-
Notifications
You must be signed in to change notification settings - Fork 4.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f6da528
commit a6dbf6a
Showing
1 changed file
with
313 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,313 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from collections import Counter\n", | ||
"\n", | ||
"dtype = {\n", | ||
" 'Usage': 'category',\n", | ||
" 'Description': 'category',\n", | ||
" 'status': 'category',\n", | ||
"}\n", | ||
"df = pd.read_csv('data/reservations.csv.gz', dtype=dtype, parse_dates=['created', 'arrival', 'departure'])\n", | ||
"df.drop(columns='Usage', inplace=True)\n", | ||
"\n", | ||
"df.loc[df['cancel_date'] == '0001-01-01T00:00:00', ['cancel_date']] = None\n", | ||
"df['cancel_date'] = pd.to_datetime(df['cancel_date'])\n", | ||
"\n", | ||
"df['arrival_year'] = df['arrival'].dt.year" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"appearances = {}\n", | ||
"for contract_id in df['contract_id'].unique():\n", | ||
" subset_df = df.loc[df['contract_id'] == contract_id].sort_values(by=['arrival', 'created'])\n", | ||
" # save the last known state\n", | ||
" # fill in blanks for bad years\n", | ||
" # handle case where cancel year might come after a series of misses\n", | ||
" yearly_state = {arrival_year: status for (created, arrival_year, status) in subset_df[['created', 'arrival_year', 'status']].itertuples(index=False, name=None)}\n", | ||
" earliest = subset_df['arrival_year'].min()\n", | ||
" latest = min(subset_df['arrival_year'].max(), 2019)\n", | ||
" activity = [(year, yearly_state.get(year, 'no-show')) for year in range(earliest, latest + 1)] \n", | ||
" if activity:\n", | ||
" resort_id = subset_df['resort_id'].values[0]\n", | ||
" appearances[str(contract_id)] = [resort_id] + activity" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"rows = []\n", | ||
"for r in list(appearances.values()):\n", | ||
" resort_id, activity = r[0], r[1:]\n", | ||
" row = [None] * 5\n", | ||
" row[-len(activity):] = [s for year, s in activity]\n", | ||
" rows.append([resort_id] + row)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df = pd.DataFrame(rows, columns=['resort_id', 'year_2015', 'year_2016', 'year_2017', 'year_2018', 'year_2019'])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"resort_id 0.000000\n", | ||
"year_2015 0.515846\n", | ||
"year_2016 0.205276\n", | ||
"year_2017 0.098678\n", | ||
"year_2018 0.048311\n", | ||
"year_2019 0.000000\n", | ||
"dtype: float64" | ||
] | ||
}, | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"df.isnull().sum() / df.shape[0]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df.fillna('missing', inplace=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"resort_id 57\n", | ||
"year_2015 4\n", | ||
"year_2016 4\n", | ||
"year_2017 4\n", | ||
"year_2018 4\n", | ||
"year_2019 3\n", | ||
"dtype: int64" | ||
] | ||
}, | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"df.nunique()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"X = df.drop(\"year_2019\", axis=1)\n", | ||
"y = df[\"year_2019\"]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[0, 1, 2, 3, 4]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"cat_features = list(range(0, X.shape[1]))\n", | ||
"print(cat_features)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from sklearn.model_selection import train_test_split\n", | ||
"\n", | ||
"\n", | ||
"X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.3, random_state=0)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"0:\tlearn: 0.9089395\ttest: 0.9088238\tbest: 0.9088238 (0)\ttotal: 83.9ms\tremaining: 755ms\n", | ||
"5:\tlearn: 0.6921539\ttest: 0.6930650\tbest: 0.6930650 (5)\ttotal: 219ms\tremaining: 146ms\n", | ||
"9:\tlearn: 0.6811982\ttest: 0.6819978\tbest: 0.6819978 (9)\ttotal: 319ms\tremaining: 0us\n", | ||
"\n", | ||
"bestTest = 0.6819978385\n", | ||
"bestIteration = 9\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"<catboost.core.CatBoostClassifier at 0x7f2c8c533390>" | ||
] | ||
}, | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"from catboost import CatBoostClassifier\n", | ||
"\n", | ||
"clf = CatBoostClassifier(iterations=10, verbose=5, learning_rate=0.5)\n", | ||
"clf.fit(X_train, y_train, cat_features=cat_features, eval_set=(X_val, y_val))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 15, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"y_prob = clf.predict_proba(data=X_val)\n", | ||
"y_pred = clf.predict(data=X_val)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 16, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Accuracy: 0.7176913425345044\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"from sklearn.metrics import accuracy_score\n", | ||
"\n", | ||
"accuracy = accuracy_score(y_val, y_pred)\n", | ||
"print('Accuracy:', accuracy)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 17, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"AUC: 0.8310445038554471\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"from sklearn.metrics import roc_auc_score\n", | ||
"\n", | ||
"auc = roc_auc_score(y_val, y_prob, multi_class=\"ovo\", average=\"macro\")\n", | ||
"print('AUC:', auc)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 18, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
" precision recall f1-score support\n", | ||
"\n", | ||
" active 0.75 0.87 0.80 11582\n", | ||
" cancelled 0.63 0.52 0.57 5562\n", | ||
" no-show 0.73 0.52 0.61 3578\n", | ||
"\n", | ||
" accuracy 0.72 20722\n", | ||
" macro avg 0.70 0.64 0.66 20722\n", | ||
"weighted avg 0.71 0.72 0.71 20722\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"from sklearn.metrics import classification_report\n", | ||
"\n", | ||
"print(classification_report(y_val, y_pred))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.7" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |