enndtiosyKVok41l+8nWyjrOe3wuf/vfl5y8zyD+ddlBjGjDN7ZbpuxJr+wgv3xhIbWh7vfh1V5tqYURkR1M7ZarpIpKKhjRN7txIUasBuRnJGS3t5chqbdF5IciEuuZjQeKVHWlW4DpOeDE6Duo6mpVXQQ0HUD+AfCWqm5R1a3AW8DRMb5+TEYV5PB1WQ3ba2yllB8sXLuN4++dxUfF33D7yXvx19PHes742VSPrCB/+uHeLN+0nbv/t6KDW9r1tSdgdOceRnv2ACVq856XgPFznKJJdSJSLiLbRaTcw+MGAWujrq9zj3nh6bEicpGIzBOReaWlpR6funmNK6VsWCqpqSpPfryG0x78CIAXL5nI2ROGEvv3mW+bPLofp+0/mAffL+azr7Z2RFO7jfYEjKxgoNsVUKqqC7F+W3WbltRG9M/L4JvKOmo6+f+u1YChqrmqmqKqaaqa517P64zGtUZVH1bVcao6rm/fvu16rsLISikLGEmrqi7ENS8s5MZXlnDQqN68dsUkxgzu0WHPf+MJe9A/L4NfTlvY6X+IftbeSe/K2u41JLWytBKIPSVItEghpZLyzq2L4WXjnojIOSJyo3t9SHQywp1YDwyJuj7YPeZFex7bJrv0yiKYmmI9jCRVXFrBSffP5pUF6/nlkbsy9dwD6Jkd7NDXyMtI445Tx7CytJK/zFjeoc/dVYXDyvbaEHkZbRsOzAqmdrtcUo0rpNoRMBp3e3fyPIaXIakHcDbr/ci9XkHURPhOzAUKRWS4iARx6mhM99iuGcBRItLTnew+yj0WN4EUYWTfHFbYxHfSeWPxBk68bzabK+p44vzxXHF4YZsnC1tzSGFfzp6wC4/NXsWcVVvi8hpdyfaaEKqxb9qLyAoGqOpmvbmikgoCKcLQ3lltfo7+eYnZvOclYExQ1ctwN/C5k9CtfrVT1RBwOc4H/TLgBVX9XERuFZEp4KRKF5F1OOlGHhKRz93HbgH+H07QmQvc6h6Lq0JbWptU6hvC3PrvpVz69KcU9svhtSsmcUhh+4YevfjtsbszuGcm1764sFuu4IlFW9OCRHTHSe+ikgp26ZVFemrsGx0j+icon5SXgFHvLpFVABHpy3dXNTVLVd9Q1V1VdaSq3u4eu0lVp7uX56rqYFXNVtXeqrpn1GOnquoo9+cfMZ9ZGxQW5LBua7V9SCSBjWU1nPXwx0ydvYqfHjSM5y+ayMA2rlmPVXZ6KneeOpY131Rxx5tfdMpr+lV7A0ZWWip1oXC3SgLZ3hVSALkZaeSkpyblkNQ9wL+AAhG5HZgF/CGurUqQwn7Om1hcUpnglnRvHxZt5vh7Z7J0Qzn3nLUvv5+yJ8HUzq2Qd+CI3px38DD++dEaPiza3Kmv7SftDRjZ6W4Cwm4yLBVqCLP6m8p2zV9E9MtLT74ehqo+Dfwap1jSBuAkVZ0W74YlwqgCZ6XUlzaPkRDhsHL/u0Wc89gn9MgKMv3yg5kydmDC2vPrH4xmeJ9srn1xke3PaUF5TdsSD0ZkdrMiSl9tqaK+QTskYAzIz+z09CBeVkndA/RS1ftV9T5VXdYJ7UqIob2zSAuIzWMkQFlVPRc+MY87ZyznuDEDefWygxsDeKJkBgP85bQxbCir5g9vdNlf+3Zp95BUN0tx3tayrM3pn5/R6QkIvfTz5wM3iEixiPxFRMbFu1GJkhZIYXifbIqs+l6nWrK+jOPvm8kHK0q5Zcqe3HPmPmR3ciWxluw/tBcXHjKCZ+es5b3lJYluTtJpf8Bw3ufushejqLTtWWqbGpCfQcn22k6d//EyJPVPVT0WOABYDtwhIl02f0Jhv1zrYXSi5+d+xSl//5BQg/L8zydy7kHD2r1ru6P94shdKSzI4fqXFjd+QBpHWXU9qSnS2FOIVWNd724yh1FcUkm/vPSYy9k2p19eBg1hZXNFXQe0zJtYZhJHAaNxMtZ22aUjhQU5fLWlynb6xll1XQPXTlvIdS8tZsLwXrx2xST22yWu+SXbLCMtwF9PH0tpRS23/PvzRDcnqUTSgrQ1yHe7Iak2VtlrTiIKKXmZw/iz26O4FVgCjFPVE+LesgQpLMhFdcduTNPxVm+u5JS/f8i0+eu48vBCHj9vPL1z0hPdrJ0aM7gHlx42kpc/Xc9bSzclujlJo7wdqc0BMtOcIanuUERJVZ063u1cUhsR2YvRmfMYXgaKi4GJqtot1hZGltYWlVSw58D8BLem65nx+UZ+9cJCAgHhH+cdwPd3K0h0kzy7YnIh/1tWwm9eXsy4oT07PDWJH7WnFgbsWFZbWdv1exibymupqA11yPwFRO/27ryA4WUO4yGgQUTGuwWPDhWRQzuhbQkxrHc2gRSxcq0dLNQQ5o9vLuPnT85neN9s/n35JF8FC4Bgagp/PW0sZdV13PjqkkQ3Jym0J/Eg7FhW2x32YURWSHVUD6NXdpBgIKVT92J4GZL6GfABToqPW9x/fx/fZiVOMDWFYb2zbC9GByrZXsPZj37CQ++v5OwJuzDt4okM6dX2PDqJtMfAPK6cXMhrizbw+qINiW5OwrUntTnsWCXVHYakOiLpYDQRcepidOKQlJdJ76twVkitUdXvA/sC2+LaqgQrLMi1rLUdZM6qLRx3zywWrtvG/50+lttP3rtdOXSSwSWHjWTM4HxueGUxpds7N710snECRtuXQGemdZ9J76KSCnIzUumb23Hzdf3zMpJrSAqoUdUaABFJV9UvgN3i26zEKv8Vs1cAABy/SURBVOyXw+pvKq1cZzuoKg9/UMxZj3xMTnoqr1x2MKfsNzjRzeoQqQFnaKqyroHf/WsxqproJiWEqlJeE2pXDyOQImSkpXSbgDGqIKdDl413duU9LwFjnYj0AF4B3hKRV4E18W1WYhX2yyWssGqz5ZRqi/Kaei5+aj5/eOMLjtqjH9MvP5jR/ZOi5laHKeyXyy+P3JX/Lt3EKwviWqolaVXWNdAQ1nbvKcjqJnW9i0rbn3SwqUht78760tJqX1JVT3Yv/l5E3gXygf/EtVUJFinXumJTRZf7oIu3ZRvKueSp+azdWs0Nx+3OBZOGJ91GvI7ys0NG8N+lm7j51c+ZOKJP4zLH7qK9u7wjMtO6forzsup6SrfXdtj8RUT//AzqQmG2VtXTqxNW7cWUAlRV31fV6araeVsLE2B4n2xSxMq1xurF+es4+YHZVNU18NxFB/KzQ0Z02WABznDKX04bS11DmOtfXtTthqbKqjomYGQFA1R18WW1jRPeHdzD6OxCSp2bM9onMtICDO1tOaW8qqlv4DcvL+ZX0xay75CevH7lIRwwrFeim9UphvfJ5rqjR/Pe8lJemLc20c3pVB3Vw8hKT+3yy2obl9TGoYcBnVdIyQJGC0YV5NheDA/Wbqni1Ac/5Nk5X3HJYSN58oLxHboKxA/OnTiMA0f04v+9tox1W6sS3ZxO097U5hFZaYEuv6y2uKSCYCClw5eTD8h3iop11tJaCxgtKCzIYdXmSupC3acSWKze+WITx987izXfVPHIT8Zx3dGjSQ10v1+plBThzlPHoqpc99IiwuHuMTTVYT2MblCmtaikguF9nE3BHalPTpAUsR5GwhX2yyEUVtZ8YyulmmoIK3+ZsZzzH5/HoB6ZvHbFJI7co1+im5VQQ3pl8dvjdmd20Tc8/UmXXkTYqLy6Y3oY3aGud0cmHYyWGkihILfz9mJYwGhBoVu8xya+v+2bilp+MvUT7nu3iDPGDeHlSw9iaO/2F4PpCn40fhcOKezDH974olt80SirrkcEcttZuyS7iy+rralvYO2Wqg7LIdVUZ+7FsIDRgpF9cxDB5jGizF/j7Nqet3orf/7hGO44dQwZaf7etd2RRIQ7fjiG1BTh2mldf2iqrLqevIw0Uto5zNLVexirv6kkrB0/4R2x7y49GNQjMy7P3ZQFjBZkBgMM6ZnFClsphaoyddYqznjoY4KpKbx86UGcfsCQRDcrKQ3skclNJ+zBnNVbmDp7VaKbE1ftTTwYkRUMUF3X0GWXJXd00sGmbj5hT+44dUxcnrspCxg7UViQ0+1zSlXUhrj82c+49bWlHLZbAf++YpKlfW/FqfsP5vDRBdw5Y3mXrqvipDZvfyndrGCAUFip68RSo52pqKQCERjRAXW8E80Cxk6M6pfDytLKTq2Zm0y+3LSdKffN4s3FG7ju6NE8/OP9O+QbZVcnIvzxlL3JSAvwyxcWdtnfn/Zmqo3YkbG2aw5LFZdWMrhnZpcYvrWAsROFBbnUNYT5akv3WVsf8eqC9Zx432zKq0M8/bMDueSwke0eq+5OCvIyuPXEPVmwdhsPz1yZ6ObERccFjK6dsbaoA6vsJZoFjJ2I5JT6shtNfNeGGrjp1SVc9dwC9hqUx+tXTmLiyN6JbpYvTRk7kGP26s9db61g0bquVxGgrLp9mWojMrtwwGgIKyvjtKQ2ESxg7ERkGVx3SRGyfls1pz/0MU98tIYLDxnOMxceSL+87pVQryOJCLedtBf5WWmcdP9sfvH8gi4zp6Gq7a7nHREZkuqKS2vXb62mNhTu8Cy1idL+GasuLCc9lUE9MrvFXoz3vyzl6uc+o75B+fvZ+3HM3gMS3aQuoXdOOm9edQiPfLCSJz5aw6sL1jNl7ECuOLzQ1x8itaEwdQ3hdqc2B8juwj2MolLny2ZX6WFYwGhFYb+unVMqHFbueWcFd7+9gt365fLA2fsxwscfZMmoT046vzl2dy48dERj4Ji+8GtOGDuQKyYX+vLDpKLW6Q3kZrT/IyQyJNUVJ72LS5wNnH58j5tjAaMVhQU5fFT8DQ1h7fA8MIm2pbKOq59fwAdflnLKfoO4/aS9G/94TceLBI6LDh3BwzNX8sSHTuCY4sPAEWpw9kykprR/VHvHkFTXCxhFJRX0yQnSIyv+tSo6gwWMVhQW5FIbCrNua1WXSoGxYO02Lnv6U0q31/KHk/fmrPFDunTtimTSOyed3xyzOxcdMoJHZq7iiY9WOz2OMQO58vBRjHLT0iSzUNhZKpzaAV+iIqukKrvgHEY8quwlkk16t2JUvx3V97oCVeXJj1Zz2oMfAvDiJRP50YRdLFgkQO+cdK4/ZjSzrpvMxd8byf+WbeLIv33AFc9+xopNyb3QorGHEWj/701kHqSrrSRTVYpKKuKWQyoRLGC0IjJM0BUmvqvqQvzi+QXc+OrnHDyqD69fOYkxg3skulndXq/sINcdvSNwvLNsE0fd9QGXP/MpXyZp4AiFIwGj/R8h+Vlp/PjAoTz18Vf89/ON7X6+ZLG5oo6y6vouswcDbEiqVXkZafTPy/B9Tqni0goueWo+K0oq+OWRu3LZ90fZRrwkEwkcFx4ygkdnruSfH67m9cUbOHbvAVx1eCG79kueoaqGSMDooN+hG47fnQVrt/HLaQt5vX8eu/Tu2EJDXtTUN5AWSOmwucrGsqzWw+he/L5S6o3FG5hy7yw2V9TxxPnjueLwQgsWSaxXdpBfuz2OSw8byXtflPCDuz7gsmc+ZfnG5PjiUt/QcXMYAOmpAR44ez8EuPSZ+dR0csnWJevLGH/7//jrf5d32HPGqyxrIlnA8GCUm4TQb+mq6xvC3PrvpVz69Kfs2j+X166YxCGFfRPdLONRz+wg1/7ACRyXHTaK95eXOoHj6cQHjsYeRgfMYUQM6ZXFX0/fhyXry7nt9aUd9rytKS6t4NypcyivCTF94dcdljW3qKSCrGCAAfldZ/OrBQwPdu2XS3V9A+u3VSe6KZ5tLKvhzIc/ZursVfz0oGE8f9FEBnZSznzTsXpmB/nVD3Zj1nXf54rJo3j/SydwXPr0fL7YWJ6QNu3oYXTsR8iRe/TjokNH8NTHX/HqgvUd+tzNWb+tmh8/+gkAFx06gnVbqztsvrLYXSHVlRaUxDVgiMjRIrJcRIpE5Ppmbk8Xkefd2z8RkWHu8WEiUi0iC9yfB+PZztYUNqYI8cew1OyizRx3z0yWbSjnnrP25fdT9iSYat8N/K5HVpBfHrUjcHzw5WaOvmsmlzw1n2UbOi9wbCqv4ebpn5MiMKhnx38JufYHuzFuaE9+8/LiuP7NlW6v5ZxHP2F7bYgnLhjP+QcPB+DtZSUd8vxFJV0nh1RE3D5FRCQA3A8cA+wBnCUiezS52wXAVlUdBfwNuCPqtmJV3cf9uThe7fRix0qp5Bg/bkk4rNz/bhE/fuwTemYHmX75wUwZOzDRzTIdLDpwXDl5FLNWbOaYuzsncCzbUM5J989m9eZKHjv3gLjsMUgLpHDvj/YlIy3ApU/Pj8sO8LKqen4ydQ4by2r4x08PYM+B+fTPz2CvQXm888Wmdj9/RW2IDWU1FjBiMB4oUtWVqloHPAec2OQ+JwL/dC+/CBwuSdh/65EVpG9uelJPfJdV1XPhE/O4c8Zyjh8zkFcvO9gXG8BM2/XICnLNUbsx67rJXHl4IbNWbObYe2Yyu2hzXF7v/S9LOe3Bj1CFFy6eyPdHF8TldQAG5Gdy1xn7sKKkghteWdKh1fiq6kKc9/gcikq28+CP92fcsF6Nt00e3Y/5a7aytbKuXa+x0l0h1ZU27UF8A8YgYG3U9XXusWbvo6ohoAyI5NIeLiKficj7InJIcy8gIheJyDwRmVdaWtqxrW+isCAnafdiLFlfxvH3zeSDFaXcMmVP7j5zH7LTbcV0d5GflcY1R+7KrOsmMyAvg7v/t6LDX+PpT9Zw/uNzGdIri39ddlCnVF08dNe+XDG5kJc+Xce0ees65DlrQw38/Mn5LFi7jbvP3Jfv7frtRSCHjy4grE5wbI+uuEIKknfSewOwi6ruC1wDPCMieU3vpKoPq+o4VR3Xt298V/9EyrUmU91hVeW5OV9xyt8/JNSgPP/ziZx70LAuNclmvMvPSuOiQ0cwZ/UW5qza0iHPWVPv1Ef53b+WcGhhH6ZdPJEB+Z23eOKqwws5eFRvbnx1CUu/bt9wW6ghzNXPLWDmis386ZQxHNtMRua9B+XTJyedt79o3zxGUUkFqSnC0ATsJ4mneAaM9cCQqOuD3WPN3kdEUoF84BtVrVXVbwBUdT5QDOwax7a2alS/3MZxyWRQXdfAtS8u4vqXFzNheC9eu2IS++3SM9HNMgl2xgG70Ds7yAPvFbX7uZZ+Xc6U+2bxxEdruGDScB75yThyOrnnGkgR7jpjX/Iz07jsmU/ZXlPfpucJh5XrX17Mm0s2cuPxe3D6AUOavV9KijB5dF/eX17SuBKsLYpKKhjaO4u0DtgJn0zieTZzgUIRGS4iQeBMYHqT+0wHznUvnwq8o6oqIn3dSXNEZARQCCS0zmWhhxQh1XUNnDt1Dre9tpS6UPzqOK/eXMnJD8zmxfnruPLwQh4/bzy9c9Lj9nrGPzKDAc6fNJz3lpeyZH1Zm54jHFYenbmSk+6fzdaqep44fzw3Hr9Hh6QBaYu+uence9a+fLWliutfWhxzL19Vue31Zbw4fx1XHV7IBZOG7/T+k0f3o7wmxPw1W9vc5uIuVGUvWtx+A9w5icuBGcAy4AVV/VxEbhWRKe7dHgN6i0gRztBTZOntocAiEVmAMxl+sap2TB+7jSJpGXaWFO7m6Ut4/8tSHp21irMe+ZiNceiNzPh8IyfcO4uN5TX847wDuObIXbtc2nXTPj+eOJTc9FT+/l5xzI/dVF7DT6bO4bbXl/G93foy4+pDOXTXxG/2nDCiN786ajdeX7yBJz5aE9Nj73m7qHE/0tVHFLZ6/0mFfQgGUninjcNS9Q1h1nxT1SUDRlz7l6r6BvBGk2M3RV2uAU5r5nEvAS/Fs22x6pUdpHd2sMV14S/NX8cL89Zx+fdHsVv/XK57aRHH3zuTe8/ar0NqYocawtw5YzkPfbCSMYPzeeDs/Rjcs2uNj5qOkZeRxk8OGsoD7xU3bh7z4j9LNnL9y4uorQ8nZcr7nx86gnmrt3Db60sZO6QH+wxpPXHm1Fmr+Nv/vuSH+w3mpuP38HQ+OempTBjRi7eXbeK3x+4eczvXfFNJKKxdMmB0rQG2OBvVwkqpFZu2c8MrS5gwvBdXH1HICWOdZa35mWmc89gnPPR+cbsmy0vKa/jRo5/w0AcrOefAXZh28UQLFmanzjt4OOmpKTzooZdRWRvi+pcWcfFT8xnSM4vXrpyUlCnvU1KEv54+loLcDC57+lO2Ve186eu0eWu59bWl/GDPftzxw71jyp92+OgCiksrWb25MuZ2Rr5UdrUltWABIyZOEsLt3/rwr6oLcenTn5KdHuDes/ZtHOct7JfLq5dP4gd79uOPb37BJU+1bcLuk5XfcNy9s1i0bht/O2Mst520N+mpVhXP7FyfnHTOPGAX/vXZetZtrWrxfgvXbuO4e2by/Ly1XHrYSF665KCk/qDrkRXk/rP3o2R7Db98YWGL+d3+s2QD1720iEMK+3BP1N+lV5NH9wNo07BUcakTZJL5/7GtbLF+DAoLcimvCVG6vZaCvAxUlRteWUJRaQVPXTCBgrxvJxnLSU/l/h/tx2OzVvHHN7/gxPtm8+CP9/eUplpVeWTmSu74z3KG9sriqQsmsFt/24hnvLvo0BE8/ckaHvlgJbecuNe3bmsIKw++X8zf3vqSgtx0nr3wQA4c0f6h086wz5Ae/O7Y3fn9v5fy8MyVXPy9kd+6feaKUq58dgFjh/TgwXP2b9MXrF16Z1FYkMM7X5RwfpNJ8pr6BjaW1bChrIaN5dVsLKtlY1k1G8tr2FhWw8J1zmKDrrgXquudURxFr5QqyMtg2rx1vPzpeneteJ9mHyMi/OyQEew9KJ/Ln/2ME++bzZ9+uDcn7tN0D+MO5TX1XDttITM+38Qxe/Xnz6eOIdetSmaMVwN7ZHLKvoN5bu5aLp9cSN9cZyXduq1VXPP8Quas3sLxYwZw+0l7k5/lr9+vcw8axtzVW7lzxnL226Un44c7u7Xnr9nKRU/MZ0TfbB7/6fh2fWhP3r2AqbNW8ZuXFznBoayGjeU1bKv67khBbkYqA/IzGuuTd1Vd++w6WKRc65ebttM7J8iNry7h4FG9ufLw1ldeTBjRm9evmMRlz3zKVc8t4LOvtvHbY3f/TlLApV+Xc+nT81m7tZobjtudCyYNT7qxZOMfFx82kmnz1zJ19iquO3o0ry5Y76bagP87fSwn7zvIl79fIsKffrg3n39dxhXPfsrrVx5CSXkt5/1jDv3y0nnigvHtDoInjBnIPz9czVtLN9E/P4PBPbMYN6wnA/Iz6Z+XQf989ycvozEwFZVs54j/+4De2cGOOM2kYwEjBn1z0snPTGPB2m08+fEa8jLTuOuMfT0vay3Iy+CZCw/kT29+wWOzVrFo3TYeOHt/+rv58qfNW8sNrywhPzON5y46kAOictwY0xbD+2Rz7N4DePKjNazfWs30hV+z/9Ce3HXGPgzp5e+FE7kZaTxw9v6c/MBsLn5yPqu/qSQ7PZWnfjaBgtz216DYa1A+y249OqaAmpHmDH81t4u8K5BkSnXRHuPGjdN58+bF/XVOe/BD5q7eSorA0z87sM1LZl9ftIFfv7iQzGCAv5w2lhmfb+TZOWuZOKI395y1b+PwgTHttfTrco69ZyaBFOHKyYVc9v2RCduEFw/Pz/2K615aTK/sIC/8fGLCl7MuWV/G6P65vvk/FpH5qjrOy32thxGjUQW5zF29lV8csWu79lccN2YAu/XP4eKnPuWn/5gLwKWHjeSaI3f1zS+a8Yc9BuZxz1n7MrRXFmM97F3wm9PHDSE1JYUxg/MTHizA6Zl0VdbDiNGiddv439JNXH3Erh1SF7uiNsS9b69gwohejUv5jDGms8TSw7CAYYwx3VgsAcPGPowxxnhiAcMYY4wnFjCMMcZ4YgHDGGOMJxYwjDHGeGIBwxhjjCcWMIwxxnhiAcMYY4wnXWbjnoiUArEV+22fPsDmTny9eLJzSU52Lsmpq5xL5DyGqqqnwu1dJmB0NhGZ53V3ZLKzc0lOdi7JqaucS1vOw4akjDHGeGIBwxhjjCcWMNru4UQ3oAPZuSQnO5fk1FXOJebzsDkMY4wxnlgPwxhjjCcWMIwxxnhiAcMDEckQkTkislBEPheRW9zjw0XkExEpEpHnRSSY6LZ6ISIBEflMRF5zr/v1PFaLyGIRWSAi89xjvUTkLRFZ4f7bM9Ht9EJEeojIiyLyhYgsE5GJfjwXEdnNfT8iP+UicrUfzwVARH7h/s0vEZFn3c8Cv/69XOWex+cicrV7LKb3xQKGN7XAZFUdC+wDHC0iBwJ3AH9T1VHAVuCCBLYxFlcBy6Ku+/U8AL6vqvtErSe/HnhbVQuBt93rfnA38B9VHQ2MxXl/fHcuqrrcfT/2AfYHqoB/4cNzEZFBwJXAOFXdCwgAZ+LDvxcR2Qu4EBiP8/t1vIiMItb3RVXtJ4YfIAv4FJiAs0sy1T0+EZiR6PZ5aP9g9xdjMvAaIH48D7etq4E+TY4tBwa4lwcAyxPdTg/nkQ+swl2E4udzadL+o4DZfj0XYBCwFugFpLp/Lz/w498LcBrwWNT1G4Ffx/q+WA/DI3cYZwFQArwFFAPbVDXk3mUdzi9YsrsL5xcl7F7vjT/PA0CB/4rIfBG5yD3WT1U3uJc3Av0S07SYDAdKgX+4Q4WPikg2/jyXaGcCz7qXfXcuqroe+AvwFbABKAPm48+/lyXAISLSW0SygGOBIcT4vljA8EhVG9TpZg/G6daNTnCTYiYixwMlqjo/0W3pIJNUdT/gGOAyETk0+kZ1vjb5Yd14KrAf8HdV3ReopMnQgI/OBQB3XH8KMK3pbX45F3c8/0ScgD4QyAaOTmij2khVl+EMpf0X+A+wAGhocp9W3xcLGDFS1W3Auzhd0R4ikureNBhYn7CGeXMwMEVEVgPP4QxL3Y3/zgNo/AaIqpbgjJOPBzaJyAAA99+SxLXQs3XAOlX9xL3+Ik4A8eO5RBwDfKqqm9zrfjyXI4BVqlqqqvXAyzh/Q379e3lMVfdX1UNx5l6+JMb3xQKGByLSV0R6uJczgSNxJiXfBU5173Yu8GpiWuiNqv5GVQer6jCc4YJ3VPVsfHYeACKSLSK5kcs44+VLgOk45wA+ORdV3QisFZHd3EOHA0vx4blEOYsdw1Hgz3P5CjhQRLJERNjxvvju7wVARArcf3cBTgGeIcb3xXZ6eyAiY4B/4qySSAFeUNVbRWQEzjf1XsBnwDmqWpu4lnonIocBv1LV4/14Hm6b/+VeTQWeUdXbRaQ38AKwC066+9NVdUuCmumZiOwDPAoEgZXAebi/a/jvXLJxPmxHqGqZe8yv78stwBlACOdv42c4cxa++nsBEJGZOHOW9cA1qvp2rO+LBQxjjDGe2JCUMcYYTyxgGGOM8cQChjHGGE8sYBhjjPHEAoYxxhhPLGAYA4jIxSLyE/fyT0VkYNRtj4rIHolrnTHJwZbVGtOEiLyHs0dlXqLbYkwysR6G8TURGebWkHjarSPxoptcDRE53E3mt1hEpopIunv8TyKyVEQWichf3GO/F5FficipwDjgabeeQ6aIvCci49z7neU+3xIRuSOqHRUicrs4NVM+FpHvJHFzaw+84r7ux+6G0MhrT3VfZ6WIXNnCuVaIyN/cegZvi0hf9/iFIjLXfe2Xos5/pPs6i0XkNhGpiHqua93HLHI3pxnTKgsYpivYDXhAVXcHyoFLRSQDeBw4Q1X3xtkNfom7s/VkYE9VHQPcFv1EqvoiMA84W526DtWR29xhqjtwcnDtAxwgIie5N2cDH6tTM+UDnNoDTd0CfOa+7m+BJ6JuG42TOns8cLOIpDXz+GxgnqruCbwP3Owef1lVD3Bfexk76jPcDdztnv+6qPM4Cih0X2sfYP+miRuNaY4FDNMVrFXV2e7lp4BJOEFklap+6R7/J3AoTorqGuAxETkFp8CPVwcA77nJ6ELA0+5zAtTh1EsAJwX2sGYePwl4EkBV3wF6i0iee9vrqlqrqptxEsA1l2Y6DDzf5DwB9hKRmSKyGDgb2NM9PpEd2WKfiXqeo9yfz3Bqu4zGCSDG7FRq63cxJuk1nYhrcWJOVUMiMh4nkdypwOU4PYb2qtcdE4INxP63FZ2LyOvjI6/3OHCSqi4UkZ8Ch7XyOAH+qKoPxdhG081ZD8N0BbuIyET38o+AWTiVxIaJU4YS4MfA+yKSA+Sr6hvAL3DKVTa1Hcht5vgc4Hsi0kdEAjgZWd+PoZ0zcXoAkeSPm1W1PIbHp7AjS2rkPHHbusEdxjo76v4fAz90L58ZdXwGcL77f4GIDIpkMjVmZ6yHYbqC5TgFlKbipJ/+u6rWiMh5wDS3dsFc4EGcDKOvunMcAlzTzPM9DjwoItU4wzoAqOoGEbkeJ7214AwjxZLa+vfAVBFZhDMUdu7O7/4dlcB4EbkBZ9jqDPf4jcAnOFX7PmFHsLsaeEpEfodTNKfMPY//isjuwEdO1m4qgHPwR40Kk0C2rNb4mogMA15T1b0S3JS4E5EKVc2J4f5ZQLWqqoicCZylqifGr4Wmq7MehjFd1/7AfW7xn23A+Qluj/E562EYY4zxxCa9jTHGeGIBwxhjjCcWMIwxxnhiAcMYY4wnFjCMMcZ48v8BsjQjbTZVwhYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.lineplot(x=\"rank\", y=\"purchased\", data=df1.groupby('hotel_name').mean().sort_values('purchased', ascending=False).head(20))\n", + "plt.xlabel('position on page')\n", + "plt.ylabel('average purchase rate');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I was expecting something like \"purchase rate goes down when position goes down\". Note, the position number higher means goes down on the page. In another word, if this hotel is positioned down on the page, it will likely to sell less. This is not the case here." + ] + }, + { + "cell_type": "code", + "execution_count": 137, + "metadata": {}, + "outputs": [], + "source": [ + "df_new = df1.groupby('hotel_name').mean().sort_values('purchased', ascending=False)\n", + "df_new.reset_index(inplace=True)\n", + "df_new.loc[df_new['hotel_name'].str.contains('Hotel'), 'category'] = 'hotel'" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "metadata": {}, + "outputs": [], + "source": [ + "df_new.to_csv('df_new.csv', encoding='utf-8', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "metadata": {}, + "outputs": [], + "source": [ + "df_new = pd.read_csv('df_new.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 177, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEGCAYAAAB8Ys7jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deZxcZZ3v8c+vq3pJb+mku5M06awsIQSSAA0kBgUFhRFRBIKizosMKOPGOM7V0blwWdTruHDFbdDLNmEUASeCMDjeQZaoQ9gSiCFkISEJSWftdNLptbqrqp/7xznVW6o71Ut1dZ18369XXqfq1DlVz6mGb//6Oc95jjnnEBGR7JOT6QaIiMjQKMBFRLKUAlxEJEspwEVEspQCXEQkS4VH88MqKirczJkzR/MjRUSy3po1aw465yr7rh/VAJ85cyarV68ezY8UEcl6ZvZOsvXqQhERyVIKcBGRLKUAFxHJUqPaBy4i2S0ajVJbW0skEsl0UwKpoKCA6upqcnNzU9peAS4iKautraWkpISZM2diZpluTqA456ivr6e2tpZZs2altI+6UEQkZZFIhPLycoV3GpgZ5eXlg/rrRgEuIoOi8E6fwX63CnARkSwV/ABvOQi3j4cNT2S6JSIyhq1cuZJVq1Zl1ecEP8B3vuQtn74ls+0QkTErFospwMekuk3eMrcos+0QkRFzxRVXcPbZZzNv3jzuueceAIqLi/nyl7/MvHnzuOiii6irqwPg3nvv5ZxzzmHBggVcddVVtLa2ArBs2TI++9nPct5553HNNdfw85//nLvuuouFCxfy5z//mWXLlvG5z32ORYsWMXv2bFauXMn111/P3LlzWbZsWVdbnn76aRYvXsxZZ53F0qVLaW5uBrypQ2677TbOOusszjjjDDZt2sSOHTuO+pzhCP4wwtZ6b9nRktl2iATMHf/xJhv2NI7oe552Qim3XT7vmNs98MADTJw4kba2Ns455xyuuuoqWlpaqKmp4a677uIb3/gGd9xxBz/96U+58sor+cxnPgPALbfcwv33389NN90EeMMiV61aRSgU4vbbb6e4uJivfOUrANx///0cPnyYF198kSeffJIPf/jDvPDCC9x3332cc845rF27lurqar71rW/xzDPPUFRUxHe/+11+8IMfcOuttwJQUVHBa6+9xt13382dd97Jfffdx2c/+9lenzMcx0+AtxwA50Bn0EWy3o9//GMef/xxAHbt2sWWLVvIycnhYx/7GACf+tSnuPLKKwFYv349t9xyCw0NDTQ3N3PJJZd0vc/SpUsJhUL9fs7ll1+OmXHGGWcwefJkzjjjDADmzZvHjh07qK2tZcOGDSxZsgSAjo4OFi9e3LV/og1nn302jz322Ah+A57jJ8BjEWhvgoLSzLZHJCBSqZTTYeXKlTzzzDO8+OKLFBYWcuGFFyYdO50Ykrds2TJ++9vfsmDBApYvX87KlSu7tikqGrhrNT8/H4CcnJyux4nnsViMUCjE+9//fh5++OEB9w+FQsRisUEdZyqC3weeCHCA9pH9c09ERt+RI0eYMGEChYWFbNq0iZde8gYqdHZ2smLFCgB+9atfcf755wPQ1NREVVUV0WiUhx56qN/3LSkpoampaVBtWbRoES+88AJbt24FoKWlhbfeemvAfYbyOf0JfoBHGsH8w2wfmS9NRDLn0ksvJRaLMXfuXL7+9a+zaNEiwKumX3nlFU4//XSee+65rn7ob37zm5x33nksWbKEU089td/3vfzyy3n88ccHdXKxsrKS5cuXc+211zJ//nwWL17Mpk2bBtxnKJ/TH3PODesNBqOmpsaN+g0d7jwFcnKhsRZu+ANMO3d0P18kQDZu3MjcuXMz3YykiouLu0aAZLNk37GZrXHO1fTdNvgVeEcLlEzxHqsCF5EACXaAd3ZCR7MCXOQ4EITqe7CCHeBRf+x3SZW3VICLSIAEO8ATF+8kKnBdzCMiARLsAG/3/6QqqvSWsbbMtUVEZIQFO8Cj3pwHjJvgP1eAi0hwBDvAY/7VWbmFEC5QgIsEwI4dOzj99NNT3n758uXs2bPnmNstW7as60KgbHF8BHg4H3LHdT8XkeNGqgGejYId4NFEBT4OwuNUgYsERDwe5zOf+Qzz5s3jAx/4AG1tbaxdu5ZFixYxf/58PvrRj3L48GFWrFjB6tWr+eQnP8nChQtpa2tjzZo1XHDBBZx99tlccskl7N27N9OHM2TBnsyqVwWuLhSREfX7r8O+N0b2PaecAX/1nWNutmXLFh5++GHuvfderrnmGn7zm9/wve99j5/85CdccMEF3Hrrrdxxxx388Ic/5Kc//Sl33nknNTU1RKNRbrrpJp544gkqKyt59NFHufnmm3nggQdG9jhGyXES4H4Fri4UkUCYNWsWCxcuBLypWt9++20aGhq44IILALjuuutYunTpUftt3ryZ9evX8/73vx/wKvmqqqrRa/gIOz4CPLdAFbjISEuhUk6XnlO7hkIhGhoaUtrPOce8efN48cUX09W0UZVSH7iZfdnM3jSz9Wb2sJkVmNksM3vZzLaa2aNmlpfuxg5aog88XKAKXCTAxo8fz4QJE7pm9/vFL37RVY33nL51zpw51NXVdQV4NBrlzTffzEyjR8AxA9zMpgJ/B9Q4504HQsDHge8CdznnTgIOAzeks6FDEusR4Lk6iSkSZA8++CBf/epXmT9/PmvXru2aTjZx78uFCxcSj8dZsWIFX/va11iwYAELFy4clRsZp0uqXShhYJyZRYFCYC/wPuAT/usPArcDPxvpBg5LrwBXF4pIEMycOZP169d3Pe95b8nEzR16uuqqq7jqqqu6ni9cuJA//elPR223fPnykW3oKDhmBe6c2w3cCezEC+4jwBqgwTmXuEdQLTA12f5mdqOZrTaz1Ym7RI+aWARywhAK+10oCnARCY5UulAmAB8BZgEnAEXApal+gHPuHudcjXOuprKycsgNHZJoxKu+wa/A1QcuIsGRyknMi4Htzrk651wUeAxYApSZWaILphrYnaY2Dl2sR4CrAhcZEaN5F6/jzWC/21QCfCewyMwKzbvN80XABuB54Gp/m+uAJwb1yaMhFvFOXoL6wEVGQEFBAfX19QrxNHDOUV9fT0FBQcr7HPMkpnPuZTNbAbwGxIDXgXuA3wGPmNm3/HX3D6nV6RSLeFdhgjehVbwDOuOQE8psu0SyVHV1NbW1tYz6+azjREFBAdXV1Slvn9IoFOfcbcBtfVZvA8b2HYKjEa/rBLq7UmIRyCvKXJtEslhubi6zZs3KdDPEF+zJrHpV4H6Q60SmiARE8AM8t08FnrjJg4hIlgt+gCcq8ESAxzsy1x4RkREU7ADvOQ48lOstY+2Za4+IyAgKdoD3GgfuV+JxBbiIBEOwAzze0aMC9wM8pi4UEQmGYAd4rL276yTsz3arClxEAiLYAR7vgJAf3IkKXCcxRSQgAh7g0e7KO7FUF4qIBETAAzxZBa4uFBEJhuAGeGcndEa7Azysk5giEiwBDvCot0ycxAzpJKaIBEtwAzxxsjLRddJVgSvARSQYAhzgiQo8r/dSo1BEJCCCG+CJSrtrHLgqcBEJluAGeFcXisaBi0gwBTjA/S6UROWdk+PdoV4VuIgERIADPFGB53avC+WpAheRwAhwgCf6wPO614XyVIGLSGAEOMD7jAMHrztF48BFJCACHOB9xoEnHutKTBEJiOAGeCxJF0pYfeAiEhzBDfBkXSihfAW4iARGgAO8zzhw8CpwncQUkYAIfoCH+/SB6ySmiARE8AO81yiUPJ3EFJHAOA4CvOc4cFXgIhIcAQ7wPrMRgtedogpcRAIiwAHe36X0qsBFJBiCG+Bd48B7nMRUBS4iARLcAE86DlwVuIgER4ADvAMsBDmh7nXhfI0DF5HACHaA9zyBCZpOVkQCJdgBHk4S4KrARSQggh3gfSvwcD64OHTGM9MmEZERdHwFuO5MLyIBEuAAj/YegQK6M72IBEpKAW5mZWa2wsw2mdlGM1tsZhPN7A9mtsVfTkh3Ywcl1t57DDioAheRQEm1Av8R8P+cc6cCC4CNwNeBZ51zJwPP+s/Hjng0eR84qAIXkUA4ZoCb2XjgPcD9AM65DudcA/AR4EF/sweBK9LVyCGJdxzdhZKoyFWBi0gApFKBzwLqgH81s9fN7D4zKwImO+f2+tvsAyYn29nMbjSz1Wa2uq6ubmRanYqko1D856rARSQAUgnwMHAW8DPn3JlAC326S5xzDnDJdnbO3eOcq3HO1VRWVg63valLOg48UYErwEUk+6US4LVArXPuZf/5CrxA329mVQD+8kB6mjhEA1bg6kIRkex3zAB3zu0DdpnZHH/VRcAG4EngOn/ddcATaWnhUCUdB64KXESCI5zidjcBD5lZHrAN+Bu88P+1md0AvANck54mDtGA48BVgYtI9kspwJ1za4GaJC9dNLLNGUEDjgNXBS4i2S/gV2JqHLiIBFeAAzzZOHBdiSkiwRHwAFcFLiLBFewA73ccuCpwEcl+wQ7wfseBR0a/PSIiIyyYAd7ZCZ2xJAFe4C3VhSIiARDMAE90kegkpogEWMADvM84cDPdF1NEAiOgAR71ln27UMALdVXgIhIAAQ3wfrpQwDuRqQpcRAIgoAHuB3S/FbgCXESyX0AD3O9CCecf/Vo4T5NZiUggBDTAB+hCUQUuIgER8ABP0oWiClxEAiKYAR5TBS4iwRfMAO9vHDh4/eKqwEUkAAIe4MlGoeSpAheRQAhogCcu5Ek2Djxf48BFJBACGuADjQPP05WYIhIIAQ3wgcaBqwIXkWAIaIAfaxSKKnARyX4BD/D+xoGrAheR7BfMAI8NNApFFbiIBEMwA3zAClx94CISDMdngMfbwbnRbZOIyAgLaIAPMA6867Zq0dFrj4hIGgQ0wNvBQpATOvq1xNBCXY0pIlkuoAHekbz7BLrnR9F8KCKS5QIa4FFvuGAyifWqwEUkywU0wFOpwBXgIpLdghngsQECvKsCVxeKiGS3YAZ4vD2FCjwyeu0REUmDYAZ4rD35RFbQvV4nMUUkywUzwOPR5GPAocc4cPWBi0h2C2iAtye/nRr0qMAV4CKS3YIZ4LGO/rtQQjqJKSLBEMwAH+gkpipwEQmIlAPczEJm9rqZPeU/n2VmL5vZVjN71Mz6ScwMGOgkZqJrRRW4iGS5wVTgXwI29nj+XeAu59xJwGHghpFs2LDEo8ceB64KXESyXEoBbmbVwGXAff5zA94HrPA3eRC4Ih0NHJIkXSidnf70sSFNZiUiwZBqBf5D4B+BTv95OdDgnIv5z2uBqcl2NLMbzWy1ma2uq6sbVmNT1uck5r4jEd7z/ee5e+XWHhW4ulBEJLsdM8DN7EPAAefcmqF8gHPuHudcjXOuprKycihvMXg9KvCW9hg3PPgqtYfbWLmpDsIF3duIiGSxcArbLAE+bGYfBAqAUuBHQJmZhf0qvBrYnb5mDpJfgcc7HV96ZC0b9zayYFoZ63Y3ELVcchPbiIhksWNW4M65f3LOVTvnZgIfB55zzn0SeB642t/sOuCJtLVysPzZCJ/duJ9nNu7nlstO49PnzyIS7WTz/hbICasCF5GsN5xx4F8D/sHMtuL1id8/Mk0aAX4XypYDzQB87JxpnDm9DIDXdx72TmRqFIqIZLlUulC6OOdWAiv9x9uAc0e+ScMUj4HrhHA+O+taqSjOpyg/TGFeiMqSfF7f2cBf6870IhIAwbsSM9E1EspjR30LM8oLATAzzpxWxuu7GiB3HETbMthIEZHhC16AJyrrcD47D7V2BTjAwullbD/YQjxUADEFuIhkt+AFeDwKQJRc9h6JMGNiUddLZ06bAECry4WobuggItktgAHuVeCH/EK8ZwU+v3o8OQZN8VyItmaidSIiIyZ4Ae6P765r9S6d7xngRflh5kwp5XBHSLdUE5GsF7wA9yvw/V0BXtTr5YXTyjjYnoNTBS4iWS54Ae6fxNzX0klJfpgJhb1vrTZncjHN8TDxdp3EFJHsFrwA909i7mnqZEZFId7Eid1mVxYTIZ9YxzEq8NZD8NBSeP6f09VSEZFhCWCAexX47ubOXiNQEmZVFBFxeXCsAF/1Y9jyNPzxO1D3VjpaKiIyLMELcP8k5u7GGNN7nMBMOKFsHB05edixTmJu/j1UzvUeb3pqpFspIjJswQtwvwJv7QwzM0mAh3KMgnHFhDsHCPCGnVC3Cc76ay/E31mVrtaKiAxZAAPcq8A7yGV6ki4UgMKiYkJ0dvWXH6X2VW85YwlUzYcDG9LRUhGRYQlegMcSAR7uNQa8p9LiEm/T9pbk77FvvTfl7KS53r/G3dDWkJbmiogMVfAC3O9CcaE8ppQWJN2ktLQUgD11h5O/x/71UDHHuy3bpNO8dXWbR7ypIiLDEbwA98eBTyorJSfHkm5SXjYegNq6+uTvsf9NmHK697jyVG+pbhQRGWOCF+B+H3hFWUm/m1RM8AI8aQXe0ep1mVSc7D0fXw05udDwzog3VURkOAIb4BNKivvdpLjY60LZfyhJv/bhHd5ywixvmRPyQrxh50i2UkRk2AIX4J1Rrwtl4vj+AzxxZ/qDSQN8u7dMBDhA2XQFuIiMOYEL8EikjagLMak0+QgUAPK84YUNRwaowCcqwEVkbAtcgLe2tdJBmMml+f1vlOdV5x2tjbS0x3q/dmg75I+HcRO615XNgOb9ug2biIwpgQvwSFsbUcJUliQfQghAvneCs8ja2H6wz1jww9th4kzoOQlW2TRv2bhnZBsrIjIMgQvw9vY2OshlUskAFXi+V4EXE+Htuuberx3aDhNm9l5XMsVbNu0duYaKiAxT4AK8IxKhgzCTBuxC8Srw8TkR1u8+0r2+M+71dfc8gQlQcoK3bFSAi8jYEbgAj3ZEiFku+eFQ/xuFwhAuYHpxJ3+p7RHgR2qhM9r7BCaoAheRMSlwAR7vaCOeM0D1nZBfQnVhjPW7jxDv9G6/lnQIIUBBqXfiUwEuImNI4ALcRSO48AAnMBPyiplcEKO1I97dD55sCGFCyRQFuIiMKYELcIu1dV2oM6D8Yspzvas2/7LLHw9+aLt32Xzp1KO3L6lSH7iIjCmBCnDnHDnxdix33LE3ziuh0LVSnB9mXaIf/PB276KdnCT95yVVqsBFZEwJVIAfbo2STwehvBQCPL8Y62jm9Kml/KW2RwWerPsEoLQKmvaBcyPXYBGRYQhUgB9oipBPB7kFA1xGn5BfAu3NLJhWxsa9jbRHY14feN8TmAklVd5c4239zCEuIjLKAhXg+xvbKbAoeakEeF4xdDSzoLqMaNyxZcdOaG88qgJ/fvMBlv58FTc/cxCAVa+vS0fTRUQGLVABfqAxQgEd5KdagUcamV/tzQ2+a+t6b32PCvztuma++NBr7G9sZ3K1t/6R516lMdLPvTRFREZRsAK8qZ0COhhXOMBUsglFFRBrY2phJ+VFedTXvuWt9y+jj0TjfOGh18gL5/DIjYv4uyveA8C4yAHu/C/dXk1EMi9YAX6kjXyLkpufQgVeWAGAtdaz5KQKGnZtwGEwcRbOOW5/8k027WviB9cs5ISycVDsXY15yXTHL156h9d2qi9cRDIrUAF+qKmZHBzkpjAOvKjSW7Yc5JbL5nJSaB/7cyYRIY///buNPPLqLj5/4Ym899RJ3nbhPCis4PwpUSaXFPCd329K34GIiKQgUAHe0NjkPUjlQp6uAK9jUmkB7yprYHN0Mpf9+M/c99/bWfaumXz1kjm99ympIq9lP584bzqvbD/E3iOaH1xEMidQAd7Y1Og9SCnAvS4UWg+Cc5S2vEPe5FN4u66F65fM4rbLT8Osz13tS6ugaQ8fml8FwO/W6cIeEcmcYwa4mU0zs+fNbIOZvWlmX/LXTzSzP5jZFn854VjvlU7OOZqb/TlNUrkSMxHgLXXeFZYdzZxbcy6/+dy7+F8fmnt0eEPX5fSzK4s5raqUpxTgIpJBqVTgMeB/OOdOAxYBXzCz04CvA886504GnvWfZ0xjWwyLezc0JpzCbIR5RZBbCC0HoX4rAKHKUzh7xoTk4Q3e3elbDkCsncsXnMDaXQ3sOtQ6QkcgIjI4xwxw59xe59xr/uMmYCMwFfgI8KC/2YPAFelqZCr2+WPAAQinUIGDV4U374c6f1hgxckDb1+auLFDdzeKqnARyZRB9YGb2UzgTOBlYLJzLpFe+4DJ/exzo5mtNrPVdXV1w2jqwPYeaesO8FRGoYB3s+LDO6B2NRRNSj4LYU+J1xt3M21iIQumlfHUOt0nU0QyI+UAN7Ni4DfA3zvnGnu+5pxzQNJZnpxz9zjnapxzNZWVlcNq7ED2HolQYP4VkqlW4OUnwcEtUPsKTDu3942Mkxlf7S2P7Abg8vlVvLmnkXfqWwbYSUQkPVIKcDPLxQvvh5xzj/mr95tZlf96FXAgPU1MjRfgiS6UFPrAAaacDpEGOLQNqmuOvX1XBV4LwMVzvT86nt+U0UMXkeNUKqNQDLgf2Oic+0GPl54ErvMfXwc8MfLNS93ehjYmFfh/BKQyCgXgxPd1Pz718mNvn1cI4yZ0VeAzK4qYWV7IyrfS1zUkItKfcArbLAH+GnjDzNb66/4n8B3g12Z2A/AOcE16mpiafY0RagodNJF6gE+cDVfeC6FcqDgptX1Kq6Fxd9fTC+dM4uFXdhKJxinIHeBGyiIiI+yYAe6c+2+gv87hi0a2OUO3p6GNyfkxL8DzUpjMKmH+IH/vjJ/aVYEDXDinkuWrdvDStnounDNpcO8lIjIMgbgS0znH3iMRKvL9k5h5Ren7sNITuvrAARbNLic/nMPKzepGEZHRFYgAb2r37i4/MTcGWGqX0g9V6VTvrjwd3gU8BbkhFp9Yzh/VDy4ioywQAb63IQJAWajD6z451nDA4UgMJWzsHv/93jmT2H6whR0HNZxQREZPMALcnxWwJKc9vd0n0B3gDe90rbpwjje+feVmDScUkdETkAD3KvAi60h/gE+c7S0PbetaNaO8iNmVRTyr8eAiMooCE+BmUODavLHa6VRS5U2C1SPAwbuo56Vt9TTpfpkiMkoCEeD7jrRRWZxPTrRlcEMIh8LMq8Lr3+61+uK5k4nGHX/ecjC9ny8i4gtEgO89EqGqbBxEW9PfhQJegB/qHeBnTS+jrDCXZzbsT//ni4gQpAAvLYCOFq97I93KT/RmMYzHulaFQzm8b84knt98gFi8M/1tEJHjXtYHuHOOvQ1tTBnvB3i6u1AAJp4InTE4srPX6otPm8zh1iiv7WxIfxtE5LiX9QHe1B6jpSPOCWWJAB+FLpRyf96Ug1t7rX73yRXkhoxnN6obRUTSL+sDfJ8/hHDK+HGjF+CT5nrL/et7rS4pyGXR7HKe3rAfb4p0EZH0yfoA39PgXcRzQkkY4qNwIQ/AuDIomw773jjqpcvOqGL7wRbW7lI3ioikV9YHeKICrxrnn1AcjQAHmDI/eYDPr2Jcbohfr65NspOIyMjJ+gDf09CGGVSGvSCnoGx0PnjKGd7d7Dt6z39SUpDLB8+o4j/+soe2jvjotEVEjktZH+Bb65qZPrGQvKh/m85xoxjgONi/4aiXrqmpprk9xu/X6471IpI+WR/gb+1v5pTJJd69LWH0KvCqhd5y9+qjXjp31kRmlhfy69W7RqctInJcyuoAb4/F2X6whVMmF0ObH+CjVYGPnwrjp8M7q456ycxYWjONl7Yd0hSzIpI2WR3g2w+2EO90manAAWa8C3a+CEmGDF59djV54Rx+/NyW0WuPiBxXsjrAN+9rAvACfLQrcIAZi6GlzjuZ2cfk0gKuXzKLx1/fzfrdR0avTSJy3MjqAN+yv5lQjjG7sggiRyAnPDpzoSTMWOItt/8p6cuff++JlI3L5dv/uVEX9ojIiMvqAN+8v4mZ5YXkh0NeF0pBWXpvp9ZX+UlQNgO2PJ305dKCXL500cmserteNz0WkRGX1QG+ZX8Tc6aUeE/aGka3+wS8XxanXArbVnbd5LivT5w3g1kVRdz8+BscbG4f3faJSKBlbYC3dcR551ArJ0/yAzxRgY+2Uy6BWAR2/Dnpy3nhHH5y7Zkcau3gc79cQ0dMU82KyMjI2gB/u64Z5+iuwFvqoKhy9Bsy83xvCtvNv+93k9Onjuf7Vy/g1R2HufWJ9eoPF5ERkbUB3j0CxZ//u2kflEwZ/YaE8+Gki2DTU71u8NDX5QtO4AvvPZFHXt3FN5/SSU0RGb6sDfC3DjSRF8phRnkRxKNeBZ6JAAc4Y6n3+dtXDrjZVz4wh2XvmskDL2zn5t+up7NTIS4iQxfOdAOGasv+ZmZXFpEbyoEje7yVmQrwkz8ABeNh3b/DSRf3u5mZcdvlp1GYF+LulW8T6YjzvavnEw5l7e9REcmgrAxw5xwb9zZSM3Oit6Jpn7csqcpMg8L5cNpHYP1jx7yphJnxj5eeSmFeiDuffotILM4PP3YmeWGFuIgMTlamxpt7Gtl7JMLi2eXeiiZ/1r9MVeAAC66FjmYvxFPwxfedzC2XzeU/39jH5365hkhUU8+KyOBkZYA/tW4voRzj0tP9wG70A7w4gwE+fTFUzoVX7006N0oyn373bL51xek8u+kAn35wNa0d/Z8EFRHpK+sC3DnH797Yw5KTKphYlOetrN/iDeUrnpS5hpnBuZ+GvX+B3WtS3u1Ti2bwf5YuYNXbB7nugVc40hZNYyNFJEiyLsDX1R5h16E2PjS/R3/3gY1QOWd0L6NPZv7HIK8EVv1kULtddXY1P7n2LF7f2cBH736B7ZqCVkRSkHUB/tS6PeSGjEtO69FdUrfZ677ItPwSOO9vYcNvYf+bg9r1svlV/PLT53G4pYMr/uUFntu0P02NFJGgyKoAd87xu3V7ec/JlYwvzPVWth6ClgMw6dTMNi5h8RcgvxSe//agd100u5wnv3g+U0oLuH75am5Y/irb6prT0EgRCYKsGka48q069hyJ8JVL5nSv3PWyt0zc4izTCifC4i/Cym/D1me9qzQHYdrEQp68aQnLX9jBT57bykU/+CMLp5Vx8dzJnFZVyuTSAsqL8ygIh8jPzSE/nINluutIRDIiawL87bpm/phvg5QAAAoMSURBVP6RtZxYWdQ9+gS8qVxzC6H6nMw1rq8lX4L1K+A/vgQ3roSiikHtnh8O8bcXnMhHz5rKwy/v4tlN+/n+f20eYPscCnJDRy2L88OUFIQpHZdLaUFuj8dhKkvyqZ5QSPWEcRTkhoZ3vCKSETacOTnM7FLgR0AIuM85952Btq+pqXGrVx99E+BjqW9u56N3r6K1I8bjn1/CtIn+TRucgx/Oh2nnwNUPDP4A0mn3GvjXD8LkeXDto1DsT7S1/jHY8ge47M4BL/jp62BzO+/Ut7K/MUJ9Swft0Tjtsc6uZaTHMhLtJBKL09Ieo7EtRmMkSlMkRnN78mGKk0ryqZ4wjmkTC5k2oZBpE7sfV40vGJNXijrnONjcQe3hVg63dnCkLUooJ4fC3BATinKpnlBIZXE+OTn660Syn5mtcc7V9F0/5ArczELAvwDvB2qBV83sSefchqE382jOOb74q9fZ3xjhkRsXdYe31wj4wkve3XjGmqlne79UVlwPP3sX1FzvBfafvg8VJ0Mof1BvV1GcT0Xx4PbpKxbvpNkP9f1NEWoPt7LrUFvXcs07h3lq3V7iPeZoCecYVWUFTPcDfWrZOMqL8ykvzqO8KI/y4nxKCsLkhXPIC3n/hhOazjnaY520dcRpjcZp64hxsLmDnfWt7DzUyjuHvOX2umYaIwOPm88L51BdNo6pE8Z1/bVR3eNxYV6I3BFo80hwzhHvdMQ6HZFovNcv3qZIlCNt3r/GtiiNEe+1RO2VGzIK88IU5Ye8ZV6IwvwwRXlhCvND3jIvRFF+92uFuaGMH3M6OedwDlziMfjPXa/LNNqjnb2+58ZIjMa27u/7SJv3Wqe/UzjHKMoPU5wf9r5P//vtXhfq8VqYeKfjUEs79c0dLJhWNuJ/7Q65AjezxcDtzrlL/Of/BOCc++f+9hlqBb7mncPUN7fzgXkZvFBnqPa9AU/f4t30AWBqDSz9VyibntFm9Sca72TfkQg7D7Wy61Aru/xw95atHGzuOOZ7hHOMnAH65b3/nZKLdzr6m+MrlGOc4P8ymVVRxOyKYmaUFzKxKI+ywjzinZ20dsSpb+mg9nAbtYdaveVhb1nf0n/bQzlGOMdGfSRqp/OOOZ7ixGZmUJIfpqQgl5AfwNF4Jy3tMVo64im/D+CfPxl8m42hfUlD/W57Bq8D6PM8EdCJbUdSSb7X7djzu25uj9HSHuv3v9P+PPMPF3DSpOIhtWPEK3BgKrCrx/Na4LwkH3wjcKP/tNnM+u/MTa8K4GCGPruH5+DGGSP5hmPkuNLiqGPblqGGpEFQf25BPS4Y5rGd/N1hfXbS0Ej7SUzn3D3APen+nGMxs9XJfoNlu6AeF+jYslFQjwvG5rEN5+zUbmBaj+fV/joRERkFwwnwV4GTzWyWmeUBHweeHJlmiYjIsQy5C8U5FzOzLwL/hTeM8AHn3OCuHx9dGe/GSZOgHhfo2LJRUI8LxuCxDWscuIiIZM7Yu0JDRERSogAXEclSWR/gZnapmW02s61m9vUkr+eb2aP+6y+b2cwer/2Tv36zmV0ymu1OxVCPzcxmmlmbma31//18tNs+kBSO6z1m9pqZxczs6j6vXWdmW/x/141eq1MzzGOL9/iZjbkBASkc2z+Y2QYzW2dmz5rZjB6vjdmf2zCPK7M/M++S0+z8h3fy9G1gNpAH/AU4rc82nwd+7j/+OPCo//g0f/t8YJb/PqFMH9MIHdtMYH2mj2EYxzUTmA/8G3B1j/UT8a7lmQhM8B9PyPQxjcSx+a81Z/oYhnls7wUK/cef6/Hf45j9uQ3nuMbCzyzbK/Bzga3OuW3OuQ7gEeAjfbb5CPCg/3gFcJF5869+BHjEOdfunNsObPXfb6wYzrGNZcc8LufcDufcOqCzz76XAH9wzh1yzh0G/gBcOhqNTtFwjm2sS+XYnnfOtfpPX8K7NgTG9s9tOMeVcdke4Mku55/a3zbOuRhwBChPcd9MGs6xAcwys9fN7I9m9u50N3YQhvO9B+FnNpACM1ttZi+Z2RUj27RhG+yx3QD8foj7jqbhHBdk+GeWNfOBy6DsBaY75+rN7Gzgt2Y2zznXmOmGyYBmOOd2m9ls4Dkze8M593amGzVYZvYpoAa4INNtGUn9HFdGf2bZXoGncjl/1zZmFgbGA/Up7ptJQz42v1uoHsA5twavj++UtLc4NcP53oPwM+uXc263v9wGrATOHMnGDVNKx2ZmFwM3Ax92zrUPZt8MGc5xZf5nlumTCMP5h/cXxDa8k5CJExDz+mzzBXqf6Pu1/3gevU9ibmNsncQczrFVJo4F7+TMbmBipo8p1ePqse1yjj6JuR3vRNgE//GYOK4ROLYJQL7/uALYQp+TaWP92PDC623g5D7rx+zPbZjHlfGfWca/wBH4AXwQeMv/gm/2130D7zclQAHw73gnKV8BZvfY92Z/v83AX2X6WEbq2ICrgDeBtcBrwOWZPpZBHtc5eH2RLXh/Lb3ZY9/r/ePdCvxNpo9lpI4NeBfwhh8gbwA3ZPpYhnBszwD7/f/u1gJPZsPPbajHNRZ+ZrqUXkQkS2V7H7iIyHFLAS4ikqUU4CIiWUoBLiKSpRTgIiJZSgEuxy0z22FmFaP0WcvM7Kej8Vly/FCAS6D5V6iKBJICXMY8f37zTWb2kJltNLMVZlbYs4I2sxozW+k/vt3MfmFmLwC/MLOQmd1pZuv9OZ1v6vH2N/nzc79hZqf6+59rZi/6k4GtMrM5/vp5ZvaKP/fzOjM72V//qR7r/6+Zhfz1f2Nmb5nZK8CS0fvG5HihAJdsMQe42zk3F2jEmwt9IKcBFzvnrgVuxJuHe6Fzbj7wUI/tDjrnzgJ+BnzFX7cJeLdz7kzgVuDb/vrPAj9yzi3Em9So1szmAh8Dlvjr48AnzawKuAMvuM/32yMyovTnpWSLXc65F/zHvwT+7hjbP+mca/MfX4w3Z0wMwDl3qMd2j/nLNcCV/uPxwIN+he2AXH/9i8DNZlYNPOac22JmFwFnA6/6U7GPAw4A5wErnXN1AGb2KGNnQjEJCFXgki36zvnggBjd/w0X9Hm9JcX3TcwsF6e7oPkm8Lxz7nTg8sR7O+d+BXwYaAP+08zeBxjwoHNuof9vjnPu9hQ/W2RYFOCSLaab2WL/8SeA/wZ24FW/4E3g1Z8/AH+bOKFpZhOP8Vnj6Z5SdFlipT/n8zbn3I+BJ/BujfYscLWZTUq8t3/PxJeBC8ys3MxygaWpHKTIYCjAJVtsBr5gZhvxpvH8GV4f84/MbDVeBd2f+4CdwDoz+wveL4CBfA/4ZzN7nd7djNcA681sLXA68G/OuQ3ALcDTZrYO75dFlXNuL3A7XrfLC8DGwRysSCo0G6GMeWY2E3jK79IQEZ8qcBGRLKUKXEQkS6kCFxHJUgpwEZEspQAXEclSCnARkSylABcRyVL/HzhLhJ/8sTo5AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.distplot(df_new.loc[df_new['category'] == 'apartment']['purchased'], hist=False, label='apartment')\n", + "sns.distplot(df_new.loc[df_new['category'] == 'hotel']['purchased'], hist=False, label='hotel')\n", + "plt.legend()\n", + "#plt.xlim(0,0.10);" + ] + }, + { + "cell_type": "code", + "execution_count": 203, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAngAAAFTCAYAAACqFHFSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7xcVX3//9ebBAkk4Y7IRQmgQEwgUWIBlUKLivVXWpXiDYSIingv1lqrFEGhlVbF+qXWYhUQAS8IIlqt5YspKlBM+BIgEkEsSAQ0xCQkIQiR9ftj7xOG4ZyTSTJzzpyd1/Px2I/MrLX3Xp89a0/mc9a+pZSCJEmSmmOz0Q5AkiRJ3WWCJ0mS1DAmeJIkSQ1jgidJktQwJniSJEkNY4InSZLUMCZ40gZKckGSM0c7jtGUZEqSkmR8/f67SU7o0roPTfKzlvd3J3lJN9Zdr29BksO7tb6W9c5J8pZur3dTkmR2kh9txPJd2w+lscoET41TJwKrk6xM8us6EZs02nH1g4394VyXUsqflFIu7CCOkuTZ61jXD0sp+3YjrsGS8VLKtFLKnG6sX6MnyelJvtxa1ul+uAFtbfJ/1GnsMMFTUx1VSpkEPB+YBZy6visYGJUaK8ZavMNp0rZI0mgwwVOjlVJ+BXwXmA5PPczX+td/y+HGNyf5JXBNXf7iJNclWZbk3iSzW5rYLsl3kqxI8j9J9m5Z9z/X8z+UZF6SQ1vq/iDJ3Lru10k+1VJ3cEt784c7jFhvz98kuQVYlWR8kg8muauO6adJXlXPOxX4HHBIPbq5rC7fIsknkvyyjuVzSbYcor1x9bwPJvkF8P+11a89PJnk2Un+O8nyev6v1uXX1rPPr+N4bZLDkyyqt+UB4PyBsrYQXlBv09Ik5yeZUK/zKSOTA6OESU4CjgU+ULd3Vctn95KWz+DTSe6rp08n2aKuG4jtr5L8Jsn9Sd40VJ/U9k5yY92/VybZvl7Xd5K8uy3OWwb6aJDP++tJHqg/w2uTTGup2zLJJ5PcU9f/aKDfhtpnk2yT5EtJFtfLnZpks5bP8MdJzqmX+0WSF9bl99bbfkJL+xck+Wyqw6Er62WfUX92S5MsTPK8lvmn1vvHslSHx/+spW6HJN+qP68bgbXfo7p+0O9SkpcDHwJeW8cwvy5v3Q83q7fznnobvpRkm7pu4Dt/Qqr9/8EkHx6iL56yHyX56yTfaJvvM0n+uSWOfxhsX6jrO/6uS+utlOLk1KgJuBt4Sf36mcAC4GPtdfX704Ev16+nAAX4EjAR2BLYA1gBvB7YHNgBmFnPfwGwBPgDYDxwMfCVlnUfV88/Hvgr4AFgQl13PfDG+vUk4OD69W71Ol9B9QfYS+v3Ow2zrTfX27llXXYMsGu9/GuBVcAudd1s4Edt6zgH+BawPTAZuAr4hyHaOxlYWLe3PfCD+jMbX9fPAd5Sv74U+HAdxwTgxS3rKcCzW94fDqwBzga2qD/7w4FFbdt6W0vbPwbOHGa71rZR99WZw+wnHwVuAJ4O7ARcxxP7zEBsH633gVcADwPbDfEZzQF+RfVHxUTgGzyxj70G+J+WeWfU/fu0IdZ1Yt0nWwCfBm5uqfuXuq3dgHHAC+v5httnvwRcWa9zCnAH8OaWz3AN8KZ6fWcCv6zb2QJ4Wb3eSS2f6YPAgXX/XgP8L3B8y/I/qOfdHPg5VTL2NOCP63XtW9d/Bfha/XlNrz+/H7Vs63DfpdMHPt+2PnhLy2f4c2Avqu/a5cBFbd/5z1PtczOA3wFTh+iPC2jZj4BdqL5f29bvxwO/AQ7sYF9Yr++6k9P6TqMegJNTtyeqH+6VwDLgHuCzPJH83M26E7y9Wur/FrhiiHYuAP695f0rgIXDxLUUmFG/vhY4A9ixbZ6/GfjxaSn7T+CEYbb1xHV8HjcDf16/nt32w5n6B2rvlrJDgP8dYl3XACe3vH8ZQyd4XwLOA3YfZD2DJXiPUv9ot5S1J3itbb8CuGuw7Wpvg3UneHcBr2ipOxK4uyWO1QPbWJf9hjopH2Tb5gAfb3n/3HrbxlElQkuB59R1nwA+2+F+vW29TdtQJQSrB/antvkG3Wfr9h8FnttS9jZgTstneGdL3f51ezu3lC3hyX/gfL6l7t3A7W3LL6tfH0qVlG3WUn8p1fdvHPAYsF9L3d+39+cw36XTGT7B+7/AO1rq9q3bG88T3/ndW+pvBF43RLuD7UffBd5av/5T4Kcd7gvr9V13clrfyUO0aqpXllK2LaXsUUp5Ryll9Xose2/L62dS/fgP5YGW1w9TjRAAkOT9SW6vD58to/ph3rGufjOwD7AwyU+S/GldvgdwTH3IZlm93IupRgo6iZckxye5uWX56S3tttsJ2AqY1zL/9+ryweza1t49w8T1AaoE8sb6kNyJw8wLsLiU8sg65mlve9d1zN+pXXnytrSve0kpZU3L+yf19SDa49ycKpl/BPgqcFx9aPT1wEWDrSDV4fCPpzrc/hBVQgpVX+5IlSwOtm8Otc/uWMfRvp27tbz/dcvr1QCllPayScPMP9S8uwL3llIeH6TtnaiSrSH3q3V8l9ZlsL4dD+zcUjbk97gDF1KNMFL/296fg+4LbNh3XeqYCZ42NauoEpoBzxhkntLy+l7azgfqRH2O0AeoDsltV0rZFlhOlfBQSrmzlPJ6qkOCZwOXJZlYt3dRnZwOTBNLKR8fprm18SbZg+pw07uAHep2bxtot23boDrEthqY1tLeNqW6QGUw91MlEAOeNWRQpTxQSnlrKWVXqpGiz2b4K2fbYxtMe9v31a+f1K9J2vt1Xeu+j+oHd7B1b4j2OB+j+qyhSgiOBY4AHi6lXD/EOt4A/DnwEqqEZkpdnnpdjzD4vjnUPvtgHUf7dv5q+E3pivuAZw6c79fW9mKqQ8OD7lfr+i6xYX27hicno50arK1vAgckmU41gndxW/1Q+8KGfNeljpngaVNzM/C6JJsnmQX8xTrmvxh4SZLXpLqAYYckMztoZzLVj8hiYHyS04CtByqTHJdkp3pEY1ld/DjwZeCoJEfWIzgTUp3kv3uH2zeR6kdocd3Om6gvMKn9Gtg9ydMA6vY/D5yT5On1MrslOXKI9X8NeE+S3ZNsB3xwqECSHNMS99I6roERnF9TnRO1vt5Zt7091fl9X63L5wPTksxMdeHF6W3Lrau9S4FTk+yUZEfgNKq+2FDHJXlukq2ozt27rJTye4A6oXsc+CRDjN7VJlOdD7aEKnn9+4GKut++CHwqya71vnJIqgtDBt1n6/a/BpyVZHL9x8D7NnI7O/U/VCNjH6i/e4cDR1Gds/p7qvPiTk+yVZLnAie0LDvsd4mqb6e0JY+tLgVOSbJnqtsl/T3w1bYR2U49ZT+qR2UvAy4Bbiyl/LJtmaH2hY39rkvDMsHTpubvqEY3llKdA3fJcDPX/1m/gurE7t9SJYgzOmjnP6kOdd5BdVjmEZ58qOblwIIkK4F/pjrnZ3Up5V6qUZsPUf2g3Qv8NR1+V0spP6VKHK6n+jHan+pihAHXUF108kCSgRGlv6E6Cf2G+lDg1VTnKQ3m8/W2zQduovphHsoLgP+pt/FbwHtLKb+o604HLqwPTb2mk22rXQJ8H/gF1WHIMwFKKXdQ/XheDdwJtN/r7wvAc+v2vjnIes8E5gK3ALfW27Yx9zu7iOp8rQeoDqW+p63+S1R9M1xy9SWqfedXwE+pLgJp9f461p9Q7ZtnU53jNtw++26q0c5fUH1Gl1Alij1VSnmUKqH7E6rRq88Cx5dSFtazvIvqsOgDVJ/b+S2Lr+u79PX63yVJbhqk+S9S9ce1VBeBPEL1OWyIofajC6n6c7CEfdB9YWO/69K6pJROjopIkrolyfHASaWUF492LNp4SZ5FdXX5M0opD7WUz6G6AOTfRys2bbr8S0GSRlB9qO4dVFcYa4yrDw2/j+pw80Prml8aKSZ4kjRC6nMbF1MdPh/29AD1v/rCqIeo7mH3kVEOR3oSD9FKkiQ1jCN4kiRJDWOCJ0mS1DDjRzuAXtlxxx3LlClTRjsMSZKkdZo3b96DpZShniK03hqb4E2ZMoW5c+eOdhiSJEnrlGS4Rz+uNw/RSpIkNYwJniRJUsOY4EmSJDVMY8/BkyRJ6++xxx5j0aJFPPLII6MdSiNNmDCB3Xffnc0337yn7ZjgSZKktRYtWsTkyZOZMmUKSUY7nEYppbBkyRIWLVrEnnvu2dO2PEQrSZLWeuSRR9hhhx1M7nogCTvssMOIjI6a4EmSpCcxueudkfpsTfAkSdImYc6cOVx33XWNaWc4noMnSZKGlDO6O+JUPlK6ur5OrVmzhjlz5jBp0iRe+MIX9rStkWpnOI7gSZKkvvPKV76SAw88kGnTpnHeeecBMGnSJE455RSmTZvGEUccweLFiwH4/Oc/zwte8AJmzJjB0UcfzcMPPwzA7NmzOfnkkznooIN4zWtew+c+9znOOeccZs6cyQ9/+ENmz57N29/+dg4++GD22msv5syZw4knnsjUqVOZPXv22li+//3vc8ghh/D85z+fY445hpUrVwLVU7M+8pGP8PznP5/999+fhQsXcvfddz+lndFggidJkvrOF7/4RebNm8fcuXP5zGc+w5IlS1i1ahWzZs1iwYIFHHbYYZxxxhkAvPrVr+YnP/kJ8+fPZ+rUqXzhC19Yu55FixZx3XXXcfnll3PyySdzyimncPPNN3PooYcCsHTpUq6//nrOOecc/uzP/oxTTjmFBQsWcOutt3LzzTfz4IMPcuaZZ3L11Vdz0003MWvWLD71qU+tXf+OO+7ITTfdxNvf/nY+8YlPMGXKlEHbGWmNPUQ77755XR9WhtEbWpYkaVPymc98hiuuuAKAe++9lzvvvJPNNtuM1772tQAcd9xxvPrVrwbgtttu49RTT2XZsmWsXLmSI488cu16jjnmGMaNGzdkO0cddRRJ2H///dl5553Zf//9AZg2bRp33303ixYt4qc//SkvetGLAHj00Uc55JBD1i4/EMOBBx7I5Zdf3sVPYOM0NsGTJElj05w5c7j66qu5/vrr2WqrrTj88MMHvbXIwBWps2fP5pvf/CYzZszgggsuYM6cOWvnmThx4rBtbbHFFgBsttlma18PvF+zZg3jxo3jpS99KZdeeumwy48bN441a9as13b2kodoJUlSX1m+fDnbbbcdW221FQsXLuSGG24A4PHHH+eyyy4D4JJLLuHFL34xACtWrGCXXXbhscce4+KLLx5yvZMnT2bFihXrFcvBBx/Mj3/8Y37+858DsGrVKu64445hl9mQdrrNBE+SJPWVl7/85axZs4apU6fywQ9+kIMPPhioRuNuvPFGpk+fzjXXXMNpp50GwMc+9jEOOuggXvSiF7HffvsNud6jjjqKK664Yr0ufthpp5244IILeP3rX88BBxzAIYccwsKFC4ddZkPa6baU0sxzyrJrCm/r/no9B0+S1GS33347U6dOHe0wBjVp0qS1V7COZYN9xknmlVJmdasNR/AkSZIaZsQSvCTvSjI3ye+SXNBSfnCS/0ry2ySLk3w9yS4t9UlydpIl9XR2fIaKJEmbnCaM3o2UkRzBuw84E/hiW/l2wHnAFGAPYAVwfkv9ScArgRnAAcBR0IuDr5IkSc0wYrdJKaVcDpBkFrB7S/l3W+dLci7w3y1FJwCfLKUsqus/CbwV+FyvY5YkSRqL+vEcvD8EFrS8nwbMb3k/vy6TJEnSIPrqRsdJDgBOA/68pXgSsLzl/XJgUpKUtkuAk5xEdUgXtultrJIkSf2qb0bwkjwb+C7w3lJK601jVgJbt7zfGljZntwBlFLOK6XMKqXMYqvexitJknrj7rvvZvr06R3Pf8EFF3Dfffetc77Zs2evvVFy0/XFCF6SPYCrgY+VUi5qq15AdYHFjfX7GTz5EK4kSeqRW289qqvr23//q7q6PqgSvOnTp7Prrrt2fd1j1UjeJmV8kgnAOGBckgl12W7ANcC5pZTBLpz4EvC+JLsl2RX4K+CCkYpbkiSNvN///ve89a1vZdq0abzsZS9j9erV3HzzzRx88MEccMABvOpVr2Lp0qVcdtllzJ07l2OPPZaZM2eyevVq5s2bx2GHHcaBBx7IkUceyf333z/amzPiRvIQ7anAauCDwHH161OBtwB7AacnWTkwtSz3b8BVwK3AbcB36jJJktRQd955J+985ztZsGAB2267Ld/4xjc4/vjjOfvss7nlllvYf//9OeOMM/iLv/gLZs2axcUXX8zNN9/M+PHjefe7381ll13GvHnzOPHEE/nwhz882psz4kbyNimnA6cPUX3GMMsV4AP1JEmSNgF77rknM2fOBODAAw/krrvuYtmyZRx22GEAnHDCCRxzzDFPWe5nP/sZt912Gy996UuBaiRwl112ecp8TdcX5+BJkiS12mKLLda+HjduHMuWLetouVIK06ZN4/rrr+9VaGNC31xFK0mSNJRtttmG7bbbjh/+sLrRxkUXXbR2NG/y5MmsWLECgH333ZfFixevTfAee+wxFizY9K7NdARPkiSNCRdeeCEnn3wyDz/8MHvttRfnn1892XT27NmcfPLJbLnlllx//fVcdtllvOc972H58uWsWbOGv/zLv2TatE3rGQkZ5HZyjZBdU3rxxNrykWZ+XpIkAdx+++1MnTp1tMNotME+4yTzSimzutWGh2glSZIaxgRPkiSpYUzwJEmSGsYET5IkPUlTz8/vByP12ZrgSZKktSZMmMCSJUtM8nqglMKSJUuYMGFCz9vyNimSJGmt3XffnUWLFrF48eLRDqWRJkyYwO67797zdkzwJEnSWptvvjl77rnnaIehjeQhWkmSpIYxwZMkSWoYEzxJkqSGMcGTJElqGBM8SZKkhjHBkyRJahgTPEmSpIYxwZMkSWoYEzxJkqSGMcGTJElqGBM8SZKkhjHBkyRJahgTPEmSpIYxwZMkSWoYEzxJkqSGMcGTJElqGBM8SZKkhjHBkyRJahgTPEmSpIYZP9oB9MquW8I7p492FJIkSSPPETxJkqSGGbEEL8m7ksxN8rskF7TVHZFkYZKHk/wgyR4tdVsk+WKSh5I8kOR9IxWzJEnSWDSSI3j3AWcCX2wtTLIjcDnwd8D2wFzgqy2znA48B9gD+CPgA0lePgLxSpIkjUkjluCVUi4vpXwTWNJW9WpgQSnl66WUR6gSuhlJ9qvrTwA+VkpZWkq5Hfg8MHuEwpYkSRpz+uEcvGnA/IE3pZRVwF3AtCTbAbu01tevp41ohJIkSWNIPyR4k4DlbWXLgcl1HW31A3VPkeSk+jy/uase6nqckiRJY0I/JHgrga3byrYGVtR1tNUP1D1FKeW8UsqsUsqsie1rlCRJ2kT0Q4K3AJgx8CbJRGBvqvPylgL3t9bXrxeMaISSJEljyEjeJmV8kgnAOGBckglJxgNXANOTHF3XnwbcUkpZWC/6JeDUJNvVF168FbhgpOKWJEkaa0ZyBO9UYDXwQeC4+vWppZTFwNHAWcBS4CDgdS3LfYTqoot7gP8G/qmU8r0RjFuSJGlMGbFHlZVSTqe6BcpgdVcD+w1R9zvgxHqSJEnSOvTDOXiSJEnqIhM8SZKkhjHBkyRJahgTPEmSpIYxwZMkSWoYEzxJkqSGMcGTJElqGBM8SZKkhjHBkyRJahgTPEmSpIYxwZMkSWoYEzxJkqSGMcGTJElqGBM8SZKkhjHBkyRJahgTPEmSpIYxwZMkSWoYEzxJkqSGMcGTJElqGBM8SZKkhjHBkyRJahgTPEmSpIYxwZMkSWoYEzxJkqSGMcGTJElqGBM8SZKkhjHBkyRJahgTPEmSpIYxwZMkSWoYEzxJkqSGMcGTJElqmL5J8JJMSfIfSZYmeSDJuUnG13Uzk8xL8nD978zRjleSJKlf9U2CB3wW+A2wCzATOAx4R5KnAVcCXwa2Ay4ErqzLJUmS1KafErw9ga+VUh4ppTwAfA+YBhwOjAc+XUr5XSnlM0CAPx61SCVJkvpYPyV4nwZel2SrJLsBf8ITSd4tpZTSMu8tdbkkSZLa9FOCdy1V0vYQsAiYC3wTmAQsb5t3OTC5fQVJTkoyN8ncVQ/1OFpJkqQ+1VGCl2RcL4NIshnVaN3lwERgR6rz7c4GVgJbty2yNbCifT2llPNKKbNKKbMmti8hSZK0ieh0BO/+JP+cZFaP4tgeeBZwbn2e3RLgfOAVwALggCRpmf+AulySJEltOk3wXg78Hrgqye1JPpTkmd0KopTyIPC/wNuTjE+yLXAC1bl2c+q235NkiyTvqhe7plvtS5IkNUlHCV4p5aZSyvuA3YBTgOcCtyX5QZITk0zsQiyvpkokFwM/Bx4DTimlPAq8EjgeWAacCLyyLpckSVKb8eszcynl8SS3AwuBg6kSvmOBTyR5bynlog0NpJRyM9UtUQar+3/AgRu6bkmSpE1JpxdZbJfkbUl+BNxEldgdX0rZp5RyBHAk8JkexilJkqQOdTqCtwj4AVUSd2Up5XetlaWUnyS5stvBSZIkaf11muDtVUr59XAzlFJmb3w4kiRJ2lidXkX7piQvaC1I8gdJPtCDmCRJkrQROk3w3gv8tK3sp8BfdjccSZIkbaxOE7ynUd22pNWjwITuhiNJkqSN1WmCNw94R1vZyVRX1EqSJKmPdHqRxSnAfyV5I3AXsDfwDOClvQpMkiRJG6ajBK+UsiDJPsBRwO7A5cC3SykrexmcJEmS1l/HT7Kok7lLexiLJEmSuqCjBC/JnsBZwExgUmtdKeVZPYhLkiRJG6jTEbxLqM69+yvg4d6FI0mSpI3VaYI3DXhRKeXxXgYjSZKkjdfpbVKuBZ7Xy0AkSZLUHZ2O4N0NfC/JFcADrRWllNO6HZQkSZI2XKcJ3kTg28DmwDN7F44kSZI2Vqf3wXtTrwORJElSd3R8H7wk+wHHADuXUt6VZF9gi1LKLT2LTpIkSeuto4sskhwD/BDYDTi+Lp4MfKpHcUmSJGkDdXoV7UeBl5RSTgZ+X5fNB2b0JCpJkiRtsE4TvKcDA4diS8u/ZfDZJUmSNFo6TfDmAW9sK3sdcGN3w5EkSdLG6vQii/cA30/yZmBikv8E9gFe1rPIJEmStEE6vU3Kwvoq2j+luh/evcC3SykrexmcJEmS1l/Ht0kppTwMfK2HsUiSJKkLOkrwkvyQIS6oKKX8YVcjkiRJ0kbpdATv39vePwN4M/Dl7oYjSZKkjdXpOXgXtpcl+QZwPtU98iRJktQnOr1NymB+BRzQrUAkSZLUHZ2eg3diW9FWwKuBG7oekSRJkjZKp+fgtd/keBVwHXBOd8ORJEnSxur0HLw/6nUgkiRJ6o6OzsFLslcn08YGk+R1SW5PsirJXUkOrcuPSLIwycNJfpBkj41tS5Ikqak6PUT7c564D1548j3xUv9bgHEbGkiSlwJnA6+lesbtLnX5jsDlwFuAq4CPAV8FDt7QtiRJkpqs06to3wx8BdgPmFD/ewnw5lLKZvW0wcld7Qzgo6WUG0opj5dSflVK+RXVxRwLSilfL6U8ApwOzKgfnSZJkqQ2nSZ4HwPeUkq5s5TyaCnlTuBtwJndCCLJOGAWsFOSnydZlOTcJFsC04D5A/OWUlYBd9XlkiRJatNpgrcZMKWtbA824pBsm52BzYG/AA4FZgLPA04FJgHL2+ZfDkxuX0mSk5LMTTJ31UNdikySJGmM6fQcvHOAa5KcD9wLPBOYTfduk7K6/vf/lFLuB0jyKaoE71pg67b5twZWtK+klHIecB7Abntn0GfnSpIkNV2nt0n5pyS3AsdQjazdD5xYSvleN4IopSxNsognX7wx8HoBcMJAYZKJwN51uSRJktp0OoJHncx1JaEbwvnAu5N8D3gMOAX4NnAF8E9Jjga+A5wG3FJKWdjDWCRJksasTu+Dt0WSs5L8IsnyuuxlSd7VxVg+BvwEuAO4Hfh/wFmllMXA0cBZwFLgIOB1XWxXkiSpUdbnHLzdgGOB79ZlC+ryc7sRSCnlMeAd9dRedzXVrVkkSZK0Dp0meK8Cnl1KWZXkcYBSyq+S7Na70CRJkrQhOr1NyqO0JYNJdgKWdD0iSZIkbZROE7yvAxcm2RMgyS5Uh2a/0qvAJEmStGE6TfA+BPwvcCuwLXAncB/V48UkSZLUR9Z5Dl6SzYAXAx8spZxSH5p9sJTijYQlSZL60DpH8EopjwNXllJ+V79fbHInSZLUvzo9RHttkoN7GokkSZK6otPbpNwDfDfJlVTPol07gldKOa0XgUmSJGnDDDmC1/aUim2Ab1IldrsDz2yZJEmS1EeGG8E7iyeeUnFUKWXrEYhHkiRJG2m4BO8XST5J9UiyzZO8CUj7TKWUL/YqOEmSJK2/4RK81wIfAF4PbA4cP8g8BTDBkyRJ6iNDJnillDuAtwAk+b+llCNGLCpJkiRtsI5uk2JyJ0mSNHZ0eh88SZIkjREmeJIkSQ1jgidJktQwJniSJEkNY4InSZLUMCZ4kiRJDWOCJ0mS1DAmeJIkSQ1jgidJktQwJniSJEkNY4InSZLUMCZ4kiRJDWOCJ0mS1DAmeJIkSQ1jgidJktQwJniSJEkNY4InSZLUMH2X4CV5TpJHkny5pewNSe5JsirJN5NsP5oxSpIk9bO+S/CAfwF+MvAmyTTg34A3AjsDDwOfHZ3QJEmS+t/40Q6gVZLXAcuA64Bn18XHAleVUq6t5/k74PYkk0spK0YnUkmSpP7VNyN4SbYGPgq8r61qGjB/4E0p5S7gUWCfkYtOkiRp7OibBA/4GPCFUsqitvJJwPK2suXA5PYVJDkpydwkc1c91KMoJUmS+lxfHKJNMhN4CfC8QapXAlu3lW0NPOXwbCnlPOA8gN32TulymJIkSWNCXyR4wOHAFOCXSaAatRuX5LnA94AZAzMm2QvYArhjxKOUJEkaA/olwTsP+ErL+/dTJXxvB54OXJ/kUOAmqvP0LvcCC0mSpMH1RYJXSnmY6vYnACRZCTxSSlkMLE5yMnAxsANwNfCmUQlUkiRpDOiLBK9dKeX0tveXAJeMTjSSJEljSz9dRStJkqQuMMGTJElqGBM8SZKkhjHBkyRJahgTPEmSpIYxwZMkSWoYEzxJktt9ocAAAA0NSURBVKSGMcGTJElqGBM8SZKkhjHBkyRJahgTPEmSpIYxwZMkSWoYEzxJkqSGMcGTJElqGBM8SZKkhjHBkyRJahgTPEmSpIYxwZMkSWoYEzxJkqSGMcGTJElqGBM8SZKkhjHBkyRJahgTPEmSpIYxwZMkSWoYEzxJkqSGMcGTJElqGBM8SZKkhjHBkyRJahgTPEmSpIYxwZMkSWoYEzxJkqSGGT/aAUhNkDPSs3WXj5SerVuS1Ex9MYKXZIskX0hyT5IVSW5O8ict9UckWZjk4SQ/SLLHaMYrSZLUz/oiwaMaSbwXOAzYBjgV+FqSKUl2BC4H/g7YHpgLfHW0ApUkSep3fXGItpSyCji9pejbSf4XOBDYAVhQSvk6QJLTgQeT7FdKWTjSsUqSJPW7fhnBe5IkOwP7AAuAacD8gbo6GbyrLm9f7qQkc5PMXfXQSEUrSZLUX/ouwUuyOXAxcGE9QjcJWN4223JgcvuypZTzSimzSimzJm7d+1glSZL6UV8leEk2Ay4CHgXeVRevBNrTta2BFSMYmiRJ0pjRNwlekgBfAHYGji6lPFZXLQBmtMw3Edi7LpckSVKbvknwgH8FpgJHlVJWt5RfAUxPcnSSCcBpwC1eYCFJkjS4vkjw6vvavQ2YCTyQZGU9HVtKWQwcDZwFLAUOAl43etFKkiT1t365Tco9wJCPAiilXA3sN3IRSZIkjV19keBJGlqvHoPmI9Akqbn64hCtJEmSuscRPKkLzpreu3V/+LberVuS1EyO4EmSJDWMCZ4kSVLDmOBJkiQ1jAmeJElSw5jgSZIkNYxX0aov9ereb7e8+k97sl49wfv2SdLocwRPkiSpYRzBU1/q5X3lJElqOkfwJEmSGsYRPGkT1atz5SRJo88RPEmSpIYxwZMkSWoYEzxJkqSG8Rw8bbBbbz1qtENYb1fd8e3RDkGSpJ5zBE+SJKlhHMHTBnM0TCOpl1f9+pQMSU3jCJ4kSVLDmOBJkiQ1jAmeJElSw5jgSZIkNYwJniRJUsN4Fa0k9Uivrvzt5VW/Yy1mr66WBucIniRJUsOY4EmSJDWMh2j7SK8e/XXA5b25IfFZ03uyWrXp1ef84dt6s96xFq8kNZEjeJIkSQ3jCJ60iXIE9gm9PFFfkkaDI3iSJEkNMyZG8JJsD3wBeBnwIPC3pZRLRjeq7rvqDs+Vk0aD5w32nqOk0sgaEwke8C/Ao8DOwEzgO0nml1IWjG5YkiRJ/afvE7wkE4GjgemllJXAj5J8C3gj8MFRDU6SRoGjYSPDz/kJY/FG1b0yVm6APRbOwdsHWFNKuaOlbD4wbZTikSRJ6msppb8z0SSHAl8vpTyjpeytwLGllMPb5j0JOKl+Ox3wDJixa0eq8y019th3Y5v9N3bZd2PbvqWUyd1aWd8fogVWAlu3lW0NrGifsZRyHnAeQJK5pZRZvQ9PvWD/jV323dhm/41d9t3YlmRuN9c3Fg7R3gGMT/KclrIZgBdYSJIkDaLvE7xSyirgcuCjSSYmeRHw58BFoxuZJElSf+r7BK/2DmBL4DfApcDbO7hFynk9j0q9ZP+NXfbd2Gb/jV323djW1f7r+4ssJEmStH7GygieJEmSOmSCJ0mS1DBjKsFLsn2SK5KsSnJPkjcMMV+SnJ1kST2dnSQt9TOTzEvycP3vzJHbik1TF/vuvCQ/S/J4ktkjtgGbuG70X5J9klyZZHGS3yb5zyT7juyWbHq61Hc7JvlxXb4syfX1BW/qsW7939ky3/FJSpK39D56dfG3r9TrWFlP/76utsdUgseTn0l7LPCvSQZ7osVJwCupbqdyAHAU8DaAJE8DrgS+DGwHXAhcWZerdza672rzqS66uamn0apdN/pvW+BbwL71em6k+i6qt7rRdyuBE4GdqP7fPBu4KslYuJfqWNet/ztJsh3wIbzN2EjqWv8BM0opk+pp3Ql6KWVMTMDE+kPap6XsIuDjg8x7HXBSy/s3AzfUr18G/Ir6ApO67JfAy0d7G5s6davv2ub7ETB7tLdtU5h60X913fZAAXYY7W1s6tSj795m9Y9PAZ4+2tvY5Knb/Qd8juoP5DnAW0Z7+5o+dbP/6u/bs9en/bE0grc+z6SdVtcNNt804JZSf2K1W4ZYj7qjW32n0dGr/vtD4IFSypKuRKnBdLXvktwCPEI1EvvvpZTfdDdctela/yX5A2AWVZKnkdHt/zuvTfJAksuTTFlX42MpwZsEPNRWthwY7Lltk+q61vkm1cez2+uGW4+6o1t9p9HR9f5LsjvVoYv3dTFOPVVX+66UcgDVoyLfQDWKrt7qSv8lGQd8FnhXKeXxnkSqwXTz+3cYMAXYD7gP+Pa6TpEYS+dPdPxM2kHm3RpYWUopSdZnPeqOrvRdj2LTunW1/5LsBHwf+Gwp5dIux6on6/p3r5TyCHBpktuT3FxKaR11UHd163fvHVRHrm7oTZgaQte+f6WUa+vyR5O8lypxnArcOlTjY2kEb32eSbugrhtsvgXAAW0jCgcMsR51R7f6TqOja/1Xn+T9feBbpZSzehCrnqyX373Ngb02OkINp1v9dwTwqvrw3gPAC4FPJjm3BzHrCb38/hVg+CNbo30S4nqesPgVqkeVTQReRDWEOW2Q+U4Gbgd2A3atP6ST67qnAfcA7wW2AN5Vv3/aaG9fk6du9F1L/00Afgy8tX692WhvX9OnLn33tqa6cvbc0d6eTWnqUt8dDLy4/v5tCfwN1SjErqO9fU2futR/2wLPaJmuozo9YpvR3r6mT13qv2nATGAc1aHcTwM/AzYftu3R3vj1/KC2B74JrKK68vUNdfmhVEOZA/MF+Efgt/X0jzz5qtnnAfOA1VS323jeaG9b06cu9t0cqr9cWqfDR3v7mj51o/+AE+r+WkV1OGJgetZob1+Tpy713WFUJ32vqOv+G/jD0d62TWHq1v+dbeucg1fRjpn+A/6YKqFbBfymXt9z1tW2z6KVJElqmLF0Dp4kSZI6YIInSZLUMCZ4kiRJDWOCJ0mS1DAmeJIkSQ1jgidJktQwJniSNjlJpiQp63qWoySNVSZ4kjRGJLk7yUtGOw5J/c8ET1IjJRk32jGsD0cTJXWTCZ6kvlGPUP1tkp8mWZrk/CQT6rrZSX7UNn9J8uz69QVJ/jXJfyRZBfxRki2TfDLJPUmWJ/lRki1bVnFskl8meTDJh1vW+wdJrk+yLMn9Sc5N8rS6LknOSfKbJA8luTXJ9LpuiySfqNf56ySfa2uvNfbZSX5cr2sJcHqSvZNck2RJHdPFSbat578IeBZwVZKVST5Qlx+c5Lo61vlJDu9Ob0gay0zwJPWbY4Ejgb2BfYBT12PZNwBnAZOBHwGfAA4EXkj1TMgPAI+3zP9iYF/gCOC0JFPr8t8DpwA7AofU9e+o614G/GEd2zbAa4Aldd3H6/KZwLOpHhx+2jDxHgT8Ati5jjvAP1A9bHwq8EzgdIBSyhupnmV5VCllUinlH5PsBnwHOLPevvcD30iyUweflaQGM8GT1G/OLaXcW0r5LVXS8/r1WPbKUsqPSymPA48CJwLvLaX8qpTy+1LKdaWU37XMf0YpZXUpZT4wH5gBUEqZV0q5oZSyppRyN/BvwGH1Mo9RJZD7UT0M/PZSyv1JApwEnFJK+W0pZQXw98Drhon3vlLK/6nbWV1K+Xkp5b9KKb8rpSwGPtXS7mCOA/6jlPIfpZTHSyn/BcwFXrEen5mkBvKcD0n95t6W1/dQjWZtyLI7AhOAu4aZ/4GW1w8DkwCS7EOVXM0CtqL6v3IeQCnlmiTnAv8C7JHkcqqRswn1vPOqXA+oRuSGOxewNV6S7Az8M3AoVRK5GbB0mOX3AI5JclRL2ebAD4ZZRtImwBE8Sf3mmS2vnwXcV79eRZVAAZDkGYMsW1pePwg8QnWod339K7AQeE4pZWvgQ1TJWtVIKZ8ppRwIPJfqkOxf1+2tBqaVUratp21KKZOGaae0vf/7umz/ut3jWtsdZP57gYta2tu2lDKxlPLx9d5iSY1igiep37wzye5Jtgc+DHy1Lp8PTEsys77w4vThVlIfpv0i8KkkuyYZl+SQJFt0EMNk4CFgZZL9gLcPVCR5QZKDkmxOlXQ+Ajxet/d54JwkT6/n3S3Jkeux7ZOBlcDy+vy6v26r/zWwV8v7LwNHJTmy3r4JSQ5Psvt6tCmpgUzwJPWbS4DvU118cBfVBQSUUu4APgpcDdxJdRHFurwfuBX4CfBb4Gw6+3/v/VQXbKygStq+2lK3dV22lOoQ8hLgn+q6vwF+DtyQ5KE61n07aG/AGcDzgeVUF09c3lb/D8Cp9RWz7y+l3Av8OdUI42KqEb2/7nAbJTVYSmkf8Zek0ZHkbuAtpZSrRzsWSRrL/CtPkiSpYUzwJEmSGsZDtJIkSQ3jCJ4kSVLDmOBJkiQ1jAmeJElSw5jgSZIkNYwJniRJUsOY4EmSJDXM/w8vc/LrVuvJyAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "apt = df_new.loc[df_new['category'] == 'apartment', 'purchased']\n", + "hotel = df_new.loc[df_new['category'] == 'hotel', 'purchased']\n", + "fig, ax = plt.subplots(figsize=(10,5))\n", + "ax.hist(apt, color='g', alpha=1.0, bins=100, range = [0, 0.20],\n", + " label='apartment')\n", + "ax.hist(hotel, color='y', alpha=0.7, bins=100, range = [0, 0.20],\n", + " label='hotel')\n", + "plt.xlabel('purchase rate', fontsize=12)\n", + "plt.ylabel('frequency', fontsize=12)\n", + "plt.title('Purchase rate distribution by accommodation type')\n", + "plt.tick_params(labelsize=12)\n", + "plt.xlim(0, 0.050)\n", + "plt.legend()\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The average purchase rate for apartment is 0.013 (1.3%), the average purchase rate for hotel is 0.005 (0.5%). This means an apartment suite is more than twice likely to be purchased, vs. a hotel room, in Toronto." + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "count 269.000000\n", + "mean 0.013220\n", + "std 0.023584\n", + "min 0.000000\n", + "25% 0.000000\n", + "50% 0.009302\n", + "75% 0.018519\n", + "max 0.250000\n", + "Name: purchased, dtype: float64" + ] + }, + "execution_count": 172, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_new.loc[df_new['category'] == 'apartment']['purchased'].describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "count 172.000000\n", + "mean 0.005266\n", + "std 0.007014\n", + "min 0.000000\n", + "25% 0.000000\n", + "50% 0.000000\n", + "75% 0.011809\n", + "max 0.024590\n", + "Name: purchased, dtype: float64" + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_new.loc[df_new['category'] == 'hotel']['purchased'].describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3dd5xU9b3/8ddnCyBN2oJKEVAEsYEuxRIVFUSjojcasSSaGL0mMebGmBtNMflpcq8l1WgS0ZB4ExVbRDQ2VNSIgiwKSNUFkSYsRellZ+bz++OcXWbXWTgLOzvDnvfz8ZjHnjrzYdjZz3y/n3O+X3N3REREaivIdQAiIpKflCBERCQjJQgREclICUJERDJSghARkYyKch1AQ+nUqZP37Nkz12GIiOxTpk+fvsbdSzLtazIJomfPnpSVleU6DBGRfYqZfVzXPnUxiYhIRkoQIiKSkRKEiIhkpAQhIiIZKUGIiEhGWU0QZjbSzBaYWbmZ3ZRh/w1mNtfMZpnZK2Z2cNq+pJnNCB8TshmniIh8XtYuczWzQuBeYDiwDJhmZhPcfW7aYe8Bpe6+xcy+CdwJXBzu2+ruA7IVn4iI7Fo2WxCDgXJ3X+TuO4BxwKj0A9x9krtvCVenAN2yGI/IXnN3npy+jK07krkORSTrspkgugJL09aXhdvqchXwfNp6CzMrM7MpZnZ+phPM7JrwmLLVq1fvfcQiu7F47Ra+//hMXp1fketQRLIuL+6kNrPLgVLglLTNB7v7cjPrDbxqZu+7+8L089x9DDAGoLS0VDMfSdZtTwQth0QqleNIRLIvmy2I5UD3tPVu4bYazOwM4MfAee6+vWq7uy8Pfy4CXgMGZjFWkUgSyeB7iCZilDjIZoKYBvQxs15m1gwYDdS4GsnMBgL3ESSHirTt7c2sebjcCTgRSC9ui+REIhUmCJQhpOnLWheTuyfM7DrgRaAQGOvuc8zsVqDM3ScAdwGtgcfNDGCJu58HHA7cZ2YpgiR2e62rn0RyIhl2LakFIXGQ1RqEuz8HPFdr2y1py2fUcd5bwFHZjE1kT6iLSeJEd1KL1ENVF5NIHChBiNTDzhqESNOnBCFSDztrEEoR0vQpQYjUQ2VSLQiJDyUIkXpIVtUglCEkBpQgROpB90FInChBiNRDIqn7ICQ+lCBE6kFXMUmcKEGI1ENS90FIjChBiNRDdQtCeUJiQAlCpB6qaxDqZJIYUIIQqYekWhASI0oQIvWgIrXEiRKESD1UdTGpCSFxoAQhUg9qQUicKEGI1INqEBInShAi9VA1WJ9IHChBiNSDhvuWOFGCEKkH1SAkTpQgROpBc1JLnChBiNSDWhASJ0oQIvWgGoTEiRKESD0kdBWTxIgShEg9aDRXiRMlCJF6SGrKUYkRJQiRekiENQiROFCCEKkHXeYqcaIEIVIPusxV4kQJQqQeNFifxIkShEg9VGrKUYkRJQiRelALQuIkqwnCzEaa2QIzKzezmzLsv8HM5prZLDN7xcwOTtt3hZl9GD6uyGacIlFV1SBE4iBrCcLMCoF7gbOA/sAlZta/1mHvAaXufjTwBHBneG4H4GfAEGAw8DMza5+tWEWiSmioDYmRbLYgBgPl7r7I3XcA44BR6Qe4+yR33xKuTgG6hctnAhPdfZ27fwpMBEZmMVaRSDTUhsRJNhNEV2Bp2vqycFtdrgKer8+5ZnaNmZWZWdnq1av3MlyR3VMNQuIkL4rUZnY5UArcVZ/z3H2Mu5e6e2lJSUl2ghNJo/sgJE6ymSCWA93T1ruF22owszOAHwPnufv2+pwr0th21iByHIhII8hmgpgG9DGzXmbWDBgNTEg/wMwGAvcRJIeKtF0vAiPMrH1YnB4RbhPJqWRSg/VJfBRl64ndPWFm1xH8YS8Exrr7HDO7FShz9wkEXUqtgcfNDGCJu5/n7uvM7DaCJANwq7uvy1asIlFVqgYhMZK1BAHg7s8Bz9Xadkva8hm7OHcsMDZ70YnUX1I1CImRvChSi+wrEuFQG2pCSBwoQYjUQ1J3UkuMKEGI1EOlupgkRpQgROpBN8pJnChBiETk7pqTWmJFCUIkovSRXNWCkDhQghCJKL1ArfwgcaAEIRKRWhASN0oQIhFV3wOBahASD5EShJmdZGZfC5dLzKxXdsMSyT+aTU7iZrcJwsx+BvwQuDncVAz8I5tBieSjGjfJKVdIDERpQVwAnAdsBnD3FUCbbAYlko8qa3QxiTR9URLEDg8m4HUAM2uV3ZBE8lONq5hUpZYYiJIgHjOz+4B2ZnY18DLwQHbDEsk/uopJ4ma3w327+6/MbDiwAegL3OLuE7MemUieSSR1H4TEy24ThJnd4e4/BCZm2CYSG1XTjYJaEBIPUbqYhmfYdlZDByKS72reSa0MIU1fnS0IM/sm8C2gt5nNStvVBpic7cBE8o1qEBI3u+piehh4Hvhf4Ka07Rs1P7TEUXoNQiQO6kwQ7r4eWA9cAmBmnYEWQGsza+3uSxonRJH8kF6DEImDKHdSn2tmHwIfAa8DiwlaFiKxovsgJG6iFKl/AQwFPnD3XsDpwJSsRiWSh3SZq8RNlARR6e5rgQIzK3D3SUBpluMSyTsqUkvc7PY+COAzM2sNvAE8ZGYVhOMyicRJMqXhviVeorQgRgFbgO8BLwALgXOzGZRIPqpMqgUh8bLLFoSZFQLPuvswIAU82ChRieQhTTkqcbPLFoS7J4GUme3fSPGI5C1NGCRxE6UGsQl438wmklZ7cPfrsxaVSB6qMeWocoXEQJQE8c/wIRJrNVsQyhDS9EUZ7lt1BxF21iCKC00tCImFKFcx7TEzG2lmC8ys3MxuyrD/ZDN718wSZnZhrX1JM5sRPiZkM06RKKpaEEUFBUoQEgtRupj2SHgF1L0Ew4UvA6aZ2QR3n5t22BLgSuDGDE+x1d0HZCs+kfqqqkEUF5rug5BYiNyCMLOW9XzuwUC5uy9y9x3AOIJ7Kqq5+2J3n0VwCa1IXktUdzGpBSHxEGWwvhPMbC4wP1w/xsz+GOG5uwJL09aXhduiamFmZWY2xczOryO2a8JjylavXl2Ppxapv6oaRFGhqf0gsRClBfFb4ExgLYC7zwROzmZQoYPdvRS4FPidmR1S+wB3H+Pupe5eWlJS0gghSZxVdTEVmuU4EpHGEamLyd2X1tqUjHDacqB72nq3cFsk7r48/LkIeA0YGPVckWxIpJziQsNMVzFJPERJEEvN7ATAzazYzG4E5kU4bxrQx8x6mVkzYDQQ6WokM2tvZs3D5U7AicDcXZ8lkl3JlFNYELQeVKSWOIiSIK4Fvk1QP1gODAjXd8ndE8B1wIsECeUxd59jZrea2XkAZjbIzJYBFwH3mdmc8PTDgTIzmwlMAm6vdfWTSKOrTDpFBQWYofvkJBai3Ci3BrhsT57c3Z8Dnqu17Za05WkEXU+1z3sLOGpPXlMkW5KpFEWFhpnyg8RDlKuY7jSztmH30itmttrMLm+M4ETySSLlFBUYhmnKUYmFKF1MI9x9A3AOwXzUhwI/yGZQIvkokQxqEGpBSFxESRBV3VBfBB539/VZjEckbwUtiAIMjeYq8RBlqI1nzWw+sBX4ppmVANuyG5ZI/tlZg9B9EBIPu21BuPtNwAlAqbtXEswJMWrXZ4k0PZU1LnMVafqiDtZ3EHCGmbVI2/Z/WYhHJG8lk0GROpF0FaklFnabIMzsZ8CpQH+CS1bPAt5ECUJipqoGkUgl1YKQWIhSpL4QOB1Y6e5fA44BNEe1xE51DQLUxySxECVBbHX3FJAws7ZABTXHWBKJhUSq6jJXzQch8RClBlFmZu2A+4HpwCbg7axGJZKHEkmnWJe5SoxEGWrjW+Hin83sBaBtOMmPSKwkU2k3yilBSAxEGu7bzLqGI7r2ANqZWWPMByGSVyrDGgRoNFeJhyhXMd0BXEww3HbVPBAOvJHFuETyTjJtLCaROIhSgzgf6Ovu27MdjEg+C8ZiKlAXk8RGlC6mRUBxtgMRyXeJVIoi3UktMVJnC8LM/kDwOdgCzDCzV4DqVoS7X5/98ETyRyLlFGrKUYmRXXUxlYU/pxNxqlCRpiyZcooLqioQyhDS9NWZINz9QQAzawVsc/dkuF4ING+c8ETyh2oQEjdRahCvAPulre8HvJydcETyV1UNQhMGSVxESRAt3H1T1Uq43DJ7IYnkp2TKd94HoSaExECUBLHZzI6tWjGz4wgmDxKJlcqk7oOQeIlyH8R3gcfNbAVgwAEEN86JxEow1EaBupgkNnaZIMysAGgG9AP6hpsXhDPLicRKIpWiOBzuWz1MEge7TBDunjKze919IDC7kWISyUtVg/VhphaExEKkq5jM7Eummdolxtw9rQahIrXEQ5QE8Z/A48B2M9tgZhvNbEOW4xLJK6kwHxQVBjUIkTiIMh9Em8YIRCSfJVIpgGA+CFSDkHiIMtx3xrkf3F3DfUtsJJJBRtg5WJ8yhDR9US5z/UHacgtgMMH4TKdlJSKRPJQI+5iCLib1MUk8ROliOjd93cy6A7/LWkQieSiZ2tmCUBeTxEWkKUdrWQYc3tCBiOSzRDKtBqHB+iQmdpsgzOwPZnZ3+LgH+DfwbpQnN7ORZrbAzMrN7KYM+082s3fNLGFmF9bad4WZfRg+roj6DxLJhkSNFoSpBiGxEKUGUZa2nAAecffJuzspHBb8XmA4QatjmplNcPe5aYctAa4Ebqx1bgfgZ0ApwagG08NzP40Qr0iDS6bVIFALQmIiSg3iQTOrGm7DgQURn3swUO7uiwDMbBwwCqhOEO6+ONyXqnXumcBEd18X7p8IjAQeifjaIg2qMuxiqq5B5DYckUYRpYvpbGAhcDdwD1BuZmdFeO6uwNK09WXhtiginWtm15hZmZmVrV69OuJTi9RfVQuiqgahDCFxEKVI/RtgmLuf6u6nAMOA32Y3rGjcfYy7l7p7aUlJSa7DkSasqgZRXKj7ICQ+oiSIje5enra+CNgY4bzlQPe09W7htij25lyRBld1o1xhQYHmg5DYiJIgyszsOTO7Mrya6BmCgvN/mNl/7OK8aUAfM+sV1jBGAxMixvUiMMLM2ptZe2BEuE0kJ6qG2ijSZa4SI5GmHAVWAacApwKrCealPhc4p66T3D0BXEfwh30e8Ji7zzGzW83sPAAzG2Rmy4CLgPvMbE547jrgNoIkMw24tapgLZILO69i0pzUEh9RrmL62p4+ubs/BzxXa9stacvTCLqPMp07Fhi7p68t0pAS6UVqTMN9SyzsyZ3UIrGzc7A+TTkq8aEEIRJBdQ2i6iomZQiJASUIkQhqDNanKUclJqLMB3FDhs3rgenuPqPhQxLJP5XJnTUIQE0IiYUoLYhS4FqCO5m7EkxBOhK438z+O4uxieSNnS2IAg21IbERZbC+bsCx7r4JwMx+BvwLOJlg4qA7sxeeSH5Ir0FoviCJiygtiM7A9rT1SqCLu2+ttV2kyUqfclQTBklcRGlBPARMNbOnw/VzgYfNrBVpI7OKNGU1B+vTfBASD1FulLvNzJ4HTgw3XevuVXNEXJa1yETyyM7B+grUgpDYiHIV093AOHf/fSPEI5KXqmoQmnJU4iRKDWI68BMzW2hmvzKz0mwHJZJv0msQoPsgJB52myDc/UF3PxsYRDCb3B1m9mHWIxPJIzWmHAWNxSSxUJ87qQ8lmHb0YGB+dsIRyU+VtYb7FomDKFOO3hm2GG4FZgOl7n5u1iMTySPJZPporiLxEOUy14XA8e6+JtvBiOSrRI2xmFSklniIcpnrfeHMboMJJg+q2v5GViMTySPJlFffA2HoPgiJhyiXuX4D+C7BkBszgKHA28Bp2Q1NJH9UplLVA/WpBSFxEaVI/V2CK5g+dvdhwEDgs6xGJZJnkkkPL3FFEwZJbERJENvcfRuAmTV39/lA3+yGJZJfEqm0BKEpRyUmohSpl5lZO2A8MNHMPgU+zm5YIvklkUpV3wMBakFIPEQpUl8QLv7czCYB+wMvZDUqkTxTVaQG0IQQEhdRWhDV3P31bAUiks8SSae4uotJJB40J7VIBImUU1hYVaTWWEwSD0oQIhEERerg4xIM960UIU2fEoRIBMlUSpe5SuwoQYhEUJncWaTWhEESF0oQIhEkU05RjRqEMoQ0fUoQIhGk1yBALQiJByUIkQhq1CBQgpB4UIIQiSC9BqEbISQuspogzGykmS0ws3IzuynD/uZm9mi4f6qZ9Qy39zSzrWY2I3z8OZtxiuxOjRqEMoTERL3upK4PMysE7gWGA8uAaWY2wd3nph12FfCpux9qZqOBO4CLw30L3X1AtuITqY8a90GY7oOQeMhmC2IwUO7ui9x9BzAOGFXrmFHAg+HyE8DpZprxV/JPIlmrBpHbcEQaRTYTRFdgadr6snBbxmPcPQGsBzqG+3qZ2Xtm9rqZfSHTC5jZNWZWZmZlq1evbtjoRdKkD9anCYMkLvK1SP0J0MPdBwI3AA+bWdvaB7n7GHcvdffSkpKSRg9S4iORcoprDPetDCFNXzYTxHKge9p6t3BbxmPMrIhgKPG17r7d3dcCuPt0YCFwWBZjFdmlRDJtylFMLQiJhWwmiGlAHzPrZWbNgNHAhFrHTACuCJcvBF51dzezkrDIjZn1BvoAi7IYq8gu1ZhRTmMxSUxk7Somd0+Y2XXAi0AhMNbd55jZrUCZu08A/gL83czKgXUESQTgZOBWM6sEUsC17r4uW7GK7E7NoTZUg5B4yFqCAHD354Dnam27JW15G3BRhvOeBJ7MZmwi9RHcKFfV4NaFdhIP+VqkFskrtYf7VieTxIEShEgEiRp3UquLSeJBCUIkgkRSRWqJHyUIkQiCG+XSh/tWipCmTwlCJIJEKkVx2mB9Sg8SB0oQIruRSjkpR0NtSOwoQYjsRiIVZIOaEwYpQ0jTpwQhshvJMEEUVg/3rfsgJB6UIER2I5FKAVTXIEBXMUk8KEGI7EYiWdWCSLtRThlCYkAJQmQ3Pl+D0FVMEg9KECK7UVWDKCrUfRASL0oQIrtRmQxqEIW6k1piJvYJYltlkhsencEHqzbmOhTJU8mMl7nmMCCRRhL7BLF643YmL1zDJWOmKElIRolaXUxBC0IZQpq+2CeI7h1a8sjVQykqNCUJyajqMtedg/XpPgiJh9gnCIDeJa1rJIkFK5UkMvlsyw7O/cObXPfwu/zz3WWs3bQ91yE1is9d5oq6mCQesjqj3L6kd0lrxl1zPKPHvM2l90/h4auH0veANrkOK698tGYz7y9fz4cVG3l21ieYwYDu7Titb2eG9evMEQe1bZLfrqtqENU3yqlILTGhBJGmV6dWShK7sCMRdLU88NVBtN2viFfnVzBpfgW/nvgBv574AV3aNmdY386c2rczJ/XpROvmTePXq6qLqXqoDYzKZIpvPTSdAjMKC4xCMwrCn4WF4c8CC/dDQYFRVOu4goKd5xaGy9XPUQAFZhQVWubXKEg7p3o9iLG40CguLAgfmZerWkMiu9I0PsENSEmibjvCyz2bFxdwdLd2HN2tHf91xmGs3rid1z9YzaT5Ffxr1ieMm7aUZoUFDO7VgWH9OnNav8706tQqx9HvuaoupqoaxPGHdOT1D1bz4apNJN1JpZxEKviZdCeZgpQ7yVTaw3fuz4fuqQKD4sICmhUWUFRXQikqoLjAPrfcvLiACwZ25dS+nXP9z5AsU4LIoCpJXDJmCpfcP4VHlCSAnS2IZoU1S1clbZpz4XHduPC4blQmU5Qt/pRJCyp4dX4Ftz07l9uenUuvTq0Y1jdIFkN7d6hx01m+2zlYX5AgTjmshFMOK9nj59uZSLw6kaRSkHQnkUpVL6fSkkt6skmlnZtIViUfwuNSVCadymQqfITLiRSJlLMjmaIyEW5LpS0n6zgvfGzdmqxeXrd5B0/PWMFlQ3rw4y8eTstm+jPSVOl/tg69OrXikWuGKkmk2V6VIIrq/uNeXFjA8Yd05PhDOvKjsw9n6botvDo/SBb/mPoxYyd/ROc2zbl4UHe+XNqd7h1aNlb4eyxRuwaxlwoKjAKM4sIGebpGt60yyW8mfsD9/17E5PI1/ObiARzbo32uw4rE3Xl3yWfM+2QDlw7uQYG62nZp3/kalwNVSaJZYQGX3K+rm6paEM13kSBq696hJVec0JMHvz6YGbcM58+XH8sRB7XlnknlnHzXJK4Y+w4vzF5ZfbdyY9uRSHHf6wv557vL6jymdg0i7loUF/Kjsw/nkauHUpl0LvzTW/zmpQU5+z+MYtP2BP+Y8jFn3/0mX/rTW/xk/GzeXrQ212HlPf3G70btJDF/5YZch5QzOyK0IHalZbMiRh55IH/92mD+/d/D+M5pfViwciPX/mM6J9z+Kne9OJ+l67Y0ZMi7NGfFekbdO5n/fX4+Nz4+k7fK12Q8rnYNQgJDe3fk+f/6AhcM7Mbdr5bzH398i/KK/PoSNWfFen701PsM+eXL/GT8bAy4bdQR7FdcyAuzV+Y6vLynBBFBUJMIksSl90/NaZL4cNVG7nxhPqf/+jW+8pep/P3txXyyfmujvPb25N4liHTd2rfkhuGH8eYPh/HAV0s5uuv+/Om1hZx81yS+OvYdXpj9Sda+ke5IpPjtxA8Ydc9kVm/czt2XDKR3SWuuH/ceqzZs+9zxOwfrU4KorW2LYn795WP48+XHsuzTLXzx7jf56+SPSKVyV4nfuiPJ42VLOf/eyXzx7jd5cvoyzj7qQMZ/+0T+df1JfOX4npzat4QX56zMaZz7AtUgIuoZJonRY6Zw6f1TefjqIfQ7oG2jvHbFhm1MmLmCp95bzpwVGygsMI7v3ZHln23lp0/P4adPz+Gorvszon8Xhh/Rhb5d2mTlfoTqLqbChus8Lyos4Iz+XTijfxdWfLaVx8qW8ui0pVz7j3fp1Lo5owd15yvHH0yXti0a5PXmrFjPjY/PYt4nGzh/wEH8/LwjaNeyGf0PbMN590zmuoff5eGrh1KcVkSvTKkFsTsjjzyQYw9uzw+fmMX/e2Yur8yr4K6LjubA/fdrtBjKKzby0NQlPDl9GRu2JTikpBW3nNOfLx3bjf1bFteK9wCen72S95Z+xnEH7xv1k1ywpjJscWlpqZeVlWX9dRav2czoMVPYkUzx0DeGcPiB2UkSm7YneHH2SsbPWM7k8jWkHI7ptj/nD+zKOUcfREmb5gCUV2xi4txVTJwb/LK7Q/cO+zGi/wEM79+F0oPbN9gVQ398rZw7X1jAvFtHsl+z7FVYkynn9Q8qeHjqEl6ZX0GhGWcfdSDfHnboHl8osCOR4t5J5dw7qZz2rZrxy/OPZMQRB9Q45ukZy/nuuBn858m9ufnsw6u3P/XeMr736Ewm3XjqPn25bmNwdx55Zym3PTuX4kLjtvOPZNSArll7vR2JFC/OWclDUz9myqJ1FBcaI488kMuG9GBIrw51flHasK2S426byNdO7MWP0v6v48jMprt7aaZ9akHUU1VL4pL7p3DZA1MbNElUJlO8+eEannpvOS/NXcm2yhTdO+zHdcMOZdTArhxS0vpz5xzauTWHdm7NN089hIqN23hlXgUT567i71M+5i9vfkT7lsUM69eZEf0P4OTDOu3VJYl7W4OIqrDAOK1fF07r14Ula7fw4NuLeWzaUl6Zt4qxVw5iSO+O9Xq+9FbDBQO78rNz+9OuZbPPHTdqQFemLV7HfW8s4riD21cnENUgojMzLh3SgxMO6cj3HpvBd8fN4OV5Fdw26oiM7/meWrpuCw+/s4THy5ayZtMOunfYjx+O7MdFpd3o1Lr5bs9v26KYEw/txPOzP+Hms/o1yREAGoJaEHto8ZrNXHL/FLYn9q4l4e7MXLae8e8t55mZK1i7eQftWhZzztEHcsHArhzbo/0e/fJu3p7gjQ9WM3HuKl6ZX8H6rZU0LyrgpEM7MeKILpx+eJdIH6R0d74wnzFvLKL8f86udzx7a9WGbVx6/xSWf7aVB746iJP6dNrtObVbDf9zwVEM799ll+dsTyS56M9v89GazfzrO1+gR8eWPPLOEm7+5/u8ffNpjdplsq9LJFP8+fWF/O7lD+nYuhm/uugYvtBnz+8fSSRTvDq/goemLuGND1djwBmHd+GyoQfzhUM71fuS1XHvLOGmf77Pv64/iSMO2n+P49rX7aoFoQSxF6qSxLbKJA9fPbReSeLjtZsZ/94Kxs9YzkdrNtOsqIDhh3fh/IFdOeWwkgb9ll6ZTDFt8Tomzl3FS3NWsfyzrZjBsT3aM7x/F0b070LvDK2T2n7x7FwefmcJc28d2WCx1ceaTdu5/IGpLFqzmfsuP45h/eq+kzdqqyGTpeu2cM4f3qRb+/148psn8Pj0Zfx0/Gze+fHpdG7TMLWQOHl/2Xq+99gMyis2ceUJPfnhyH716qJcuX4bj05byrhpS/hk/Ta6tG3O6EE9GD24+14l7LWbtjPoly9z3bBDuWFE3z1+nn2dEkQW1SdJrNu8g3/NCorN7y75DDMY2qsjFwzsysijDqBti+I6z20o7s68TzYGyWLuSuasCK7IOqSkFcP7H8CII7owoFu7jN/Gfjp+Ns/MWsGMW0ZkPc66fLp5B18ZO5UFKzdy76XHfq6OsCOR4p5J5fyxHq2GTF6Zt4qrHizjksE96NulNT9/Zi7v/XQ47Vs1XDdJnGyrTHLHC/P56+TF9C5pxe8uHsDR3drVeXwq5bxZvoaHpn7My/MqSKackw8r4bIhPTi9X+cGq6uNHvM26zbv4KXvndIgz7cvylmCMLORwO+BQuABd7+91v7mwP8BxwFrgYvdfXG472bgKiAJXO/uL+7qtXKVICBoDYwekzlJbKtM8vK8VYx/bzmvLVhNIuX07dKGC47tynnHHMRB7XLbZbH8s628HCaLqYvWkUg5JW2ac8bhnRnevwsnHNKJFuEtvz98YhavfVDB1B+dkdOY12+t5Iqx7zB7+Xp+N3oA5xx9ELB3rYZM7nhhPn96bSEDurdjxtLPmPXzEY2SxJuyNz9cww+emMnqjdv5zml9+PawQ2r8sV+7aTuPT1/Gw1OXsGTdFjq2asZFpd25dHAPenRs+Lvu/zb5I37+zFxe+f4pGWt8cZCTBGFmhcAHwHBgGTANuMTd551VlbEAAAvMSURBVKYd8y3gaHe/1sxGAxe4+8Vm1h94BBgMHAS8DBzm7sm6Xi+XCQJqJol/fGMI67dU8tR7y3l+9ko2bU/QpW1zzh/QlfMHds3alU97a/2WSl77oIKX5qzitQUVbN6RpGWzQk45rITh/bvw/OyVzF+5gX//92m5DpWN2yr5+t+mMf3jT7n9S0ez7NOte91qqC2RTHHZA1OZ+tE6AObeeqbGHWoA67dUcsuE2Tw9YwUDurfjN18+hjWbdvDQ1I95/v2V7EimGNKrA5cNPZgzj+hC86LsXTG34rOtnHD7q/zgzL58e9ihWXudfJarBHE88HN3PzNcvxnA3f837ZgXw2PeNrMiYCVQAtyUfmz6cXW9Xq4TBOxMEp+sD262at28iLOOPIALBnZlSO+O+9QQy9sTSd5euJaX5q7i5bmrqNgYTA50SEkrXvn+qbkNLrRlR4JvPFjGWwuDIRMaotVQW8XGbXzx7jdZvXE7C34xMqt/rOLmmZkr+Mn42WzYVok7tG1RxJeO68ZlQ3pwaOfGG/ds1L2TWVixiQP333frS/0ObMsfLhm4R+fm6jLXrsDStPVlwJC6jnH3hJmtBzqG26fUOvdzF1Ob2TXANQA9evRosMD31MEdW/HoNcfzp9cXcuKhHTnj8C7V3TP7muZFhZwazu3wi1FHMmv5eibOXUnvTvnTDG/ZrIixVw7itxM/YFDPDpzRAK2G2jq3acEDXy3l1fkVSg4N7NxjDmJQzw785c1F9OnShnOPPiir99fU5cYRh/HIO0sa/XUbUvf22emqzmYL4kJgpLt/I1z/CjDE3a9LO2Z2eMyycH0hQRL5OTDF3f8Rbv8L8Ly7P1HX6+VDC0JEZF+zqxZENu94Wg50T1vvFm7LeEzYxbQ/QbE6yrkiIpJF2UwQ04A+ZtbLzJoBo4EJtY6ZAFwRLl8IvOpBk2YCMNrMmptZL6AP8E4WYxURkVqyVoMIawrXAS8SXOY61t3nmNmtQJm7TwD+AvzdzMqBdQRJhPC4x4C5QAL49q6uYBIRkYanG+VERGIsVzUIERHZhylBiIhIRkoQIiKSkRKEiIhk1GSK1Ga2Gvg4bVMnIPMs9PlJ8Wbfvhaz4s0uxRs42N0zTtTRZBJEbWZWVldlPh8p3uzb12JWvNmleHdPXUwiIpKREoSIiGTUlBPEmFwHUE+KN/v2tZgVb3Yp3t1osjUIERHZO025BSEiIntBCUJERDLapxOEmRWa2Xtm9my4frqZvWtmM8zsTTM7NNze3MweNbNyM5tqZj1zFO9iM3s/jK8s3NbBzCaa2Yfhz/bhdjOzu8OYZ5nZsXkS711mNj+M6Skza5d2/M1hvAvM7Mx8iDdt3/fNzM2sU7iel+9vuP074Xs8x8zuTNued++vmQ0wsylV28xscLg95+9vGEc7M3sifD/nmdnxef6ZyxRv7j5z7r7PPoAbgIeBZ8P1D4DDw+VvAX9LW/5zuDwaeDRH8S4GOtXadidwU7h8E3BHuHw28DxgwFBgap7EOwIoCpfvSIu3PzATaA70AhYChbmON9zenWDY+Y+r9ufx+zsMeBloHq53zuf3F3gJOCvtPX0tX97fMI4HgW+Ey82Adnn+mcsUb84+c/tsC8LMugFfBB5I2+xA23B5f2BFuDyK4I0HeAI43cysMeKMID22B4Hz07b/nwemAO3M7MBcBJjO3V9y90S4OoVgtj8I4h3n7tvd/SOgHBicixgz+C3w3wS/H1Xy8v0Fvgnc7u7bAdy9Ityer+/vrj5zOX1/zWx/4GSCeWdw9x3u/hl5+pmrK95cfub22QQB/I7gQ59K2/YN4DkzWwZ8Bbg93N4VWArBREbAeqBj44VazYGXzGy6mV0Tbuvi7p+EyyuBLuFydcyhZeG2xpQp3nRfJ/jGBXkar5mNApa7+8xax+ZlvMBhwBfCrtDXzWxQuD1f4/0v4C4zWwr8Crg53J4P8fYCVgN/taAr+gEza0X+fubqijddo37msjajXDaZ2TlAhbtPN7NT03Z9Dzjb3aea2Q+A3xAkjXxxkrsvN7POwEQzm5++093dzPLpuuPPxevubwCY2Y8JZvt7KKcR1pTp/f0RQRM9H2WKtwjoQNDFMQh4zMx65zLINJnivRD4nrs/aWZfJvj2e0ZOo9ypCDgW+E74N+H3BF1K1fLsM1dXvD+F3Hzm9tUWxInAeWa2GBgHnGZm/wKOcfep4TGPAieEy8sJ+qExsyKCpvDaRo0YcPfl4c8K4CmC5uCqqmZs+LOqS6E65lC3cFujqSNezOxK4BzgMg87Q8nPeE8h+FY2M/xd6Qa8a2YH5Gm8gwm+Bf4z7OZ4h6CF3CmP470C+Gd4yOPs7OLIebwE7+WytL8JTxD8Ac7Xz1xd8ebsM7dPJgh3v9ndu7l7T4Ki86sE/XH7m9lh4WHDgXnh8gSCX2QIvvG8mvYmNwoza2VmbaqWCb7Vzq4V2xXA0+HyBOCr4ZUVQ4H1ac3inMVrZiMJuvbOc/ctaadMAEZbcMVYL6AP8E6O453m7p3dvWf4u7IMONbdV5Kn7y8wnqBQTfi73IxgBM98fH9nE9QcTgkPOw34MFzO6fsLEP4/LzWzvuGm0wnmuc/Lz1xd8ebyM7dPdjFl4u4JM7saeNLMUsCnBP11EDR7/25m5cA6gqTS2LoAT4W18SLgYXd/wcymEXQjXEVwlc2Xw+OfI7iqohzYAnwtT+ItJ7hqYmK4b4q7X+vuc8zsMYIPYAL4trsncx3vLo7P1/e3GTDWzGYDO4Arwi8zefn+mtkm4Pdhy3wbUFWbyPX7W+U7wEPh+7oojKOA/PzMQeZ4p5Gjz5yG2hARkYz2yS4mERHJPiUIERHJSAlCREQyUoIQEZGMlCBERCQjJQiRPWBmB5nZExGO21TH9vPNrH/a+t/M7MKGjDHT64jUhxKEyB5w9xXuvjd/0M8nGI1zr5lZYWO8jsSPEoQ0GWY2PhxIbo7tHKzvWjO7K+2YK83snnD5pxaMo/+mmT1iZjdmeM6/WTBHwFtmtqjqW76Z9QxvZsPMWprZY2Y214Lx+qeaWWnac/zSzGZaMG9CFzM7ATiPYJC7GWZ2SNqxp5nZ+LT14Wb2VIa4FpvZHWb2LnCRmV1tZtPC13kyjOlzrxM+Xgjfp3+bWb+9fuOlyVKCkKbk6+5+HFAKXG9mHYEngQvSjrkYGGfBKKlfAo4BzgrPqcuBwEkEY+HcnmH/t4BP3b0/wcBqx6Xta0Vw5+sxwBvA1e7+FsEwCT9w9wHuvjDt+ElAPzMrCde/BoytI6617n6su48jGL9pUPg684Cr6nidMQSDwR0H3Aj8cRf/bok5JQhpSq43s5kEY+Z3B/q4+2pgkZkNDRNGP2AywYCPT7v7NnffCDyzi+cd7+4pd5/LzqGh051EMGgk7j4bmJW2bwfwbLg8Hei5q39AOKzG34HLLZg57Hh2Du9c26Npy0eGLYL3gcuAI2ofbGatCQawfNzMZgD3ESQ/kYyazFhMEm8WDPt+BnC8u28xs9eAFuHucQTj7cwHngqHeK7P029Pf6l6hlaZNjBkkmifub8SJKxtwONpk8XUtjlt+W/A+e4+04KRP0/NcHwB8Jm7D4gQg4haENJk7E/QzbMl7FcfmrbvKYLRfi8h/KZP0Io418xahN+sz9mL155MOOBbeMXQURHO2Qi0ybTD3VcQjJL6E4JkEUUb4BMzKyZoQXzuddx9A/CRmV0UxmpmdkzE55cYUoKQpuIFoMjM5hHUCaZU7XD3Twn65Q8O51jA3acR9M/PIujCeZ9gpsE98UegxMzmAr8A5kR4rnHADyyYOeyQDPsfApa6+7wM+zL5KTCVIFmlT0RV+3UuA64Ku+LmECROkYw0mqvElpm1dvdNZtaSoIB8jbu/uwfPUwgUu/u28I/wy0Bfd9+xF7HdA7zn7n/Z0+cQ2VuqQUicjQm7hFoAD+5Jcgi1BCaF3TsGfGsvk8N0gvrC9/f0OUQagloQIiKSkWoQIiKSkRKEiIhkpAQhIiIZKUGIiEhGShAiIpLR/weoCaE8ZM9/AgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.lineplot(x=\"avg_nightly_rate\", y=\"purchased\", data=df1.groupby('hotel_name').mean().sort_values('avg_nightly_rate', ascending=False).head(20))\n", + "plt.xlabel('avg nightly rate')\n", + "plt.ylabel('avg purchase rate');" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEXCAYAAABRWhj0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXhV1dX48e/KDAkBMhCGBAgQhoCAGhAVJ5zACW0d0Gq15a1tX61trW+LrW2t1f60g3SyWiuOrSJiq4hTVcQRgSDzEAgESBhDEiAkkJBk/f44G72EQG4gybk3WZ/nycO95+yzz9pJuCtn73P2FlXFGGOMCUaE3wEYY4wJH5Y0jDHGBM2ShjHGmKBZ0jDGGBM0SxrGGGOCZknDGGNM0CxpmCOIyGMi8vNmqqu3iOwTkUj3fq6I/E9z1O3qe1NEbm6u+ppw3vtFZJeIbG/tcwdLRH4qIk8EWfZeEflnE+ruKyIqIlHHH6EJR5Y02hkR2Sgi+0WkXER2i8inIvIdEfnid0FVv6Oqvw6yrguOVUZVN6tqgqrWNkPsR3ywqeoEVX3mROtuYhy9gR8B2aravTXP3RSq+htVbZYEHczPuqWIyLkiUuTHuc2RLGm0T5eraiegD/Ag8BNgWnOfpA3/FdobKFHVnX4HEu7EY59DYcR+WO2Yqu5R1VnAdcDNIjIMQESeFpH73esUEZntrkpKReQjEYkQkefwPjxfc91PPw7ospgsIpuBOUfpxugvIgtEZK+IvCoiSe5cR/xFeegvXBEZD/wUuM6db6nb/0V3l4vrHhHZJCI7ReRZEens9h2K42YR2ey6ln52tO+NiHR2xxe7+u5x9V8AvAP0dHE83cCxXd33rFhEytzrdLfvOhHJrVf+hyIyy71OFpHX3PdmoesG+/goMR6zTfWvzETk664tJSLy8wauHmJcm8tFZKWI5LjjjvhZ14vjGhFZVG/bnSLy6lHinisiD4jIJ0Al0E9EviEiq925N4jIt13ZeODNgO/3PhHp6X4WU0RkvWvPjEO/R6ZlWdIwqOoCoAg4q4HdP3L7UoE0vA9uVdWbgM14Vy0JqvrbgGPOAYYAFx/llF8Hvgn0AGqAPwcR41vAb4AX3flGNFDsFvd1HtAPSAD+Wq/MWGAQcD7wCxEZcpRT/gXo7Oo5x8X8DVV9F5gAbHVx3NLAsRHAU3hXcr2B/QFxvAYMEpGsgPI3AM+7148AFUB34Gb31ZhG2yQi2cDfgK/hfd87A73qFbsCmA50AWYdirmRnzWubGa9894EPHuMmG8CbgU6AZuAncBlQCLwDWCqiJyiqhUc/v1OUNWtwPeAK/F+Nj2BMrzvnWlhljTMIVuBhv5SO4j3IdNHVQ+q6kfa+IRl96pqharuP8r+51R1hftA+DlwrbiB8hP0NeBhVd2gqvuAu4FJ9a5yfqWq+1V1KbAUOCL5uFgmAXerarmqbgT+gPdB1yhVLVHVl1W1UlXLgQfwPtxQ1UrgVeB6d64sYDAwy533q8Av3bGrgGDGaxptE3A18Jqqfqyq1cAvgPo/x49V9Q03/vTcUeppqL1VwIvAja5NQ4G+wOxjHPa0qq5U1Rr3e/W6qq5XzwfAf2n4j5hDvgP8TFWL3PnvBa6WttslGjIsaZhDegGlDWz/HZAP/Nd1G0wJoq7CJuzfBEQDKUFFeWw9XX2BdUfhXSEdEni3UyXe1Uh9KS6m+nXV/8u8QSLSUUT+7rqC9gIfAl0CEuPzuKSBd5XxiksmqS7ewO9PY99LCK5NPQPrcucraaSeuCZ8CD8D3CAigpdcZ7gP86M5rF0iMkFEPhOvC3Q3cAnH/p3oA/xHvG7T3cBqoJbDf9amBVjSMIjIKLwPxCP6zt1f2j9S1X543Rd3isj5h3YfpcrGrkQyAl73xrua2YXXLdMxIK5IvA/SYOvdivdhElh3DbCjkePq2+Viql/XliCP/xFed9FpqpoInO22i/v3HSBVREbiJY9DXVPFLt70gLoCv1cnYltgvSLSAUhuwvHH/N6r6mdANd7VwQ14VypB1SciscDLwO+BNFXtArzBl9+vhs5dCExQ1S4BX3GqGuzPyBwnSxrtmIgkishleP3Y/1TV5Q2UuUxEBri/IPfg/TVX53bvwOvzb6obRSRbRDoC9wEzXZfIWry/bi8VkWjgHiA24LgdQF85+t02LwA/FJFMEUngyzGQmqYE52KZATwgIp1EpA9wJxDscwyd8MYxdrvB2V/Wq/8g8BLeVVwSXhI5dN5/A/e6q5XBeGMpzWEmcLmInCEiMXjdOXLsQw4TzM/6WbxxkIOq2uDg/VHE4P2ci4EaEZkAXFTv3MnibmpwHsP7+fQBEJFUEZnYhHOa42RJo316TUTK8f5a+xnwMN7gY0OygHeBfcA84G+q+r7b9/+Ae1wXwV1NOP9zwNN43SFxwB3g3c0F/C/wBN5f9RV4g/CHvOT+LRGRzxuo90lX94dAAXAAb8D0eHzPnX8D3hXY867+YPwR6IB3xfIZ8FYDZZ4HLgBeqpfUbscbpN6O15YXgGN18wRFVVfitWk63lXHPrzB52DrDuZn/RwwjOCT66HYyvF+B2bgDWjfgDe4fmj/GrzvwwZ3/p7An1yZ/7rf5c+A05pyXnN8xBZhMiZ0ichDQHdVbdan3t2V2G4gS1ULmqnODniJ6BRVXdccdZrQY1caxoQQERksIsPFMxqYDPynmeq+3HV7xeONHywHNjZH3c53gYWWMNo2uz3NmNDSCa8rpideX/4f8G7RbQ4T8bqQBMgFJgVx+3RQRGSjq/fK5qjPhC7rnjLGGBM0654yxhgTtDbRPZWSkqJ9+/b1OwxjjAkrixYt2qWqqY2X/FKbSBp9+/YlNze38YLGGGO+ICKbGi91OOueMsYYEzRLGsYYY4JmScMYY0zQgkoaIjJeRPJEJL+hWU5FJFZEXnT754tI34B9d7vteSJycb3jIkVksYjMDtiW6erId3XGHH/zjDHGNKdGk4abafQRvIVQsoHr3YIugSYDZao6AJgKPOSOzcZbl2AoMB74W711E76PN6VxoIeAqa6uMle3McaYEBDMlcZoIN8tbFONN+FZ/dkkJ/LlYjEzgfPdrKgTgemqWuXmt8l39SHe8peX4k1Oh9smwDhXB65Oe8LUGGNCRDBJoxeHL5hSxJGL0XxRxs3YuQdvrv5jHftH4Md8Oc027pjdAbN+NnQuAETkVhHJFZHc4uLiIJphjDHmRPkyEO7WcNipqosaLXwUqvq4quaoak5qapOeTTHGGHOcgnm4bwuHrx6WzpErmB0qU+SWh+yMt5Tk0Y69ArhCRC7BW08hUUT+ibdMZBcRiXJXGw2dy/iopraOxYW7mZu3kyWFu9mxt4rSimp6doljcPdEzspK4bLhPYmMaMr6PsaYcBFM0lgIZIlIJt4H+CS8RVICzQJuxluk52pgjqqqiMwCnheRh/Fm7cwCFqjqPOBuABE5F7hLVQ8tSv++q2O6q7O5Zvg0J2DdjnJm5Bby78+3UFJRTWSEMKxnIgNSE+jaN4aiskrm5u1k5qIiHp27nrsvGcI5A+0K0Ji2ptGkoao1InI78DYQCTypqitF5D4gV1VnAdOA50QkHyjFSyy4cjOAVXhrH9/mlrQ8lp8A00XkfmCxq9v4YM/+g7yxfBsvLixkSeFuoiKEC4akcfmInozNSqFzh+jDytfVKa8v38bv3s7j5icX8KMLB/K987N8it4Y0xLaxNToOTk5anNPnbjqmjrWbN/L55vKeG/NTj7bUMLBWiWrWwLXjcrgypN7kZIQG1Q9U15exr8Xb+H28wbwo4sG4t0YZ4wJJSKySFVzmnJMm5iw0DRNRVUNSwp3s2FXBZt2VbCxpJLNpRVs3FVJda13M1u/lHi+OTaTCcN6MCK9c5M+9GOiIvj9NSOIjY7gr+/nExsVYVccxrQRljTaieqaOl5aVMirS7ayeHMZB2u9K8zYqAj6JHekT3I85w3uxvBeXRiR0Zn0rh1P6HwREcJvrjqJ/dW1TH13LWcMSOHUPl2boynGGB9Z0mjjVJX/LN7Cw++spahsP4O7d2Ly2H6c0T+ZgWmd6NYplogWutNJRPj1lcPI3VTGD19cwhvfP4uEWPuVMyac2f/gNuxgbR2/eHUFLywo5KRenbn/ymGcMzC1VccXOsVF8/C1I5n0+Dx+/doqHrp6eKud2xjT/GyW2zZq74GDfOOphbywoJDbzxvAq7edybmDuvkyID06M4lbz+7Pi7mFLC3c3ernN8Y0H0sabdDB2jq++89FfLahhN9dPZy7Lh7UYl1Qwbp93ACS42P43dt5vsZhjDkxljTaoPtnr+KT/BIe/OpwrsnJaPyAVpAQG8Vt5w3g4/xdfLxul9/hGGOOkyWNNub5+Zt5Zt4mvnVWJlefmu53OIf52pje9OrSgd++vYa28HyQMe2RJY02ZH3xPu59bSXnDExlyoQhfodzhNioSH5wQRbLivbw31U7/A7HGHMcLGm0EbV1yo9nLqNDdCS/u2Z4yE4Y+JVT0knv2oFpHxX4HYox5jhY0mgjnp23kUWbyvjl5dl06xTndzhHFRkh3HJGXxZsLGV50R6/wzHGNJEljTagqKyS376Vx7mDUrnq5AbXrAop147KID4mkqc+sasNY8KNJY024ME316AoD1x1UlhMDJgYF801ORm8tmwrO/ce8DscY0wTWNIIc4s2lTJ72TZuPbs/vbp08DucoN18Rl9q6pTnPtvkdyjGmCawpBHG6uqU+2avplunWL5zTj+/w2mSzJR4zhvUjRcWFHKwtq7xA4wxIcGSRhh7bdlWlhbu5v8uHkTHmPCbRmzSqAx27avig7xiv0MxxgTJkkaYOlhbx+//m0d2j0S+ekpoPcQXrPMGdyMlIZYXcwv9DsUYE6SgkoaIjBeRPBHJF5EpDeyPFZEX3f75ItI3YN/dbnueiFzstsWJyAIRWSoiK0XkVwHlnxaRAhFZ4r5Gnngz256XFxVRWLqfH1000Pd5pY5XdGQEXz2lF3PW7GRnuQ2IGxMOGk0aIhIJPAJMALKB60Uku16xyUCZqg4ApgIPuWOz8dYLHwqMB/7m6qsCxqnqCGAkMF5ExgTU93+qOtJ9LTmhFrZB1TV1/GVOPiMyujBucDe/wzkh1+SkU1unvLJ4i9+hGGOCEMyVxmggX1U3qGo1MB2YWK/MROAZ93omcL54935OBKarapWqFgD5wGj17HPlo92XTUYUpBm5hWzZvZ87Lwz/tbcHdOvEKb27MCO3yOajMiYMBJM0egGBnc5FbluDZVS1BtgDJB/rWBGJFJElwE7gHVWdH1DuARFZJiJTRSS2Ce1p86pqannk/XxO7dOVs7NS/A6nWVw3KoP8nftYYmttGBPyfBsIV9VaVR0JpAOjRWSY23U3MBgYBSQBP2noeBG5VURyRSS3uLj93H0za8lWtu05wB3nZ4X9VcYh44f1ICYygllLt/odijGmEcEkjS1A4KIM6W5bg2VEJAroDJQEc6yq7gbexxvzQFW3ue6rKuApvO6xI6jq46qao6o5qampQTQj/Kkq//hoA4O7d2ozVxkAnTtEc+6gVGYv20ZtnXVRGRPKgkkaC4EsEckUkRi8ge1Z9crMAm52r68G5qjXQT0LmOTursoEsoAFIpIqIl0ARKQDcCGwxr3v4f4V4EpgxYk0sC2Zu7aYtTv2cevZ/drMVcYhE0f2ori8ivkbSvwOxRhzDI0+EaaqNSJyO/A2EAk8qaorReQ+IFdVZwHTgOdEJB8oxUssuHIzgFVADXCbqta6xPCMu5MqApihqrPdKf8lIqmAAEuA7zRng8PZ4x9soHtiHJcN7+l3KM3u/CHdiI+J5NUlWzljQNu5ijKmrQnqMWJVfQN4o962XwS8PgBcc5RjHwAeqLdtGXDyUcqPCyam9mZ50R7mbSjhp5cMJiaq7T2TGRcdyUVDu/Pmim3cd+VQYqMi/Q7JGNOAtvfp00Y999lGOsZEMml0b79DaTFXjOjJ3gM1fLjW1hA3JlRZ0ggD+6pqmL1sG5cP70liXLTf4bSYsVkpdO0YbXdRGRPCLGmEgdlLt1JZXct1ozMaLxzGoiMjuOSkHry7ageV1TV+h2OMaYAljTAwfWEhA9MSODmji9+htLgrRvRk/8Fa3lm1w+9QjDENsKQR4vK2l7OkcDfXjerd5m6zbciovkn06BzHrCXWRWVMKLKkEeJeXFhIdKSExdrfzSEiQrhseA8+XFfM7spqv8MxxtRjSSOE1dYpry7ZwoXZaSTFx/gdTqu5YkQvDtYqb67Y7ncoxph6LGmEsNyNpZRUVHPpSW3vYb5jGdYrkcyUeOuiMiYEWdIIYW+u2E5MVATnDmofc2sdIiJcMaInnxWUsGOvLc5kTCixpBGiVJW3V27n7KxU4mPDb/3vE3X5iJ6owuvLtvkdijEmgCWNELWsaA/b9hxgwrDufofiiwHdEsjukchry6yLyphQYkkjRL21cjtREcL5Q8J7OdcTcfmInizevJvC0kq/QzHGOJY0QpCq8taK7ZzeP5kuHdvPXVP1XTa8B4BdbRgTQixphKD8nfso2FXBxUPbZ9fUIRlJHTmldxdeW2rjGsaECksaIeijdd4sr+cNbr9dU4dcPqInq7ftJX9nud+hGGOwpBGSPl2/i77JHenVpYPfofju0pN6ECEwy642jAkJljRCTE1tHfM3lHJ6f1u9DqBbYhxj+iUze+lWvBWEjTF+sqQRYlZs3Ut5VQ1n9E/2O5SQcfmInmzYVcHKrXv9DsWYdi+opCEi40UkT0TyRWRKA/tjReRFt3++iPQN2He3254nIhe7bXEiskBElorIShH5VUD5TFdHvquzXd0+9Ol6bzxjTD9LGoeMH9qdqAjhNVucyRjfNZo0RCQSeASYAGQD14tIdr1ik4EyVR0ATAUecsdmA5OAocB44G+uvipgnKqOAEYC40VkjKvrIWCqq6vM1d1uzFtfwqC0TqR2ivU7lJDRNT6GswemMnvZNurqrIvKGD8Fc6UxGshX1Q2qWg1MBybWKzMReMa9ngmcL97iDxOB6apapaoFQD4wWj37XPlo96XumHGuDlydVx5n28JOVU0tCzeWcsYAu8qo7/IRPdiyez+fby7zOxRj2rVgkkYvoDDgfZHb1mAZVa0B9gDJxzpWRCJFZAmwE3hHVee7Y3a7Oo52Ltzxt4pIrojkFhcXB9GM0Ldk824OHKzjDBsEP8KF2d2JjYqw9cON8ZlvA+GqWquqI4F0YLSIDGvi8Y+rao6q5qSmto1ZYD9ZX0KEwOjMJL9DCTkJsVFcMCSN2cu2UV1T53c4xrRbwSSNLUBGwPt0t63BMiISBXQGSoI5VlV3A+/jjXmUAF1cHUc7V5u1aFMpQ3ok0rlDtN+hhKSrc9IprahmzhpbP9wYvwSTNBYCWe6uphi8ge1Z9crMAm52r68G5qh3U/0sYJK7uyoTyAIWiEiqiHQBEJEOwIXAGnfM+64OXJ2vHn/zwkddnbKsaA8jM7r4HUrIOjsrlbTEWGbkFvkdijHtVqNJw40v3A68DawGZqjqShG5T0SucMWmAckikg/cCUxxx64EZgCrgLeA21S1FugBvC8iy/CS0juqOtvV9RPgTldXsqu7zSsoqaD8QA0j0i1pHE1khPCVU9KZm7eTnbY4kzG+CGp1H1V9A3ij3rZfBLw+AFxzlGMfAB6ot20ZcPJRym/Au2OrXVlWtBuAEXalcUzXnJrOo3PX8+/FW/jOOf39DseYdseeCA8RSwv30DEmkgHdEvwOJaT1S03g1D5dmZFbaNOKGOMDSxohYmnRbob16kxkhPgdSsi7NiedDcUVzC8o9TsUY9odSxohoLqmjpVb9zIivbPfoYSFK0b0omvHaKZ9XOB3KMa0O5Y0QsDaHeVU19TZeEaQOsREcuOYPry7egcFuyr8DseYdsWSRghYUugGwe3OqaDddHofoiMieOoTu9owpjVZ0ggBy4p2kxQfQ3pXW3QpWN06xTFxZE9eyi1id2W13+EY025Y0ggBSwv3MDy9M958jSZYk8/KZP/BWp75dJPfoRjTbljS8Nn+6lrW7SxnuHVNNdng7olcPDSNxz5Yz9bd+/0Ox5h2wZKGz9btLKdOIbtHJ79DCUv3XJpNnSoPvLHa71CMaRcsafgsb3s5AIO6J/ocSXjKSOrI/547gNeXbePT/F1+h2NMm2dJw2d528uJjYqgd1JHv0MJW98+px+9kzpyzysrKKuwQXFjWpIlDZ/l7SgnKy3BngQ/AXHRkfz26uEU7d7PjdPm291UxrQgSxo+y9tezqA065o6UWP6JfP4Taeybsc+bpq2gHU7yo8oU7KvindW7WBGbiHPz9/Me6t32JrjxjRRULPcmpZRVlHNzvIqBnW3SQqbw7mDuvH3m07l2/9cxIVTP+SkXp0Z3L0Txfuq2FxayYbiI58eH5iWwB3nZ3HpST3slmdjgmBJw0dr3V/DA9Pszqnmct7gbnzyk3HMWrqV/ywu4sN1xXTrFEf/1ASuPjWd0X2TSEuMIzoyggUbS/nze+u4/fnFrDhnL1MmDPY7fGNCniUNH+W5pDHY7pxqVqmdYpk8NpPJYzOPWe6KET259KQe3PPKCh77YD19kzsyaXTvVorSmPBkScNHedvLSYyLIi0x1u9Q2q3ICOG+iUMpKqvknldWkJHUkTMHpPgdljEhK6iBcBEZLyJ5IpIvIlMa2B8rIi+6/fNFpG/Avrvd9jwRudhtyxCR90VklYisFJHvB5S/V0S2iMgS93XJiTczNK3dUc6g7p2sL91n0ZERPPK1U+ibEs9dLy3lwMFav0MyJmQ1mjREJBJ4BJgAZAPXi0h2vWKTgTJVHQBMBR5yx2YDk4ChwHjgb66+GuBHqpoNjAFuq1fnVFUd6b4OW2a2rVBV1mz3kobxX2JcNL+eOIxtew7YOh3GHEMwVxqjgXxV3aCq1cB0YGK9MhOBZ9zrmcD54v35PBGYrqpVqloA5AOjVXWbqn4OoKrlwGqg14k3J3xs33uA8gM1DLJB8JBxev9kLhiSxqNz11Oyr8rvcIwJScEkjV5AYcD7Io78gP+ijKrWAHuA5GCOdV1ZJwPzAzbfLiLLRORJEenaUFAicquI5IpIbnFxcRDNCC2Hpg+xO6dCy5QJg9l/sJY/vbfO71CMCUm+PtwnIgnAy8APVHWv2/wo0B8YCWwD/tDQsar6uKrmqGpOampqq8TbnNbt2Adg3VMhZkC3BK4fncG/5m+msLTS73CMCTnBJI0tQEbA+3S3rcEyIhIFdAZKjnWsiETjJYx/qeq/DxVQ1R2qWquqdcA/8LrH2pwNuypIio+hS8cYv0Mx9dx23gAEeObTjX6HYkzICSZpLASyRCRTRGLwBrZn1SszC7jZvb4amKOq6rZPcndXZQJZwAI33jENWK2qDwdWJCI9At5eBaxoaqPCQcGufWSmxPsdhmlAj84duOSkHry4sJB9VTV+h2NMSGk0abgxituBt/EGrGeo6koRuU9ErnDFpgHJIpIP3AlMcceuBGYAq4C3gNtUtRY4E7gJGNfArbW/FZHlIrIMOA/4YXM1NpQU7KqwpBHCvjk2k/KqGmYsLGy8sDHtSFAP97nbXt+ot+0XAa8PANcc5dgHgAfqbfsYaPDhBFW9KZiYwllFVQ079lZZ0ghhIzO6cGqfrjz96UZuPqOvzUJsjGOz3PqgYJc3cV4/SxohbfLYTDaXVvLu6h1+h2JMyLCk4YNDSSMz1ZJGKLsoO42eneP452eb/A7FmJBhScMHh5JG32RLGqEsKjKC60b15qN1u9hUcuS06sa0R5Y0fFCwq4JeXToQFx3pdyimEdeNyiAyQnhhgQ2IGwOWNHyxwe6cChvdO8cxbnA3Zi4qpLqmzu9wjPGdJY1WpqoUFNszGuHkhtN6s2tfNe+ssgFxYyxptLLSimr2HqixpBFGzs5KpVeXDjy/wAbEjbGk0crszqnwExkhTBqVwSf5JWzcZQPipn2zpNHKNtgzGmHp2i8GxDf7HYoxvrKk0coKdlUQHSn06tLB71BME6QlxnHBkG68tKiIqhpb2c+0X5Y0WllBcQV9kuOJirRvfbi54bQ+lFZU8/ZKGxA37Zd9crWygl0V9lBfmDprQAoZSR14fr4NiJv2y5JGK1JVNpdW0jupo9+hmOMQESFMGtWbzzaUsr54n9/hGOMLSxqtqKSimv0Ha+mdZOMZ4eranAyiI4VnbYEm005Z0mhFm93yoRl2pRG2UjvFcvmInry0qIg9+w/6HY4xrc6SRisqtKTRJnzzzEwqq2ttgSbTLlnSaEVFZfsByOhqSSOcDevVmdMyk3j6043U1Np8VKZ9CSppiMh4EckTkXwRmdLA/lgRedHtny8ifQP23e2254nIxW5bhoi8LyKrRGSliHw/oHySiLwjIuvcv11PvJmhYXNJJSkJsXSIsdltw903x2ayZfd+m4/KtDuNJg0RiQQeASYA2cD1IpJdr9hkoExVBwBTgYfcsdnAJGAoMB74m6uvBviRqmYDY4DbAuqcArynqlnAe+59m1BYVmmD4G3EBUPS6J3Ukcc+3ICq+h2OMa0mmCuN0UC+qm5Q1WpgOjCxXpmJwDPu9UzgfBERt326qlapagGQD4xW1W2q+jmAqpYDq4FeDdT1DHDl8TUt9GwurbTxjDYiMkL47rn9WVq4m7lri/0Ox5hWE0zS6AUEjvgV8eUH/BFlVLUG2AMkB3Os68o6GZjvNqWp6jb3ejuQ1lBQInKriOSKSG5xcej/p62prWPbngM2ntGGfPWUdHp16cAf31lrVxum3fB1IFxEEoCXgR+o6t76+9X7n9jg/0ZVfVxVc1Q1JzU1tYUjPXHb9hygtk7twb42JCYqgu+NG8DSoj3MzQv9P1yMaQ7BJI0tQEbA+3S3rcEyIhIFdAZKjnWsiETjJYx/qeq/A8rsEJEerkwPYGewjQllh57RSLcxjTblq6emk961A1PftasN0z4EkzQWAlkikikiMXgD27PqlZkF3OxeXw3McVcJs4BJ7u6qTCALWODGO6YBq1X14WPUdTPwalMbFYoOPaNhVxptS3RkBHeMy2JZ0R5eW7at8QOMCSv2GkkAAB95SURBVHONJg03RnE78DbegPUMVV0pIveJyBWu2DQgWUTygTtxdzyp6kpgBrAKeAu4TVVrgTOBm4BxIrLEfV3i6noQuFBE1gEXuPdhr7CskqgIoUdnu9Joa756ajrDeiXym9dXU1FV43c4xrQoaQuX1Dk5OZqbm+t3GMf0vRcWs7RwNx/++Dy/QzEtYNGmUr766DxuO68//3fxYL/DMSYoIrJIVXOacow9Ed5KCm122zbt1D5JfOXkXvzjwwJbEta0aZY0WklhaSUZNgjepk2ZMJiYqAju/vdy6urC/wremIZY0mgFFVU1lFRUk27PaLRp3RLjuOfSIczbUMIz8zb6HY4xLcKSRis4NFGhdU+1fdeNymDc4G48+OYaW6jJtEmWNFqBraPRfogID37lJOKiI7nzxSVU19gsuKZtsaTRCuwZjfalW2IcD37lJJYW7eE3b6z2OxxjmpUljVZQWFZJfEwkXTtG+x2KaSUTTurB5LGZPP3pRl5dUn8CBWPClyWNVlDoZrf1HoQ37cWUCYPJ6dOVKS8vZ+2Ocr/DMaZZWNJoBYWl+208ox2Kjozgka+dQnxsJN/55yL22dPipg2wpNHCVNVbR8Nut22X0hLj+Mv1p7BxVwU/mbnMJjU0Yc+SRgsrqahm/8Fae7CvHTu9fzI/Hj+Y15dv48lPNvodjjEnxJJGC7M7pwzAt8/ux4XZafy/N1aTu7HU73CMOW6WNFqYPaNhwHt+4/fXjKBX1w7c9vznFJdX+R2SMcfFkkYLO/Q0uI1pmM4donn0a6eyu/Igd7ywmFqbn8qEIUsaLaywtJKUhFg6xET6HYoJAdk9E7n/ymHM21DCX+fk+x2OMU1mSaOFbbbZbU091+RkcNXJvfjTe2tZUGDjGya8WNJoYYVlto6GOdKvrxxGRlJHfjB9Mbsrq/0Ox5igBZU0RGS8iOSJSL6ITGlgf6yIvOj2zxeRvgH77nbb80Tk4oDtT4rIThFZUa+ue0VkSwPLwIadmto6tu4+YOMZ5ggJsVH85fqTKd5Xxc9eWdH4AcaEiEaThohEAo8AE4Bs4HoRya5XbDJQpqoDgKnAQ+7YbGASMBQYD/zN1QfwtNvWkKmqOtJ9vdG0JoWObXsOUFun1j1lGjQ8vQvfPz+L15dt47WlW/0Ox5igBHOlMRrIV9UNqloNTAcm1iszEXjGvZ4JnC/eREsTgemqWqWqBUC+qw9V/RBo0x26hXa7rWnEd87pz4j0zvz81RXsLD/gdzjGNCqYpNELKAx4X+S2NVhGVWuAPUBykMc25HYRWea6sLo2VEBEbhWRXBHJLS4uDqLK1vfFMxrWPWWOIioygj9cO5L91bX89N/LbZoRE/JCcSD8UaA/MBLYBvyhoUKq+riq5qhqTmpqamvGF7TCskqiIoQeneP8DsWEsAHdErjrokG8u3ons5dt8zscY44pmKSxBcgIeJ/utjVYRkSigM5ASZDHHkZVd6hqrarWAf/AdWeFo82l++nZpQNRkaGYm00o+caZfRme3pl7Z62krMLupjKhK5hPs4VAlohkikgM3sD2rHplZgE3u9dXA3PUu86eBUxyd1dlAlnAgmOdTER6BLy9CgjbW0sK7RkNE6SoyAge/Mpw9uw/yAO22p8JYY0mDTdGcTvwNrAamKGqK0XkPhG5whWbBiSLSD5wJzDFHbsSmAGsAt4CblPVWgAReQGYBwwSkSIRmezq+q2ILBeRZcB5wA+bqa2trsie0TBNkN0zkW+f04+Zi4r4eN0uv8MxpkHSFgbecnJyNDc31+8wDlNRVcPQX77N/108iNvOG+B3OCZMHDhYyyV/+oiDdXX89wfn2PQzpkWJyCJVzWnKMdbZ3kK+mKjQrjRME8RFR/Kbr5xEYel+pr671u9wjDmCJY0WYutomOM1pl8y14/uzRMfbWB50R6/wzHmMJY0WsiXz2jYQLhpursvGUxKQiw/eXkZB2vr/A7HmC9Y0mghhWWVxMdEkhQf43coJgwlxkXz6yuHsWrbXp74qMDvcIz5giWNFuLdbtsRbzYVY5ru4qHdmTCsO398dy0Fuyr8DscYwJJGiyks3U+6TR9iTtCvrhhKTFQEU15eRp2t9GdCgCWNFqCqto6GaRbdEuO459IhzC8o5elPN/odjjGWNFpCSUU1ldW19jS4aRbX5mRwwZBuPPjWGvK2l/sdjmnnLGm0ALvd1jQnEeHBrw4nMS6K709fTFVNrd8hmXbMkkYLKLQH+0wzS0mI5bdXD2fN9nJ+87rNTWX8Y0mjBRy60ki3ZzRMMxo3OI1vnZXJM/M2MXNRkd/hmHbKkkYLKCytJCUhlo4xUX6HYtqYn4wfzBn9k/npf5bb0+LGF5Y0WsBmmxLdtJCoyAj+esMppCbE8j/PLvziqtaY1mJJowUUllXaEq+mxSTFxzDtlhwOHKzjxmnzbW1x06osaTSzmto6tu4+YFcapkUN7p7IU98YRXF5FV+ftoBSW+3PtBJLGs2sqGw/tXVK3+R4v0Mxbdwpvbvy+E05FOyq4OpHP7WuKtMqLGk0s4ISb46gvimWNEzLG5uVwr/+5zRKKqq56m+f2uC4aXFBJQ0RGS8ieSKSLyJTGtgfKyIvuv3zRaRvwL673fY8Ebk4YPuTIrJTRFbUqytJRN4RkXXu367H37zWt9FNLGdXGqa15PRN4uXvnk5sVARffexTnp23kbawIqcJTY0mDRGJBB4BJgDZwPUikl2v2GSgTFUHAFOBh9yx2cAkYCgwHvibqw/gabetvinAe6qaBbzn3oeNjbsqSIiNIiXBpkQ3rWdAt0689r2xnNk/mV+8upJvP7eIHXttgNw0v2CuNEYD+aq6QVWrgenAxHplJgLPuNczgfPFmxN8IjBdVatUtQDId/Whqh8CpQ2cL7CuZ4Arm9Ae320sqaRvik2JblpfUnwM024exc8uGcLctcWc/4cPmPZxATW2iJNpRsEkjV5AYcD7IretwTKqWgPsAZKDPLa+NFXd5l5vB9KCiDFkbCypsK4p45uICOFbZ/fjnR+ezal9uvLr2asY94cPmLGw0FYANM0ipAfC1euYbbBzVkRuFZFcEcktLi5u5cgadrC2jqKy/WTaILjxWZ/keJ7+xiim3ZxD5w7R/PjlZZz92/d5+J21FJXZXVbm+AUzz8UWICPgfbrb1lCZIhGJAjoDJUEeW98OEemhqttEpAews6FCqvo48DhATk5OSIz6FZZW2u22JmSICOcPSWPc4G7MzSvm6U838pc56/jLnHWc2rsr44d1Z/yw7rZYmGmSYJLGQiBLRDLxPvAnATfUKzMLuBmYB1wNzFFVFZFZwPMi8jDQE8gCFjRyvkN1Pej+fTXItvhu4xe329p/QhM6RITzBnfjvMHdKCqr5D+fb+GNFdu5//XV3P/6aoand2bCsB5MGNa9xW8Vr6mtY+XWvSzcWMr64gp27ati34EaenXtQGZKPOcMTGVYr84tGoM5MRLMrXkicgnwRyASeFJVHxCR+4BcVZ0lInHAc8DJeIPbk1R1gzv2Z8A3gRrgB6r6ptv+AnAukALsAH6pqtNEJBmYAfQGNgHXqmpDA+ZfyMnJ0dzc3CY3vrlN+7iAX89exaJ7LiA5IdbvcIw5po27Knhr5XbeXL6Npe75jsHdO3kJ5KTuZHVLaJYbOiqra/ggr5g3V2xnzpqd7KuqASA5PoaUhFjiYyMpKtvPzvIqAM7on8z/njuAsVkpJ3xuc2wiskhVc5p0TFu4nztUksbPX1nBK0u2sOyXF9ndUyasbNm9n7dWbOetFdvI3VSGKvRLjeeSYT0YP6w7Q3smNul3eu+Bg8xZvZM3V2zjg7XFHDhYR1J8DBcOSWNsVgqjM5NIS4w77JjdldXMyC3kyY83sn3vASaPzWTKhMFER4b00GtYs6Ths5umzWfP/oPMun2s36EYc9x27j3A2yu38+aK7Xy2oYQ6hYykDkwY1oOxA1IY1qszSfGHP4dUXVPHmu17WVBQysf5u/g0v4Tq2jrSEmO5eKg3djK6bxJRQSSA6po6fvPGap7+dCOn9unKozeeQrdOcY0eZ5rOkobPzvrtHE7O6Mqfrz/Z71CMaRalFdW8s2o7byzfzqfrd3Gw1vu8SEmIISE2irjoSEoqqtm1r4pDHyV9kztyYXYa44f14OSMLkREHN9V92tLt/Ljmcvo1bUDL3xrDKmdrMu3uR1P0rBVgppJdU0dW8r2c9XJ6X6HYkyzSYqP4bpRvbluVG/2HjjI8qI9rNiyh4JdFVRW17L/YC0j0rvQo0sc/VMTGux2Ol6Xj+hJaqdYvvHUQr72xGc8/60xpNhYoe8saTSTzaWV1Clk2p1Tpo1KjIvmzAEpnDmg9Qaox/RLZtotOXzz6YXc+MR8Xvz26XTuEN1q5zdHshGmZnJoosI+9oyGMc3qjP4p/OPrOawv3sf/PLOQ/dW1fofUrlnSaCYbdu0DoJ89DW5MszsrK5U/XncyuZvKuO35z21KFB9Z0mgmedv30a1TLF062uy2xrSES4f34P4rhzFnzU5+PHMZdXXhfxNPOLIxjWaydkc5g7p38jsMY9q0r53Wh92VB/nd23l07hDNLy/PtmeiWpkljWZQW6es3VHOTWP6+B2KMW3e/57bn9KKaqZ9XECHmEh+fPEgSxytyJJGM9hcWklVTR0D7UrDmBYnIvzskiFUVtfy6Nz1lO6r5oGrhgX14KA5cZY0mkHe9nIABqVZ0jCmNURECL+5ahipCTH8eU4+xfuqePjaETam2AosNTeDvO3liEBWWoLfoRjTbogId140iPuvHMZH64q55E8fsaDgmHObmmZgSaMZrN1RTu+kjnSMsQs3Y1rbjWP68PJ3zyAmKoJJj8/j3lkr2VN50O+w2ixLGs0gb0c5A61ryhjfDE/vwuw7zuKG03rz7LyNnPv793ny4wJ7ELAFWNI4QVU1tRTsqmCwDYIb46uE2Cjuv/IkXr/jLIb0SOS+2as486E5/OnddWzbs9/v8NoM6085Qet3VlBbp3alYUyIGNIjkee/NYaFG0t5bO56pr67lj++t5axA1K4aGh3zuifTL+UeLtN9zhZ0jhBa3e4O6fsSsOYkDKqbxKjbkliU0kFL3++hf8sLuLnr6wAvNl7+yZ3pE9yPMnxMXSNj6Fzh2i6dIwmJSGW7J6JJMbZxIgNCSppiMh44E94y70+oaoP1tsfCzwLnAqUANep6ka3725gMlAL3KGqbx+rThF5GjgH2OOqv0VVlxx/E1vWmu3lREcKmTbnlDEhqU9yPHdeOJAfXpDFxpJKPl2/i+VFe9hUUsmCglJKK6rZf/DIsY/+qfFcPLQ7N47pQ88uHXyIPDQ1mjREJBJ4BLgQKAIWisgsVV0VUGwyUKaqA0RkEvAQcJ2IZAOTgKFAT+BdERnojjlWnf+nqjOboX0tbu2OcvqnJtiSlMaEOBHvj7vMlHg47fB9Bw7Wsmf/QXZXHmTbnv0sL9rDwk1lPPbBev7+4QYuH96Dey7LtvU8CO5KYzSQr6obAERkOjARCEwaE4F73euZwF/F6zCcCExX1SqgQETyXX0EUWfIU1WWb9nD2FZcX8AY0/zioiOJi44kLTGOQd07ce6gbgAUllby7LyNPPPpJj5at4v7rxzGhJN6+Busz4L587gXUBjwvshta7CMqtbgdS0lH+PYxup8QESWichU1/UVkorK9lNcXsUpfbr6HYoxpgVkJHXkZ5dmM/uOsfTs0oHv/utzHnh9VbueYTcU+1TuBgYDo4Ak4CcNFRKRW0UkV0Ryi4uLWzO+LyzaVAbAqb0taRjTlg1M68S///cMvn56H/7xUQF3zlhCdU37XNMjmKSxBcgIeJ/utjVYRkSigM54A+JHO/aodarqNvVUAU/xZXfWYVT1cVXNUdWc1NTUIJrR/BZtKiM+JtLunDKmHYiOjOBXVwzlrosG8sqSrXz3n4va5WJQwSSNhUCWiGSKSAzewPasemVmATe711cDc1RV3fZJIhIrIplAFrDgWHWKSA/3rwBXAitOpIEtadGmMk7u3ZXICLvf25j2QES4fVwWv544lPfW7OSul5a2u66qRgfCVbVGRG4H3sa7PfZJVV0pIvcBuao6C5gGPOcGukvxkgCu3Ay8Ae4a4DZVrQVoqE53yn+JSCogwBLgO83X3Oazr6qGNdv38r1xWX6HYoxpZTed3pe9B2r43dt5dOkQzb1XDG03DwsG9ZyGqr4BvFFv2y8CXh8ArjnKsQ8ADwRTp9s+LpiY/LZk827qFE61QXBj2qX/Pbc/ZRXVPPFxAb2T45k8NtPvkFqFPRF+nBZtKkMERvbu4ncoxhgfiAg/vWQIRWX7eeD1VfRLjec8d6tuWxaKd0+FhUWbyxiU1smmGjCmHYuIEB6+bgSDuidyx/OLyd9Z7ndILc6SxnGoq1MWbyqz5zOMMXSMieKJm3OIjY7g1mcXUX6gba/lYUnjOKzZXk55VY09n2GMAaBXlw789YZT2FRayV0vLcW7ebRtsqRxHP67ajsicNZAmz7EGOMZ0y+ZuycM5u2VO3j0g/V+h9NiLGkchzeXb2dUnyS6dYrzOxRjTAiZPDaTy4b34Pdv5/HROn9mqmhpljSaaH3xPvJ2lDPhpO5+h2KMCTEiwkNfHc6Abgnc8cJiisoq/Q6p2VnSaKK3VmwHYPwwSxrGmCPFx0bx95tyqKlVvvvPzznQwFod4cySRhO9sXwbJ/fuQo/OtiiLMaZhmSnxPHzdSJZv2cMvXl3RpgbGLWk0weaSSlZu3cslw9r3fPrGmMZdmJ3G98YNYEZuES8sKGz8gDBhT4Q3wRsrtgHBd031nfJ6S4ZjjAkTP/3Pcob06MTJbeA2fbvSCNKBg7U89UkBo/smkZHU0e9wjDFh5lvPLqKwNPwHxi1pBOlf8zezY28VP7xwYOOFjTGmnoO1dXz9yQWUVlT7HcoJsaQRhIqqGh6dm8+ZA5I5vX+y3+EYY8LQEzfnsHX3fr759MKwnmrEkkYQnpm3kV37qrnzwkF+h2KMCVOj+ibx5+tPZsWWPVz/j88o2Vfld0jHxZJGI9YX7+PRuesZN7ibrZ1hjDkhFw/tzuNfP5V1O/Zxzd/nheUYhyWNY9ix9wBfn7aA2KgI7r18qN/hGGPagHGD03hu8mkUl1dx6Z8/YvayrX6H1CSWNI6irKKaW55aSFllNU/dMpreyXbHlDGmeYzOTGL298bSLzWB259fzB0vLGZzSXhcdQSVNERkvIjkiUi+iExpYH+siLzo9s8Xkb4B++522/NE5OLG6hSRTFdHvqsz5sSa2DQ1tXU8N28j5/1hLvk7y3nsxlM5Kb1za4ZgjGkH+iTH89J3Tuf752fx1srtnPeHudz10lIWFJRSWxe6T5A3+nCfiEQCjwAXAkXAQhGZpaqrAopNBspUdYCITAIeAq4TkWxgEjAU6Am8KyKH7lk9Wp0PAVNVdbqIPObqfrQ5GlufqlJaUc3W3QcoKKng0/xdfLC2mG17DnBG/2R+eflQBnXv1BKnNsYYoiMj+OGFA7nhtN489sF6np+/mZmLikhJiOGM/ilk90xkUFon0hLj6JYYS3xMFNGRQmSEICK+xBzME+GjgXxV3QAgItOBiUBg0pgI3OtezwT+Kl6LJgLTVbUKKBCRfFcfDdUpIquBccANrswzrt4WSRo//c/ywx7v7xQXxZn9U7j3il5clJ3m2w/FGNO+pCXG8cvLh3LnhQOZm1fMWyu3k7uxlFlLGx7vEPESTkxkBI/eeApnZaW2WqzBJI1eQODEKUXAaUcro6o1IrIHSHbbP6t3bC/3uqE6k4HdqlrTQPnDiMitwK3u7T4RyQuiLY1JWQG7/t4MFYWIFGCX30E0s7bWJmtP6GuWNslDzRBJA86+r8mHBLanT1MPDtu5p1T1ceDx5qxTRHJVNac56/RTW2sPtL02WXtCX1tr04m2J5iB8C1ARsD7dLetwTIiEgV0BkqOcezRtpcAXVwdRzuXMcYYnwSTNBYCWe6uphi8ge1Z9crMAm52r68G5qg3gfwsYJK7uyoTyAIWHK1Od8z7rg5cna8ef/OMMcY0p0a7p9wYxe3A20Ak8KSqrhSR+4BcVZ0FTAOecwPdpXhJAFduBt6geQ1wm6rWAjRUpzvlT4DpInI/sNjV3VqatbsrBLS19kDba5O1J/S1tTadUHukLa0oZYwxpmXZE+HGGGOCZknDGGNM0NpV0hCRJ0Vkp4isCNiWJCLviMg6929Xt11E5M9uOpNlInKKf5E3TEQyROR9EVklIitF5Ptue1i2SUTiRGSBiCx17fmV297g1DLHmr4mlIhIpIgsFpHZ7n24t2ejiCwXkSUikuu2heXvHICIdBGRmSKyRkRWi8jp4doeERnkfi6HvvaKyA+asz3tKmkATwPj622bArynqlnAe+49wAS8u72y8B4ibJGn0k9QDfAjVc0GxgC3iTd1S7i2qQoYp6ojgJHAeBEZw5dTywwAyvCmloGA6WuAqa5cKPo+sDrgfbi3B+A8VR0ZcL9/uP7OAfwJeEtVBwMj8H5WYdkeVc1zP5eRwKlAJfAfmrM9qtquvoC+wIqA93lAD/e6B5DnXv8duL6hcqH6hXd78oVtoU1AR+BzvJkCdgFRbvvpwNvu9dvA6e51lCsnfsderx3p7j/pOGA2IOHcHhfbRiCl3raw/J3De6asoP73OVzbU68NFwGfNHd72tuVRkPSVHWbe70dSHOvG5o+pcEpTUKB68o4GZhPGLfJdeUsAXYC7wDrOfrUModNXwMcmr4mlPwR+DFQ594fa6qccGgPgAL/FZFF4k3nA+H7O5cJFANPuS7EJ0QknvBtT6BJwAvudbO1x5JGAPVSbdjdgywiCcDLwA9UdW/gvnBrk6rWqndpnY43ueVgn0M6biJyGbBTVRf5HUszG6uqp+B1bdwmImcH7gyz37ko4BTgUVU9Gajgy64bIOzaA4AbJ7sCeKn+vhNtjyUN2CEiPQDcvzvd9mCmT/GdiETjJYx/qeq/3eawbhOAqu7Gmx3gdI4+tczRpq8JFWcCV4jIRmA6XhfVnwjf9gCgqlvcvzvx+stHE76/c0VAkarOd+9n4iWRcG3PIROAz1V1h3vfbO2xpHH4FCiB05bMAr7u7i4YA+wJuLwLCSIieE/Mr1bVhwN2hWWbRCRVRLq41x3wxmdWc/SpZY42fU1IUNW7VTVdVfvidRXMUdWvEabtARCReBHpdOg1Xr/5CsL0d05VtwOFIjLIbTofbwaLsGxPgOv5smsKmrM9fg/WtPLA0AvANuAg3l8Yk/H6jN8D1gHvAkmurOAtFLUeWA7k+B1/A+0Zi3eZuQxY4r4uCdc2AcPxpo5ZhvdB9Au3vR/enGX5eJfbsW57nHuf7/b387sNx2jbucDscG+Pi32p+1oJ/MxtD8vfORfjSCDX/d69AnQN8/bE412hdg7Y1mztsWlEjDHGBM26p4wxxgTNkoYxxpigWdIwxhgTNEsaxhhjgmZJwxhjTNAsaRhjjAmaJQ1jmkBEckTkz42U6SsB0+/X23eLiPQMeD9XRHIaKtsc3LTYHVuqftP+WNIwpglUNVdV7ziBKm4BejZWKFjuSd5j/T/+Ad6MwcY0C0saJqyJyCtuttWVInKriHxHRH4XsP8WEfmre/1zEckTkY9F5AURuesY9c4VkYfEWxRqrYic5bafK18uppTqFrRZ6WZH3SQiKa6KSBH5h9v3XxHpICJXAznAv9wCOR0CzvdNEfljwPtvicjUo8TW17XjWbwn5zNE5FERyZXDF6+6Ay9BvS8i77ttF4nIPBH5XERecpNdGhM8vx95ty/7OpEvvpwOoQPeB2gakB+w/0286VZG4U2zEgd0wptO4a5j1DsX+IN7fQnwrnt9Ll9OB/JX4G73ejzelC4peGu21AAj3b4ZwI0B9ebUO08OkIA3lUO02/4pcNJRYuuLN9X6mAa+D5GuzuHu/Ubc2hcutg+BePf+J7ipWuzLvoL9OjTTpjHh6g4Rucq9zsBbH2GDm3xtHd7U6p/grZ73qqoeAA6IyGtB1H1o1uBFeB/U9Y0FrgJQ1bdEpCxgX4GqLmnk+C+o6j4RmQNcJiKr8ZLH8mMcsklVPwt4f614a1tE4S2yk403l1KgMW77J95cl8QA844VlzH1WdIwYUtEzgUuwFvtrlJE5uJdSUwHrgXWAP9RVXUfkk1V5f6tpen/V6oCXtfiXQk15gngp3hxP9VI2YpDL0QkE7gLGKWqZSLyNN73oT4B3lHV64OIxZgG2ZiGCWed8dbUrhSRwXh/SYO3xsNEvOmhp7ttnwCXi0ic68e/rBnO/wleckJELsKbHbUx5XjdY0dQb02HDOAGDp/WujGJeElkj4ik4a2l0ND5PgPOFJEBLuZ4ERnYhPMYY0nDhLW3gCjXnfMg3ociqlqGtw5HH1Vd4LYtxFs7YBneOMdyvOVUT8SvgIvc7bXX4C2jWd7IMU8Dj9UfCA8wA29d57IG9jVIVZfiTSm/BngeL5kd8jjwloi8r6rFeHdvvSAiy/C6psJ2ZUTjD5sa3bQbIpLgxg464g0I36qqn59AfbFArarWiMjpeEuGjjzBGGcDU1X1vROpx5iWYmMapj15XESy8fr7nzmRhOH0Bma45ySqgW8db0VuxcIFwFJLGCaU2ZWGaddE5BG8tbwD/UlVGxuIbnEicmi1tfrOV9WQWzvctA+WNIwxxgTNBsKNMcYEzZKGMcaYoFnSMMYYEzRLGsYYY4L2/wGwT+Ak3uYSYwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.distplot(df1['avg_nightly_rate'], rug=True, hist=False)\n", + "plt.title('Distribution of avg nightly rate');" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3dd3gd5ZXH8e9Rt3qxumRLxpKxAduAMAYTTDAEE4oTFrKwCRBCSYH0hIUksAkbNj1kswESFggEklAcFkzvvdiWjXuVq5ptdavXs3/MyAhFsiSrzC3n8zx6uHfuzNwzuub+NO/7zjuiqhhjjAk+IV4XYIwxxhsWAMYYE6QsAIwxJkhZABhjTJCyADDGmCBlAWCMMUHKAsCMGxH5o4jcMkb7miIiTSIS6j5/Q0SuGYt9u/t7XkSuHKv9jeB9fyoi1SKybwLfs0lEph3m9Y0icsZE1WO8I3YdgDkSIrIbSAe6gG5gE/AX4B5V7TmCfV2jqq+MYJs3gIdV9d6RvJe77Y+B6ar6hZFuO5ZEZAqwFZiqqgc8quEBoExVf+TF+xtv2RmAGY0LVDUOmAr8HPh34L6xfhMRCRvrffqIKUCNV1/+xlgAmFFT1QZVXQb8K3CliBwLzl+XIvJT9/FkEXlGROpFpFZE3haREBF5COeL8Gm3aeJGEckTERWRq0VkL/Ban2V9w+AoEVkhIgdF5CkRSXbf6wwRKetbo4jsFpGzRGQx8APgX933W+u+fqhJya3rRyKyR0QOiMhfRCTBfa23jitFZK/bfPPDwX43IpLgbl/l7u9H7v7PAl4Gstw6Hhhg2zNEpExEfuC+z24R+fxQ+3Zfmy4ib4pIg7vto322U/f164DPAze6NTzd93flPo4Ukd+JSIX78zsRiexX33fd31OliFw1xD8X40MsAMyYUdUVQBnwiQFe/q77WipO09EPnE30cmAvztlErKr+ss82C4GZwDmDvOUVwJeATJymqN8Po8YXgP8CHnXfb84Aq33R/fkkMA2IBf7Qb53TgBnAIuBWEZk5yFv+D5Dg7mehW/NVbnPXuUCFW8cXB9k+A5gMZANXAveIyIzD7dt97T+Bl4AkIMdd92NU9R7gr8Av3RouGOD9fwjMB+YCc4B5QN/mogy3hmzgauBOEUka5FiMj7EAMGOtAkgeYHknzhf1VFXtVNW3degOqB+rarOqtg7y+kOqukFVm4FbgM/1dhKP0ueB36rqTlVtAm4GLu139vETVW1V1bXAWpwvx49xa7kUuFlVG1V1N/Ab4PIR1nOLqrar6pvAs3x0nIfbdydO01yWqrap6jsjfM9enwduU9UDqloF/KRf/Z3u652q+hzQhBOMxg9YAJixlg3UDrD8V0AJ8JKI7BSRm4axr9IRvL4HCMf5a3m0stz99d13GM6ZS6++o3ZacM4S+pvs1tR/X9kjqKXODbi+22cNY983AgKscEf1fGkE79nXQL+LrD7Pa1S1q8/zwX4XxgdZAJgxIyIn4XwB/dNfm+5fqd9V1WnAhcB3RGRR78uD7HKoM4TcPo+n4Pw1Wg00A9F96grFaXoa7n4rcP567rvvLmD/ENv1V81Hf4n33Vf5CPaRJCIx/bavGGrfqrpPVa9V1Szgy8BdIjJ9gP0fye+iYgT1Gx9mAWBGTUTiReR84BGcoZnrB1jnfLfjUYAGnKGjvcNF9+O0Y4/UF0RklohEA7cBS1W1G9gGRInIeSISjtNmHdlnu/1AXm+H6QD+DnxbRPJFJJaP+gy6Bll/QG4tjwG3i0iciEwFvgM8PJL9AD8RkQgR+QRwPvD4UPsWkUtEJMfdvg7ni36g4blD/e7/DvxIRFJFZDJw6xHUb3yUBYAZjadFpBGnKeaHwG/5qBOyvwLgFZw24veBu1T1dfe1n+F8ydSLyPdG8P4PAQ/gNMdEAd8AZ1QS8DXgXpy/iJtxOqB7Pe7+t0ZEVg+w3/vdfb8F7ALagK+PoK6+vu6+/06cM6O/ufsfrn04X+AVOB22X1HVLcPY90nAchFpApYB31TVnQPs/z5glvu7f3KA138KFAPrgPXAaneZCQB2IZgxPkqcq3EfVtWcodY15kjYGYAxxgQpCwBjjAlS1gRkjDFBys4AjDEmSPnVJFuTJ0/WvLw8r8swxhi/sWrVqmpVTR3oNb8KgLy8PIqLi70uwxhj/IaI7BnsNWsCMsaYIGUBYIwxQcoCwBhjgpQFgDHGBCkLAGOMCVIWAMYYE6QsAIwxJkhZAJgJp6q0d3Vj05AY4y2/uhAsmJXXt7JiVw01TR3kJkeTPzmGgrRYnPur+KaeHmVT5UHe31HD5sqDbN3fSGVDGwdbO+nqUUQgOjyU9IQo8lNimJ4ey4lTkjhxahIpsZFDv4ExZlQsAHzcurJ6vv/4Orbub/yn16anxXLZvClcfEIOCdHhHlT3z3p6lBW7a3nyw3Je3rSfmuYOADLioyhIj2VubiIJk8KJjgilvauHpvYuKuvb2F3TzNvbq/lTt3PPkjk5CZxzbAbnHJPBUal2i1ljxoNfzQZaVFSkwTIVhKpy/7u7+fnzm0mNjeSaT0zj5GnJZCVMoqyulQ0VDTxWXMqHe+tJmBTONxcV8IX5U4kI86ZVr665g0eLS3n4gz2U1bUSHRHKWTPTOWNGKqdNn0xafNSQ+2jr7GZDeQPLd9Xy0qb9rC2tB5ygW3xMBufPyWRGepxPn/UY42tEZJWqFg34mgWAb/rtS1v5/WslnDUznV9fMpvE6IgB19tQ3sDPn9/COyXVTJscw21LjuW0gskTVueemmbueWsnS1eV0d7Vw/xpyVw2bwpnz0onOmJ0J5iVDa28tHE/L27cx/JdtXT3KAVpsVwwJ4sL5mSRPzlm6J0YE+QsAPzMezuq+fy9y7no+Bx+fcnsIf/iVVVe33qA257exO6aFpbMzeKH580kLW7ov7qP1MaKBv745k6eXVdBWEgIF52QzVUL8pmRETcu71fT1M5zG/bx9NoKVu6uRRWOy07ggjmZnDc7i+zESePyvsb4OwsAP1Lb3MG5//0WMZFhPH3DacREDv+v6LbObu5+Ywd3v7GDyPAQblx8NP82bwqhIWPTZNLTo7xdUs197+zirW1VxEaG8fn5U7h6Qf6wmnjGSmVDK8+uq+TptRWsLWsA4NjseM6ckcYnj05jTk4iIWN0zMb4OwsAP/LVh1fx6uYD/N/1p3JMVsIR7WNHVRO3PLmB93bUcGx2PN8/52hOL5h8xG3nze1dPLG6jAfe282OqmYmx0Zy1YI8vjB/KgmTvO183lPTzLPrK3lt8wFW762jRyElJoKFbt/DKUelkJlgZwcmeFkA+Ikt+w6y+Hdv881FBXz77MJR7UtVeWpNBb96cSvl9a2clJfElafmcfasdCLDQofcvqdHWb23jmfWVfKP1WU0tnUxOyeBqxbkcd5xWZ51Nh9OXXMHb26r4rUtB3hrexX1LZ0A5E+OYf60FE49KoX501JIjbMhpiZ4WAD4ie88uoYXNu7jvZvOHLTTd6Q6unp4dOVe7n5jBxUNbSRGh3PmjDSOn5rEMVnxJE4KJzYyjINtXVQ1trP9QCOr9tTxwc4a9h9sJyI0hE8dk85VC/I5YUqi34zA6elRNu9zrkF4f0cNK3bV0tjeBUBheixFecmHrjmYmhLtN8dlzEhZAPiB8vpWFv7yda44JY9bL5g15vvv7lHeLanm8VVlvL+jmuqmjkHXTYuLpCgviU/NymDRzDTionzjGoPR6OruYUOFGwg7a/hwT92hQEiJieCEqU4YnDg1iVmZ8SPqezHGlx0uAOxfuY+47+1dAFzzifxx2X9oiHB6YSqnF6aiqpTVtbJ1XyON7Z00tXURFxVOWlwkU1KiyU6cFHB/EYeFhjA3N5G5uYl89Yyj6OlRth9oYtWeOlbtqWP13jpe3rT/0PrZiZMoTI+lID2O6Wmx5CRNIithEhkJUUSFD92EZow/sADwAQ0tnTyyci8Xzs0iawKGM4oIucnR5CZHj/t7+aqQEGFGRhwzMuL4t5OnAM5Q09V769m67yDb9jexbX8j75bU0NHd87Ftk2MiyIiPIiMhivT4SNLjo0iPjyIjPoq0+EgyEyaRFB0ecCFqAo8FgA94YWMlLR3dXHXq+Pz1b4YnJTaSs2elc/as9EPLurp7KK1rpaK+lcqGNirrW6k82Ma+BudnXVn9gM1pidHhFKbHUZgeS2F6HEdnxDM7J8HOHoxPsQDwAS9s2Edu8iSOzY73uhTTT1hoCPmTYw571XFHVw9VTe3sa2jjwME2KhraKDngnEE8taaCxjanryEiNITZOQmclJ/MvPxkiqYmBUT/ivFfFgAeO9jWybslNVx56lRrMvBTEWEhZCdOGvBqZFVl/8F2NlY0sGJ3LSt21fK/b+3k7jd2EBYizJ+Wwlkz01g0Mz2om+SMNywAPPb6lgN0dPew+NgMr0sx40BEyEhw+gsWzXSallo7uvlwbx1vba/mlc37+fHTm/jx05s4OiOOxcdmcNHxOUxJsTAw48+GgXrsa39dxcrddSy/eZFNXxCkdlc388rm/by8aT8r3HmOTspL4qITcvj0cZmeX21t/JtdB+Cj2jq7Of62l7nohGxu/+xxXpdjfEBFfStPrinnH6vK2FHVTERYCOcdl8mVp+YxNzfR6/KMH7LrAHzUW9uqaO3stuYfc0hW4iS+dsZ0vrrwKNaXN/B4cRlPrC7j/z4sZ05uIl88dSqfPi5zWNN5GDOUYU3oIiKLRWSriJSIyE0DvB4pIo+6ry8XkTx3eYqIvC4iTSLyh37bnCgi691tfi9B2AP66uYDxEWFMX9aitelGB8jIszOSeQ/P3MsH/xgET++YBaNrZ18+9G1LPj56/z+1e3UNQ9+NbcxwzFkAIhIKHAncC4wC7hMRPrPVXA1UKeq04E7gF+4y9uAW4DvDbDru4FrgQL3Z/GRHIA/W7G7lpPzUwgP9b2J1YzviIsK54sL8nnlOwv5y5fmcWx2PL99eRun/vw1/uOpDZTWtnhdovFTw/nmmQeUqOpOVe0AHgGW9FtnCfCg+3gpsEhERFWbVfUdnCA4REQygXhV/UCdToi/AJ8ZzYH4m6rGdnZVN3NSXpLXpRg/EeJO5/HAVfN46dunc97sTP62Yi8Lf/U61/9tNevK6r0u0fiZ4QRANlDa53mZu2zAdVS1C2gADteuke3u53D7BEBErhORYhEprqqqGka5/mHVnjoAivKSPa7E+KPC9Dh+fckc3r7xTK49fRpvba3iwj+8y6X3vM/rWw7gT4M7jHd8vu1BVe9R1SJVLUpNTfW6nDFTvLuWiLAQu/rXjEpGQhQ3nzuT924+kx9+eiZ7alq46oGVnPO7t3i8uJSOrp6hd2KC1nACoBzI7fM8x1024DoiEgYkADVD7DNniH0GtJV76pibk2ijOcyYiIsKd84Ebvwkv/3cHEJE+P7SdXzil6/xxzd3cLCt0+sSjQ8aTgCsBApEJF9EIoBLgWX91lkGXOk+vhh4TQ9zDqqqlcBBEZnvjv65AnhqxNX7qZaOLjaWN1Bk7f9mjIWHhnDRCTk8/81P8OCX5jE9LZafP7+FU3/2Grc/u4mK+lavSzQ+ZMjrAFS1S0RuAF4EQoH7VXWjiNwGFKvqMuA+4CERKQFqcUICABHZDcQDESLyGeBTqroJ+BrwADAJeN79CQprSuvp6lFOsvZ/M05EhIWFqSwsTGVDeQP3vLWT+9/dzZ/f3c2Fc7K49vRpzMy05sdgZ1cCe+D3r27njle2seaWT5EQbZf5m4lRVtfCfe/s4tGVpbR0dHPhnCy++6lCpqYMPtOp8X+HuxLY5zuBA1HxnjpmpMfZl7+ZUDlJ0fzHBcfw/k2LuOGT03lp0z4W/eZN/uOpDVQ3tXtdnvGABcAE6+5RVu+p48Sp1v5vvJEQHc73zpnBm9//JJ87KZeHl+9l4S9f539e3U57V7fX5ZkJZAEwwfbWttDU3sUcm9jLeCw9Por/+uxxvPTt0/lEQSq/eXkb5/7ubd7bUe11aWaCWABMsC2VBwGYmWEdcMY3HJUayx8vP5EHvzSPrh7l3/53Od95dA011iwU8CwAJtjmfY2ECBSkx3pdijEfs7AwlZe+fTo3fHI6T6+r4MzfvMnjxaV2VXEAswCYYFsqD5I/OcZuDm58UlR4KN87ZwbPf/MTFKbH8v2l6/jKw6uotZlHA5IFwATbsq+Ro238tfFx09PieOS6U7j53KN5bcsBPnXHW7y+5YDXZZkxZgEwgRrbOtlb28LMjDivSzFmSKEhwpcXHsVT159GSkwEVz2wkh89uZ7WDhspFCgsACbQtv2NABxtHcDGj8zKiuepGxZwzWn5PPzBXj5717vsqm72uiwzBiwAJtDmSicAZmZZABj/EhUeyo/On8WDX5rHvoNtXPg/7/DChn1el2VGyQJgAm3Zd5C4qDCyEqK8LsWYI7KwMJVnvn4a01Jj+MrDq/jZc5vp6rYpp/2VBcAE2lLZyMyMeILw9scmgOQkRfPYV07hC/On8Ke3dvL5e5fbVBJ+ygJggqiqOwLIOoCN/4sMC+WnnzmOO/51DmtK6/nMne+y3e3jMv7DAmCClNW10tTeZR3AJqB89vgcHvvyKbR39XDRXe/x1rbAuW1rMLAAmCCb3Skg7AzABJo5uYk8ef0CspMmcdUDK3nogz1el2SGyQJggmw/0AQ4N/M2JtBkJ05i6VdP5YzCVG55cgM/eXoj3T02hYSvswCYILurm0mLiyQ2csibsBnjl2Ijw7jniiK+tCCfP7+7m2/8/UObXtrH2bfRBNlV3UzeZLvzkglsoSHCrRfMIjMhituf20x9awd/urzI/vDxUXYGMEF21zQzzQLABIlrT5/Gby6Zwwc7a7n0nvdtmKiPsgCYAAfbOqlu6rAzABNU/uXEHO69ooiSA01cfPd7lNa2eF2S6ccCYALsdudNybcAMEHmk0en8ddr5lPX0sm/3P3eofmwjG+wAJgAuywATBA7cWoSj3/lFAA+96f3WVta73FFppcFwATYVd2MCExJjva6FGM8UZgex9KvnEpcVBifv3c5H+ys8bokgwXAhNhV3UxWwiS7C5gJalNSonn8y6eSkRDFlfevsBvM+AALgAmwu7qZaanW/GNMRkIUj335FArT47j2L8U8vbbC65KCmgXAOFNVdlY3k5diAWAMQHJMBH+99mROmJLENx75kEdW7PW6pKBlATDOaps7aGzrsg5gY/qIjwrnwS/N4/SCVG56Yj33vr3T65KCkgXAOLMRQMYMbFJEKP97RRHnHZfJT5/dzG9f3oaqzR80kYYVACKyWES2ikiJiNw0wOuRIvKo+/pyEcnr89rN7vKtInJOn+XfFpGNIrJBRP4uIgF5mywLAGMGFxEWwu8vO57PFeXw+1e3c9szm+ixSeQmzJABICKhwJ3AucAs4DIRmdVvtauBOlWdDtwB/MLddhZwKXAMsBi4S0RCRSQb+AZQpKrHAqHuegFnV3UzYSFCTtIkr0sxxieFhgg/v2j2oUnk/v0f62wm0QkynDOAeUCJqu5U1Q7gEWBJv3WWAA+6j5cCi8S57+ES4BFVbVfVXUCJuz9wJqKbJCJhQDQQkMMBdtc0MyU5mrBQa20zZjAhIcIt58/kW2cV8PiqMr7+99U2k+gEGM63UjZQ2ud5mbtswHVUtQtoAFIG21ZVy4FfA3uBSqBBVV8a6M1F5DoRKRaR4qoq/7vb0K7qFqam2AVgxgxFRPjWWYXccv4snlu/j2seLKahtdPrsgKaJ3+WikgSztlBPpAFxIjIFwZaV1XvUdUiVS1KTU2dyDLHRFldi10BbMwIXH1aPr+6eDbv76jhorvePTSXlhl7wwmAciC3z/Mcd9mA67hNOglAzWG2PQvYpapVqtoJPAGceiQH4MsaWjtpbOsi1wLAmBG5pCiXh685mZrmDj5z17u8vtWuGh4PwwmAlUCBiOSLSAROZ+2yfussA650H18MvKbOeK5lwKXuKKF8oABYgdP0M19Eot2+gkXA5tEfjm/pnf7WOoCNGbn501J46voFZMRHcdWfV/KLF7bQ1d3jdVkBZcgAcNv0bwBexPmSfkxVN4rIbSJyobvafUCKiJQA3wFucrfdCDwGbAJeAK5X1W5VXY7TWbwaWO/Wcc+YHpkPKKtrBSAnyc4AjDkSU1NiePL6BVw2bwp3v7GDi+5+j82VB70uK2CIP114UVRUpMXFxV6XMWz3vr2Tnz67mTW3nk1idITX5Rjj155dV8mtT22gobWT606fxlfPOIq4qHCvy/J5IrJKVYsGes3GJo6jsrpW4iLDSJhk/0iNGa3zZmfyyncWsmRuNne9sYOFv3qD+97ZRWuHDRc9UhYA46isroXspEk43RzGmNFKiongN5+bw7IbFnBMVjz/+cwm5v/sVX723Gb21NhooZEK87qAQFZW12rt/8aMg9k5iTx09cms2FXLA+/t4t53dvGnt3YyJyeB82dncd7sTLISbfDFUCwAxomqUlrbwilHpXhdijEBa15+MvPyk6lsaGXZmgqeWVfJ7c9t5vbnNnPi1CTOn53JecdlkhYfkFONjZoFwDipb+mkuaPbzgCMmQCZCZP48sKj+PLCo9hd3cwz65ww+MnTm7jtmU2cNn0y3zqrkBOnJnldqk+xABgnHw0BtdNQYyZS3uQYbjizgBvOLKDkQCPL1lbyt+V7+Ze73+OsmWn8ZMmxZFvzEGCdwOOmtM65CCzXzgCM8cz0tDi+c3Yhb914Bt8/ZwYf7KxlyR/eYfXeOq9L8wkWAOOkzA2AbDsDMMZz0RFhXP/J6Tx5/anERIZx6T0f8Oy6Sq/L8pwFwDgpq2slPsquATDGl0xPi+PJry1gdnYC3350DRvKG7wuyVMWAOPEhoAa45uSYiK454oiUmIj+NpfV3OwLXinnLYAGCeltS3kJlvzjzG+KDkmgv+57HjK61v596XrgvZexBYA40BV7QzAGB9XlJfM98+ZwfMb9vHq5uCcbtoCYBzUNnfQ2tltQ0CN8XFXn5bPlORofvfqtqA8C7AAGAc2DbQx/iE8NIQbzpzOhvKDQXkWYAEwDirqnQDISrTLz43xdZ89PjtozwIsAMZBuRsAdrWhMb4vmM8CLADGQWVDG5PCQ+0aAGP8xGePzyYrIYqHl+/xupQJZQEwDirqW8lKjLL7ABjjJ8JDQ1hyfDZvb6+mpqnd63ImjAXAOKhoaLO5yI3xM0vmZtHdozy3PnimiLAAGAcV9a1kJVgAGONPjs6IZ0Z6HE+tqfC6lAljATDG2ru6qWpstzMAY/zQhXOzKN5TR2lti9elTAgLgDG2v8FpP8y0IaDG+J0L52QB8PS64DgLsAAYYzYE1Bj/lZscTdHUJJ760ALAHIHKBicAMhPsDMAYf7T42Ay27m889MdcILMAGGMfXQVsZwDG+KPTCiYD8G5JtceVjD8LgDFWXt9GckwEUeGhXpdijDkCM9LjmBwbYQFgRq6yodXmADLGj4kIC6ZP5t2SmoCfG8gCYIxV1LeSadcAGOPXFkyfTHVTO9v2N3ldyrgaVgCIyGIR2SoiJSJy0wCvR4rIo+7ry0Ukr89rN7vLt4rIOX2WJ4rIUhHZIiKbReSUsTggr1XWt9kIIGP83ILpTj/AOwHeDDRkAIhIKHAncC4wC7hMRGb1W+1qoE5VpwN3AL9wt50FXAocAywG7nL3B/DfwAuqejQwB9g8+sPx1sG2Thrbu6wJyBg/l504ifzJMQHfDzCcM4B5QImq7lTVDuARYEm/dZYAD7qPlwKLxJkJbQnwiKq2q+ouoASYJyIJwOnAfQCq2qGq9aM/HG/1jgCyJiBj/N+C6Sl8sLOGzu4er0sZN8MJgGygtM/zMnfZgOuoahfQAKQcZtt8oAr4s4h8KCL3ikjMQG8uIteJSLGIFFdVVQ2jXO9U1rcBNgTUmEBw2vTJtHR0s6bU7/82HZRXncBhwAnA3ap6PNAM/FPfAoCq3qOqRapalJqaOpE1jli53QnMmIBxcn4KAMW76zyuZPwMJwDKgdw+z3PcZQOuIyJhQAJQc5hty4AyVV3uLl+KEwh+rbKhldAQIS3OAsAYf5cUE8HUlGjWlAZ3AKwECkQkX0QicDp1l/VbZxlwpfv4YuA1dQbQLgMudUcJ5QMFwApV3QeUisgMd5tFwKZRHovnKurbyIiPIjTEbgRjTCCYm5vI2tIGr8sYN2FDraCqXSJyA/AiEArcr6obReQ2oFhVl+F05j4kIiVALU5I4K73GM6Xexdwvap2u7v+OvBXN1R2AleN8bFNuPJ6uwjMmEAyNzeRp9ZUsK+hjYwAnN9ryAAAUNXngOf6Lbu1z+M24JJBtr0duH2A5WuAopEU6+sqG1o5YUqS12UYY8bInNxEANaU1rM4IcPjasaeXQk8Rnp6lH0NbTYE1JgAMisznvBQCdiRQBYAY6S6qZ3ObiXbmoCMCRhR4aHMzIxnrQWAOZxyuwjMmIA0NzeRdWX1dPcE3sRwFgBjpLLBLgIzJhDNyUmkuaObkgOBNzGcBcAYqbCLwIwJSHOnOB3BgdgMZAEwRirq24iOCCVhUrjXpRhjxlB+SgxxUWF8aAFgBuPcByAKZw48Y0ygCAkR5uQksr7cAsAMwrkTmLX/GxOIZmbGsW1/E10BNjOoBcAYKbcbwRgTsGZmxtPR1cOu6mavSxlTFgBjoL2rm+qmdhsCakyAmpkZD8CmyoMeVzK2LADGwL5DQ0BtBJAxgeio1FjCQ4XNlY1elzKmLADGwEf3AbAzAGMCUURYCNPT4thsZwCmP7sTmDGBb2amBYAZwEf3ArYmIGMC1cyMeA40tlPT1O51KWPGAmAMVDS0kRITQVR4qNelGGPGSW9HcCD1A1gAjIGK+lYyrQPYmIA2MzMOgC37AqcZyAJgDFQ2tJJlQ0CNCWgpsZGkxUUG1FBQC4AxUFHfZh3AxgSBmZnx1gRkPnKwrZOm9i67BsCYIDAzM56SA410dAXGlBAWAKNUYdcAGBM0ZmbG0dmt7KwOjHsDWACMUu81ADYNhDGBrzDd6Qjett8CwPDRVcA2EZwxgW9aagyhIcK2fYHRD2ABMEqVDa2EhQipcbKVaAwAABKFSURBVJFel2KMGWeRYaHkpUSzbb8FgMEZAZQeH0VoiN0IxphgMCMjzgLAOMrrW20EkDFBpCAtjj21LbR1dntdyqhZAIyS3QnMmOAyIyMOVSg54P8dwRYAo9DTo+xrsIvAjAkmhemxAAHRDGQBMArVTe10ditZNguoMUFjakoMEaEhATEUdFgBICKLRWSriJSIyE0DvB4pIo+6ry8Xkbw+r93sLt8qIuf02y5URD4UkWdGeyBesBvBGBN8wkNDmJYaExxnACISCtwJnAvMAi4TkVn9VrsaqFPV6cAdwC/cbWcBlwLHAIuBu9z99fomsHm0B+GVyga7CMyYYFSQHhgjgYZzBjAPKFHVnaraATwCLOm3zhLgQffxUmCRiIi7/BFVbVfVXUCJuz9EJAc4D7h39IfhjQq7CMyYoDQjPZayulaa27u8LmVUhhMA2UBpn+dl7rIB11HVLqABSBli298BNwJ+O6tSRX0b0RGhxE8K87oUY8wEKnCnhNju5yOBPOkEFpHzgQOqumoY614nIsUiUlxVVTUB1Q1fRb0zBNQ52THGBIsZvXMC+fmUEMMJgHIgt8/zHHfZgOuISBiQANQcZtsFwIUishunSelMEXl4oDdX1XtUtUhVi1JTU4dR7sSpbGi1+wAbE4Ryk6OJDAvx+36A4QTASqBARPJFJAKnU3dZv3WWAVe6jy8GXlNVdZdf6o4SygcKgBWqerOq5qhqnru/11T1C2NwPBOqvL7N2v+NCUKhIUJBeizb/LwJaMjGa1XtEpEbgBeBUOB+Vd0oIrcBxaq6DLgPeEhESoBanC913PUeAzYBXcD1qur/108D7V3dVDe12xBQY4JUYVoc7+2o8bqMURlW76WqPgc812/ZrX0etwGXDLLt7cDth9n3G8Abw6nDl+w7NATUmoCMCUaFGXE88WE5Da2dJEwK97qcI2JXAh8huw+AMcGtd0qI7X7cD2ABcIQO3QnMAsCYoFSQ5v93B7MAOEKldS2IYFNBGxOkshMnERMR6tcjgSwAjtDe2hYy46OIDAsdemVjTMAJCRGm+/mUEBYAR6i0toWc5GivyzDGeGhGeqwFQDDaW9vCFAsAY4JaYXoc1U0d1DZ3eF3KEbEAOAJtnd3sP9huAWBMkCvsnRLCT88CLACOQFmdMwTUAsCY4GYBEIRKa1sAZz4QY0zwSo+PJD4qzAIgmOw9FAB2DYAxwUxEKEyPY9s+/7wWwALgCOytbSEqPITU2EivSzHGeKwwI45tBxpx5r/0LxYAR6DUHQFk9wEwxhSmxVLf0klVY7vXpYyYBcARsCGgxpheH3UE+18zkAXACKkqpbUt1gFsjAGcJiDwz5FAFgAjVNvcQXNHN7lJFgDGGJgcG0lyTIQFQDDoHQFkTUDGmF6FfjolhAXACB0KgBQLAGOMozA9ju37m/xuJJAFwAj1XgVsTUDGmF6F6XE0tndR6d4p0F9YAIzQ3poWUuMimRRh00AbYxy9I4G2+lkzkAXACO2tbSE3ya4ANsZ8xF9vD2kBMEI7q5vImxzjdRnGGB+SGB1BWlyk310LYAEwAo1tnew/2M70tFivSzHG+JhCP7w7mAXACOyoagZgeqoFgDHm43pHAvX0+M9IIAuAEdhxwDm9O8rOAIwx/RSmx9La2X1opKA/sAAYgZKqJsJDxS4CM8b8k94pIfxpJJAFwAiUHGhiakoM4aH2azPGfNyM9DhEYGNFg9elDJt9k43Ajqoma/83xgwoJjKMo1Jj2VBuARBwOrp62FPTwlFpNgTUGDOw47IT2FB+0Osyhs0CYJj21jbT3aM2BNQYM6hjsuLZd7DNb24OM6wAEJHFIrJVREpE5KYBXo8UkUfd15eLSF6f1252l28VkXPcZbki8rqIbBKRjSLyzbE6oPFS0jsCyJqAjDGDOC47AcBvmoGGDAARCQXuBM4FZgGXicisfqtdDdSp6nTgDuAX7razgEuBY4DFwF3u/rqA76rqLGA+cP0A+/QpvdcAWAAYYwYzKyseCKAAAOYBJaq6U1U7gEeAJf3WWQI86D5eCiwS54a5S4BHVLVdVXcBJcA8Va1U1dUAqtoIbAayR38446fkQBOZCVHERIZ5XYoxxkfFRYUzbXIM6wMoALKB0j7Py/jnL+tD66hqF9AApAxnW7e56Hhg+UBvLiLXiUixiBRXVVUNo9zxsaOqydr/jTFDOiY7IaDOAMaNiMQC/wC+paoDdp2r6j2qWqSqRampqRNb4Ec1sONAkzX/GGOGdFx2PBUNbdQ0+X5H8HACoBzI7fM8x1024DoiEgYkADWH21ZEwnG+/P+qqk8cSfETpbKhjeaObpsCwhgzpGN7O4IrfH846HACYCVQICL5IhKB06m7rN86y4Ar3ccXA6+pc2+0ZcCl7iihfKAAWOH2D9wHbFbV347FgYynzZXOBznDvemDMcYM5pgs/xkJNGSPpqp2icgNwItAKHC/qm4UkduAYlVdhvNl/pCIlAC1OCGBu95jwCackT/Xq2q3iJwGXA6sF5E17lv9QFWfG+sDHAtryxoIETg2O97rUowxPi5hUjhTU6JZXxYAAQDgfjE/12/ZrX0etwGXDLLt7cDt/Za9A8hIi/XK+rJ6CtLiiI6wEUDGmKHNzU3k3ZIaVBWnwcM32ZXAQ1BV1pc3cFxOgtelGGP8xLz8ZKqb2tld0+J1KYdlATCEioY2qps6mG0BYIwZpnl5yQCs3FXrcSWHZwEwhPVl9cBHl3gbY8xQpqfFkhQdznILAP+2rqyBsBBhZqZ1ABtjhkdEOCkvmZW7LQD82rqyBmZkxBEVHup1KcYYPzIvP5m9tS3sa2jzupRBWQAchqqyrqze2v+NMSN2ktsPsMKHzwIsAA5jT00LB9u6mJ2T6HUpxhg/c0xWPNERoT7dEWwBcBjr3Cv5rAPYGDNSYaEhnDg1yaf7ASwADmNtaT0RYSEU2hQQxpgjcFJeMlv2NVLX3OF1KQOyADiMd7ZXUzQ1iYgw+zUZY0buEwWTAXhj2wGPKxmYfbMNorKhla37GzljhjdTUBtj/N+cnETS4iJ5edN+r0sZkAXAIN7c6tx8ZmFhmseVGGP8VUiIcNasdN7YWkVbZ7fX5fwTC4BBvLmtioz4KArT7R4Axpgj96lZ6bR0dPPejmqvS/knFgAD6Ozu4Z3t1ZwxI9WnZ/Izxvi+U45KITYyzCebgSwABrCmtJ7G9i4WFlr7vzFmdCLDQjljRiovb9pPd496Xc7HWAAM4I2tBwgNERa4PfjGGDManzomg+qmDtaU1nldysdYAAzgzW1VnDglifiocK9LMcYEgDNmpBIeKjy9ttLrUj7GAqCfkgONbCg/yJkzbfSPMWZsxEeF8+njMlm6qozGtk6vyznEAqCfh97fQ0RoCBefmON1KcaYAHLVgnya2rtYuqrM61IOsQDoo6m9i3+sLue82ZlMjo30uhxjTACZm5vICVMSefC93fT4SGewBUAf/7e6jKb2Lq44Zeqo9pN307Mf+68ts2X9l/lCDbZs7JYN11UL8tld08LrW31jaggLAJeq8pf393BcdgJzc236Z2PM2Ft8bAYZ8VHc984ur0sBLAAOeWt7NdsPNHHFKVPt4i9jzLgIDw3h2tOn8d6OGp5b7/2IIAsAoKWji1ue3EBu8iQumJPldTnGmAB25SlTOS47gVuf2kB9i7fTRFsAAL98YSt7a1v41cVz7N6/xphxFRYawi/+ZTb1LZ3c9swmT2sJ+gB4f0cND7y3my+emsf8aSlel2OMCQKzsuL56hlH8cTqch4rLvWsjjDP3tkHrNpTx/V/W83UlGhuXDzD63KMMUHkhjOn8+Heem5cuo72rh4unz+60YdHImjPAJ5bX8ll//sB8VFhPHDVPKIjgjoLjTETLDIslHuvLGLR0Wnc8uQGfvXiFlo6uia0hmEFgIgsFpGtIlIiIjcN8HqkiDzqvr5cRPL6vHazu3yriJwz3H2OB1Xl3ZJqLr9vOV/762qOy07gia8tIH9yzES8vTHGfExUeCh/vPxELj4xhztf38Enf/0GD3+wh9oJuofwkH/2ikgocCdwNlAGrBSRZarat/fiaqBOVaeLyKXAL4B/FZFZwKXAMUAW8IqIFLrbDLXPMdHR1cOdr5ewrqyetWUN1DZ3kBoXyb8vPpqrFuRZp68xxlPhoSH8+pI5XHpSLv/13GZ+9OQGbnlqA7OzE5iREUd6fBSZCZP4t5OnjPl7D6fdYx5Qoqo7AUTkEWAJ0PfLegnwY/fxUuAP4gymXwI8oqrtwC4RKXH3xzD2OSbCQ4W/rdhLUnQ4i45OY/60FM6bnWlf/MYYn1KUl8w/vnoqa8saeHNrFe+UVPHmtiqqGttJi4salwAQ1cPPSSEiFwOLVfUa9/nlwMmqekOfdTa465S5z3cAJ+OEwgeq+rC7/D7geXezw+6zz76vA65zn84Ath7ZoU6oyYDv3f9t5Ow4fIsdh2/xl+OYqqoD3t3K53s+VfUe4B6v6xgJESlW1SKv6xgtOw7fYsfhWwLhOIbTCVwO5PZ5nuMuG3AdEQkDEoCaw2w7nH0aY4wZR8MJgJVAgYjki0gETqfusn7rLAOudB9fDLymTtvSMuBSd5RQPlAArBjmPo0xxoyjIZuAVLVLRG4AXgRCgftVdaOI3AYUq+oy4D7gIbeTtxbnCx13vcdwOne7gOtVtRtgoH2O/eF5xq+arA7DjsO32HH4Fr8/jiE7gY0xxgSmoL0S2Bhjgp0FgDHGBCkLgDHkxfQWY0FEckXkdRHZJCIbReSb7vJkEXlZRLa7/03yutbhEJFQEflQRJ5xn+e7U5SUuFOWRHhd41BEJFFElorIFhHZLCKn+PHn8W3339UGEfm7iET5w2ciIveLyAH3OqfeZQN+BuL4vXs860TkBO8qHz4LgDHSZ8qMc4FZwGXuVBj+oAv4rqrOAuYD17u13wS8qqoFwKvuc3/wTWBzn+e/AO5Q1elAHc7UJb7uv4EXVPVoYA7O8fjd5yEi2cA3gCJVPRZn0EfvdDG+/pk8ACzut2ywz+BcnFGOBTgXrt49QTWOigXA2Dk0ZYaqdgC901v4PFWtVNXV7uNGnC+bbJz6H3RXexD4jDcVDp+I5ADnAfe6zwU4E2eKEvCD4xCRBOB0nNF1qGqHqtbjh5+HKwyY5F4jFA1U4gefiaq+hTOqsa/BPoMlwF/U8QGQKCKZE1PpkbMAGDvZQN87O5S5y/yKO5Pr8cByIF1Ve29cug9I96iskfgdcCPQ4z5PAepVtXeeXX/4XPKBKuDPblPWvSISgx9+HqpaDvwa2Ivzxd8ArML/PpNeg30Gfvn/vwWAOUREYoF/AN9S1YN9X3Mv7PPpMcMicj5wQFVXeV3LKIUBJwB3q+rxQDP9mnv84fMAcNvIl+CEWhYQwz83q/glf/kMDscCYOz49fQWIhKO8+X/V1V9wl28v/c01v3vAa/qG6YFwIUishunCe5MnLb0RLf5AfzjcykDylR1uft8KU4g+NvnAXAWsEtVq1S1E3gC53Pyt8+k12CfgV/+/28BMHb8dnoLt538PmCzqv62z0t9p/i4EnhqomsbCVW9WVVzVDUP5/f/mqp+HngdZ4oS8I/j2AeUikjvfUoX4VxN71efh2svMF9Eot1/Z73H4lefSR+DfQbLgCvc0UDzgYY+TUW+S1XtZ4x+gE8D24AdwA+9rmcEdZ+Gcyq7Dljj/nwap/38VWA78AqQ7HWtIzimM4Bn3MfTcOagKgEeByK9rm8Y9c8Fit3P5EkgyV8/D+AnwBZgA/AQEOkPnwnwd5x+i06cs7KrB/sMAMEZBbgDWI8z6snzYxjqx6aCMMaYIGVNQMYYE6QsAIwxJkhZABhjTJCyADDGmCBlAWCMMUHKAsCYcSQiPxaR73ldhzEDsQAwZpjci3zs/xkTMOwfszGHISJ57j0e/oJzIdN9IlLszm//kz7r7RaRn4jIahFZLyJHD7Cva0XkeRGZNJHHYMxghrwpvDGGAuBKVf1ARJJVtda9/8OrIjJbVde561Wr6gki8jXge8A1vTsQkRuAs4HPqGr7hB+BMQOwMwBjhrZHnTneAT4nIquBD4FjcG7+06t3Er1VQF6f5Vfg3DDkYvvyN77EAsCYoTWDc2tJnL/sF6nqbOBZIKrPer1f7t18/Ox6PU4g5Ix7pcaMgAWAMcMXjxMGDSKSjvNX/XB8CHwZWCYiWeNVnDEjZQFgzDCp6lqcL/MtwN+Ad0ew7Ts4Zw/Pisjk8anQmJGx2UCNMSZI2RmAMcYEKQsAY4wJUhYAxhgTpCwAjDEmSFkAGGNMkLIAMMaYIGUBYIwxQer/ASyxGB3A+MAhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.distplot(df1['rank'], rug=True, hist=False)\n", + "plt.title('Distribution of position');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fit a classic logistic regression model." + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "df1 = pd.get_dummies(df1, columns=['hotel_name'])\n", + "X = df1.drop('purchased', axis=1)\n", + "y = df1.purchased\n", + "scaler = MinMaxScaler()\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.3, random_state = 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [], + "source": [ + "df_result = X_test.copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.drop('searchid', axis=1, inplace=True)\n", + "X_test.drop('searchid', axis=1, inplace=True)\n", + "\n", + "X_train = scaler.fit_transform(X_train)\n", + "X_test = scaler.transform(X_test)\n", + "logReg = LogisticRegression().fit(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Probability estimates, for the True class." + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [], + "source": [ + "df_result['probability'] = logReg.predict_proba(X_test)[:,1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Re-construct dummies back to hotel name variable. " + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [], + "source": [ + "x = df_result.ix[:, 3:444].stack()\n", + "x = pd.Series(pd.Categorical(x[x!=0].index.get_level_values(1)))\n", + "x = pd.DataFrame({'hotel_name':x.values})\n", + "x['hotel_name'] = x['hotel_name'].map(lambda x: x.lstrip('hotel_name_'))" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [], + "source": [ + "df_result = df_result[['searchid', 'rank', 'avg_nightly_rate', 'probability']].reset_index()\n", + "df_result.drop('index', axis=1, inplace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Sort probabilities for the test set." + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
searchidrankavg_nightly_rateprobabilityhotel_name
95213BCF0DC0-A00B-4A29-B962-D7A6CD95539625179.5000000.057441Livingsuites Toronto - Front & John
2260623199FE-640A-43D5-8A14-24071702644425179.5000000.057441Livingsuites Toronto - Front & John
118537AE84D0F-B3E8-4065-9978-2883B1EA61D225192.0000000.055300Livingsuites Toronto - Front & John
29821B9149FC-53AF-47DC-997F-A13A9A8A632622209.3333330.052189Livingsuites Toronto - Front & John
103107BEC0985-CBA9-447C-AA6B-288D6965B35127163.2500000.045482QuickStay - Gorgeous 2-Bedroom in the Heart of...
7703DEBC69E0-DC75-4340-9058-9565FD7731E539208.6666670.044252Sarkar Suites - Blue Jays Way
45521E908602-1831-4CF0-B3FA-9F782628957C29149.0000000.043888Sarkar Suites - Maple Leaf Square
937201102BC-849B-4A4B-8D8F-02A603B08EDA47227.0000000.042400Sarkar Suites - Blue Jays Way
2338509C50E0-A72B-45FA-9997-CEA757D8399657241.5000000.042154CN Tower View Design apart 3BD-2BA DT
3842A39CF6E-8B8A-46FD-8BBA-D135E5B2F03B23160.6666670.041904Sarkar Suites - Maple Leaf Square
54450DDDA38-2FF8-44C9-82AC-74AB0FFA2DC391153.6666670.041883Simply Comfort. Modern Downtown Apartment
11065A6ADC02C-ED7F-4A3C-A724-36A64BE2130639228.0000000.041692Sarkar Suites - Blue Jays Way
50801E908602-1831-4CF0-B3FA-9F782628957C99139.3333330.041210QuickStay - Beautiful Toronto Condo (City Views)
3575C690E16A-6108-4B16-9CFE-E2A1A1FCEE7E27175.0000000.040367Sarkar Suites - Maple Leaf Square
2178B0710740-B143-4143-A929-558D76F2F74249246.6666670.040040Sarkar Suites - Blue Jays Way
5396578FF0C7-0FF2-4C5D-8765-129E4F286E0734213.6666670.039405QuickStay - Gorgeous 2-Bedroom in the Heart of...
6058EAF56532-5031-4F45-AB53-0B5C21963E8978268.2000000.039380Sarkar Suites - Blue Jays Way
90774CFB9FB5-8EA9-4228-B190-C01E24F95A3A28184.0000000.039327Sarkar Suites - Maple Leaf Square
24455C16BC70-1E3E-471D-85AA-224E81C1121A26183.0000000.039313Sarkar Suites - Maple Leaf Square
9332F4B50DBB-A59F-4D19-AD95-4C12B78810C8100196.0000000.038696QuickStay - Style in Yorkville (Yonge & Bloor)
\n", + "
" + ], + "text/plain": [ + " searchid rank avg_nightly_rate \\\n", + "9521 3BCF0DC0-A00B-4A29-B962-D7A6CD955396 25 179.500000 \n", + "2260 623199FE-640A-43D5-8A14-240717026444 25 179.500000 \n", + "11853 7AE84D0F-B3E8-4065-9978-2883B1EA61D2 25 192.000000 \n", + "2982 1B9149FC-53AF-47DC-997F-A13A9A8A6326 22 209.333333 \n", + "10310 7BEC0985-CBA9-447C-AA6B-288D6965B351 27 163.250000 \n", + "7703 DEBC69E0-DC75-4340-9058-9565FD7731E5 39 208.666667 \n", + "4552 1E908602-1831-4CF0-B3FA-9F782628957C 29 149.000000 \n", + "937 201102BC-849B-4A4B-8D8F-02A603B08EDA 47 227.000000 \n", + "2338 509C50E0-A72B-45FA-9997-CEA757D83996 57 241.500000 \n", + "384 2A39CF6E-8B8A-46FD-8BBA-D135E5B2F03B 23 160.666667 \n", + "544 50DDDA38-2FF8-44C9-82AC-74AB0FFA2DC3 91 153.666667 \n", + "11065 A6ADC02C-ED7F-4A3C-A724-36A64BE21306 39 228.000000 \n", + "5080 1E908602-1831-4CF0-B3FA-9F782628957C 99 139.333333 \n", + "3575 C690E16A-6108-4B16-9CFE-E2A1A1FCEE7E 27 175.000000 \n", + "2178 B0710740-B143-4143-A929-558D76F2F742 49 246.666667 \n", + "5396 578FF0C7-0FF2-4C5D-8765-129E4F286E07 34 213.666667 \n", + "6058 EAF56532-5031-4F45-AB53-0B5C21963E89 78 268.200000 \n", + "9077 4CFB9FB5-8EA9-4228-B190-C01E24F95A3A 28 184.000000 \n", + "2445 5C16BC70-1E3E-471D-85AA-224E81C1121A 26 183.000000 \n", + "9332 F4B50DBB-A59F-4D19-AD95-4C12B78810C8 100 196.000000 \n", + "\n", + " probability hotel_name \n", + "9521 0.057441 Livingsuites Toronto - Front & John \n", + "2260 0.057441 Livingsuites Toronto - Front & John \n", + "11853 0.055300 Livingsuites Toronto - Front & John \n", + "2982 0.052189 Livingsuites Toronto - Front & John \n", + "10310 0.045482 QuickStay - Gorgeous 2-Bedroom in the Heart of... \n", + "7703 0.044252 Sarkar Suites - Blue Jays Way \n", + "4552 0.043888 Sarkar Suites - Maple Leaf Square \n", + "937 0.042400 Sarkar Suites - Blue Jays Way \n", + "2338 0.042154 CN Tower View Design apart 3BD-2BA DT \n", + "384 0.041904 Sarkar Suites - Maple Leaf Square \n", + "544 0.041883 Simply Comfort. Modern Downtown Apartment \n", + "11065 0.041692 Sarkar Suites - Blue Jays Way \n", + "5080 0.041210 QuickStay - Beautiful Toronto Condo (City Views) \n", + "3575 0.040367 Sarkar Suites - Maple Leaf Square \n", + "2178 0.040040 Sarkar Suites - Blue Jays Way \n", + "5396 0.039405 QuickStay - Gorgeous 2-Bedroom in the Heart of... \n", + "6058 0.039380 Sarkar Suites - Blue Jays Way \n", + "9077 0.039327 Sarkar Suites - Maple Leaf Square \n", + "2445 0.039313 Sarkar Suites - Maple Leaf Square \n", + "9332 0.038696 QuickStay - Style in Yorkville (Yonge & Bloor) " + ] + }, + "execution_count": 108, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_result.merge(x, left_index=True, right_index=True).sort_values('probability', ascending=False).head(20)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It seems that PC users come to PC website, when come to book hotels, they know what they want and it does not take them long to make decision, and they make relative quick decisions on hotel bookings, and most likely these bookings are toward condo or appartment suits. \n", + "\n", + "What does it mean when we say \"a very good hotel\"? It depends. For many of us, Hilton Toronto is a very good hotel and I would be happy to see it on the top position of the page. But if most of PC customers are interested in apartment suites, they don't need to be persuaded and they know (more or less) on what they want. So, why not position apartment suites on the top positions of the page?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}