diff --git a/Polo Towers OCC & ADR & Rental RevPar & Time Series.ipynb b/Polo Towers OCC & ADR & Rental RevPar & Time Series.ipynb new file mode 100644 index 0000000..f22eecd --- /dev/null +++ b/Polo Towers OCC & ADR & Rental RevPar & Time Series.ipynb @@ -0,0 +1,18208 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analysis - Polo Towers OCC & ADR & Rental RevPar & Time Series\n", + "\n", + "Susan Li\n", + "\n", + "2020-02-06" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('2019_Polo_Towers.csv')\n", + "df = df[:365]\n", + "df['occ_rate'] = df['Sum of Occ'].str.replace('%', '').astype(int) / 100\n", + "df['ADR (USD)'] = df['Sum of ADR'].str.replace('$', '').astype(int)\n", + "df['Rental_RevPar (USD)'] = df['Sum of Rental RevPar'].str.replace('$', '').astype(int)\n", + "\n", + "df['Row Labels'] = pd.to_datetime(df['Row Labels'])\n", + "df = df.rename(columns={'Row Labels': 'Date'}) " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countmeanstdmin25%50%75%max
occ_rate365.00.8466300.1371050.410.770.890.961.0
ADR (USD)365.0122.84931544.64157460.0089.00110.00152.00367.0
Rental_RevPar (USD)365.062.66575344.3843484.0029.0051.0087.00323.0
\n", + "
" + ], + "text/plain": [ + " count mean std min 25% 50% \\\n", + "occ_rate 365.0 0.846630 0.137105 0.41 0.77 0.89 \n", + "ADR (USD) 365.0 122.849315 44.641574 60.00 89.00 110.00 \n", + "Rental_RevPar (USD) 365.0 62.665753 44.384348 4.00 29.00 51.00 \n", + "\n", + " 75% max \n", + "occ_rate 0.96 1.0 \n", + "ADR (USD) 152.00 367.0 \n", + "Rental_RevPar (USD) 87.00 323.0 " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe().T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Occupancy Rate Distribution" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "alignmentgroup": "True", + "bingroup": "x", + "histnorm": "probability density", + "hoverlabel": { + "namelength": 0 + }, + "hovertemplate": "occ_rate=%{x}
count=%{y}", + "legendgroup": "", + "marker": { + "color": "#636efa" + }, + "name": "", + "nbinsx": 50, + "offsetgroup": "", + "orientation": "v", + "showlegend": false, + "type": "histogram", + "x": [ + 0.86, + 0.79, + 0.77, + 0.7, + 0.64, + 0.63, + 0.83, + 0.98, + 0.97, + 0.86, + 0.62, + 0.5, + 0.43, + 0.42, + 0.41, + 0.49, + 0.63, + 0.91, + 0.98, + 0.98, + 0.92, + 0.93, + 0.99, + 0.99, + 0.97, + 0.9, + 0.7, + 0.5, + 0.47, + 0.49, + 0.58, + 0.78, + 0.94, + 0.95, + 0.75, + 0.62, + 0.63, + 0.67, + 0.78, + 0.85, + 0.6, + 0.49, + 0.5, + 0.59, + 0.69, + 0.94, + 0.98, + 0.96, + 0.9, + 0.98, + 0.97, + 0.88, + 0.89, + 0.85, + 0.71, + 0.61, + 0.57, + 0.62, + 0.68, + 0.85, + 0.98, + 0.74, + 0.53, + 0.5, + 0.52, + 0.62, + 0.81, + 0.92, + 0.78, + 0.7, + 0.75, + 0.8, + 0.93, + 0.94, + 0.94, + 0.91, + 0.77, + 0.74, + 0.87, + 0.91, + 0.99, + 0.99, + 0.91, + 0.81, + 0.89, + 0.87, + 0.89, + 0.97, + 0.97, + 0.85, + 0.7, + 0.69, + 0.69, + 0.82, + 0.93, + 0.97, + 0.93, + 0.83, + 0.83, + 0.85, + 0.87, + 0.94, + 1, + 0.79, + 0.68, + 0.7, + 0.76, + 0.84, + 0.98, + 0.93, + 0.73, + 0.69, + 0.77, + 0.9, + 0.97, + 0.99, + 0.98, + 0.91, + 0.79, + 0.78, + 0.76, + 0.83, + 0.94, + 0.96, + 0.88, + 0.87, + 0.97, + 0.94, + 0.84, + 0.82, + 0.81, + 0.65, + 0.62, + 0.71, + 0.85, + 0.93, + 0.95, + 0.97, + 0.95, + 0.9, + 0.76, + 0.69, + 0.74, + 0.88, + 1, + 0.98, + 0.75, + 0.64, + 0.69, + 0.85, + 0.94, + 0.98, + 0.93, + 0.9, + 0.86, + 0.86, + 0.91, + 0.95, + 0.96, + 0.91, + 0.84, + 0.85, + 0.8, + 0.89, + 0.96, + 0.97, + 0.94, + 0.88, + 0.86, + 0.89, + 0.95, + 0.97, + 0.97, + 0.97, + 0.97, + 0.94, + 0.93, + 0.96, + 0.99, + 0.96, + 0.94, + 0.88, + 0.87, + 0.97, + 1, + 1, + 0.98, + 0.9, + 0.92, + 0.89, + 0.9, + 0.95, + 0.96, + 0.99, + 0.92, + 0.85, + 0.86, + 0.93, + 0.95, + 0.98, + 0.99, + 0.95, + 0.89, + 0.96, + 0.96, + 1, + 0.97, + 0.96, + 0.98, + 1, + 0.98, + 0.88, + 0.92, + 0.98, + 0.99, + 0.91, + 0.81, + 0.89, + 0.98, + 0.99, + 0.97, + 0.98, + 0.94, + 0.84, + 0.84, + 0.77, + 0.81, + 0.93, + 0.9, + 0.72, + 0.62, + 0.63, + 0.68, + 0.74, + 0.89, + 0.89, + 0.7, + 0.56, + 0.57, + 0.54, + 0.67, + 0.9, + 0.99, + 0.97, + 0.65, + 0.58, + 0.59, + 0.7, + 0.89, + 0.94, + 0.85, + 0.77, + 0.8, + 0.77, + 0.84, + 0.98, + 0.98, + 0.85, + 0.77, + 0.78, + 0.78, + 0.85, + 0.99, + 1, + 0.95, + 0.97, + 0.94, + 0.86, + 0.9, + 0.97, + 0.97, + 0.82, + 0.72, + 0.73, + 0.78, + 0.86, + 0.96, + 0.99, + 0.91, + 0.78, + 0.78, + 0.78, + 0.86, + 0.98, + 0.98, + 0.96, + 0.89, + 0.93, + 0.99, + 0.99, + 1, + 0.99, + 0.95, + 0.9, + 0.97, + 0.93, + 0.97, + 0.99, + 0.99, + 0.91, + 0.85, + 0.82, + 0.75, + 0.85, + 0.96, + 1, + 0.94, + 0.9, + 0.98, + 0.99, + 0.98, + 0.97, + 0.99, + 0.93, + 0.75, + 0.69, + 0.74, + 0.9, + 0.96, + 1, + 0.78, + 0.61, + 0.55, + 0.53, + 0.58, + 0.67, + 0.82, + 0.83, + 0.73, + 0.74, + 0.88, + 0.97, + 0.92, + 0.82, + 0.8, + 0.86, + 0.92, + 0.99, + 0.99, + 0.96, + 0.97, + 0.92, + 0.83, + 0.91, + 0.94, + 0.96, + 0.97, + 0.92, + 0.77, + 0.63, + 0.61, + 0.56, + 0.61, + 0.74, + 0.84, + 0.88, + 0.89, + 0.88, + 0.91, + 0.88, + 0.93, + 0.95, + 0.92, + 0.92, + 0.96 + ], + "xaxis": "x", + "yaxis": "y" + } + ], + "layout": { + "barmode": "relative", + "height": 600, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 0.98 + ], + "title": { + "text": "occ_rate" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "count" + } + } + } + }, + "text/html": [ + "
\n", + " \n", + " \n", + "
\n", + " \n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import plotly.express as px\n", + "\n", + "fig = px.histogram(df, x=\"occ_rate\", histnorm='probability density', nbins=50)\n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "According to [Statista](https://www.statista.com/statistics/221046/hotel-occupany-rate-in-las-vegas/), the hotel occupancy rate in Las Vegas was 88.9 percent in 2019. The Polo Towers median occupancy rate was 89% in 2019. So, I think the hotel is doing a fine job." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Average Daily Rate Distribution" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "alignmentgroup": "True", + "bingroup": "x", + "histnorm": "probability density", + "hoverlabel": { + "namelength": 0 + }, + "hovertemplate": "ADR (USD)=%{x}
count=%{y}", + "legendgroup": "", + "marker": { + "color": "#636efa" + }, + "name": "", + "nbinsx": 50, + "offsetgroup": "", + "orientation": "v", + "showlegend": false, + "type": "histogram", + "x": [ + 108, + 92, + 87, + 105, + 102, + 112, + 187, + 357, + 367, + 246, + 197, + 155, + 126, + 133, + 93, + 81, + 95, + 137, + 148, + 111, + 99, + 136, + 157, + 127, + 133, + 118, + 121, + 111, + 111, + 111, + 126, + 160, + 171, + 122, + 93, + 95, + 101, + 100, + 122, + 110, + 78, + 71, + 81, + 87, + 148, + 186, + 207, + 157, + 88, + 120, + 98, + 96, + 134, + 127, + 77, + 76, + 75, + 88, + 78, + 170, + 152, + 156, + 89, + 106, + 106, + 115, + 133, + 122, + 96, + 101, + 101, + 114, + 120, + 175, + 172, + 107, + 108, + 96, + 129, + 133, + 166, + 175, + 108, + 104, + 87, + 205, + 110, + 169, + 134, + 92, + 90, + 100, + 118, + 113, + 173, + 174, + 114, + 114, + 120, + 120, + 122, + 115, + 132, + 91, + 147, + 154, + 141, + 141, + 155, + 150, + 118, + 79, + 84, + 80, + 90, + 160, + 188, + 80, + 78, + 70, + 72, + 78, + 170, + 170, + 92, + 73, + 74, + 70, + 76, + 150, + 156, + 112, + 81, + 90, + 126, + 141, + 264, + 263, + 158, + 130, + 135, + 143, + 90, + 195, + 240, + 160, + 149, + 87, + 81, + 82, + 135, + 136, + 80, + 69, + 78, + 72, + 82, + 146, + 150, + 85, + 74, + 87, + 78, + 84, + 170, + 176, + 133, + 79, + 93, + 76, + 91, + 146, + 140, + 92, + 88, + 74, + 84, + 85, + 137, + 152, + 72, + 66, + 76, + 147, + 186, + 203, + 199, + 95, + 96, + 93, + 98, + 96, + 160, + 160, + 115, + 97, + 101, + 107, + 110, + 152, + 144, + 85, + 83, + 88, + 93, + 105, + 160, + 160, + 146, + 117, + 116, + 125, + 127, + 137, + 137, + 94, + 93, + 76, + 97, + 88, + 179, + 173, + 86, + 82, + 88, + 96, + 103, + 152, + 153, + 91, + 78, + 90, + 87, + 98, + 150, + 156, + 81, + 82, + 84, + 87, + 88, + 178, + 218, + 161, + 144, + 76, + 84, + 86, + 146, + 155, + 92, + 60, + 74, + 70, + 82, + 165, + 190, + 96, + 90, + 103, + 97, + 96, + 207, + 214, + 137, + 99, + 94, + 85, + 110, + 156, + 165, + 84, + 82, + 82, + 89, + 93, + 151, + 168, + 94, + 79, + 100, + 97, + 102, + 149, + 157, + 92, + 79, + 80, + 80, + 98, + 150, + 170, + 88, + 78, + 75, + 79, + 93, + 154, + 150, + 84, + 85, + 90, + 94, + 103, + 162, + 177, + 106, + 104, + 100, + 98, + 105, + 165, + 154, + 94, + 74, + 88, + 89, + 82, + 135, + 138, + 84, + 78, + 80, + 81, + 102, + 123, + 119, + 97, + 98, + 126, + 121, + 193, + 204, + 186, + 158, + 102, + 109, + 112, + 151, + 159, + 165, + 89, + 101, + 92, + 93, + 91, + 137, + 141, + 141, + 152, + 171, + 159, + 170, + 197, + 180, + 170, + 168, + 170, + 170, + 186, + 264, + 244, + 202, + 201, + 292 + ], + "xaxis": "x", + "yaxis": "y" + } + ], + "layout": { + "barmode": "relative", + "height": 600, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 0.98 + ], + "title": { + "text": "ADR (USD)" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "count" + } + } + } + }, + "text/html": [ + "
\n", + " \n", + " \n", + "
\n", + " \n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = px.histogram(df, x=\"ADR (USD)\", histnorm='probability density', nbins=50)\n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again, according to [Statista](https://www.statista.com/statistics/221047/daily-room-rate-in-las-vegas/), the average cost per night of accommodation in Las Vegas reached 132.62 U.S. dollars in 2019. The Polo Towers' median ADR was at 110 U.S. dollars, given it is a 3.5-star hotel in Las Vegas." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Time series of Occupancy Rate" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "line": { + "color": "deepskyblue" + }, + "type": "scatter", + "x": [ + "2019-01-01T00:00:00", + "2019-01-02T00:00:00", + "2019-01-03T00:00:00", + "2019-01-04T00:00:00", + "2019-01-05T00:00:00", + "2019-01-06T00:00:00", + "2019-01-07T00:00:00", + "2019-01-08T00:00:00", + "2019-01-09T00:00:00", + "2019-01-10T00:00:00", + "2019-01-11T00:00:00", + "2019-01-12T00:00:00", + "2019-01-13T00:00:00", + "2019-01-14T00:00:00", + "2019-01-15T00:00:00", + "2019-01-16T00:00:00", + "2019-01-17T00:00:00", + "2019-01-18T00:00:00", + "2019-01-19T00:00:00", + "2019-01-20T00:00:00", + "2019-01-21T00:00:00", + "2019-01-22T00:00:00", + "2019-01-23T00:00:00", + "2019-01-24T00:00:00", + "2019-01-25T00:00:00", + "2019-01-26T00:00:00", + "2019-01-27T00:00:00", + "2019-01-28T00:00:00", + "2019-01-29T00:00:00", + "2019-01-30T00:00:00", + "2019-01-31T00:00:00", + "2019-02-01T00:00:00", + "2019-02-02T00:00:00", + "2019-02-03T00:00:00", + "2019-02-04T00:00:00", + "2019-02-05T00:00:00", + "2019-02-06T00:00:00", + "2019-02-07T00:00:00", + "2019-02-08T00:00:00", + "2019-02-09T00:00:00", + "2019-02-10T00:00:00", + "2019-02-11T00:00:00", + "2019-02-12T00:00:00", + "2019-02-13T00:00:00", + "2019-02-14T00:00:00", + "2019-02-15T00:00:00", + "2019-02-16T00:00:00", + "2019-02-17T00:00:00", + "2019-02-18T00:00:00", + "2019-02-19T00:00:00", + "2019-02-20T00:00:00", + "2019-02-21T00:00:00", + "2019-02-22T00:00:00", + "2019-02-23T00:00:00", + "2019-02-24T00:00:00", + "2019-02-25T00:00:00", + "2019-02-26T00:00:00", + "2019-02-27T00:00:00", + "2019-02-28T00:00:00", + "2019-03-01T00:00:00", + "2019-03-02T00:00:00", + "2019-03-03T00:00:00", + "2019-03-04T00:00:00", + "2019-03-05T00:00:00", + "2019-03-06T00:00:00", + "2019-03-07T00:00:00", + "2019-03-08T00:00:00", + "2019-03-09T00:00:00", + "2019-03-10T00:00:00", + "2019-03-11T00:00:00", + "2019-03-12T00:00:00", + "2019-03-13T00:00:00", + "2019-03-14T00:00:00", + "2019-03-15T00:00:00", + "2019-03-16T00:00:00", + "2019-03-17T00:00:00", + "2019-03-18T00:00:00", + "2019-03-19T00:00:00", + "2019-03-20T00:00:00", + "2019-03-21T00:00:00", + "2019-03-22T00:00:00", + "2019-03-23T00:00:00", + "2019-03-24T00:00:00", + "2019-03-25T00:00:00", + "2019-03-26T00:00:00", + "2019-03-27T00:00:00", + "2019-03-28T00:00:00", + "2019-03-29T00:00:00", + "2019-03-30T00:00:00", + "2019-03-31T00:00:00", + "2019-04-01T00:00:00", + "2019-04-02T00:00:00", + "2019-04-03T00:00:00", + "2019-04-04T00:00:00", + "2019-04-05T00:00:00", + "2019-04-06T00:00:00", + "2019-04-07T00:00:00", + "2019-04-08T00:00:00", + "2019-04-09T00:00:00", + "2019-04-10T00:00:00", + "2019-04-11T00:00:00", + "2019-04-12T00:00:00", + "2019-04-13T00:00:00", + "2019-04-14T00:00:00", + "2019-04-15T00:00:00", + "2019-04-16T00:00:00", + "2019-04-17T00:00:00", + "2019-04-18T00:00:00", + "2019-04-19T00:00:00", + "2019-04-20T00:00:00", + "2019-04-21T00:00:00", + "2019-04-22T00:00:00", + "2019-04-23T00:00:00", + "2019-04-24T00:00:00", + "2019-04-25T00:00:00", + "2019-04-26T00:00:00", + "2019-04-27T00:00:00", + "2019-04-28T00:00:00", + "2019-04-29T00:00:00", + "2019-04-30T00:00:00", + "2019-05-01T00:00:00", + "2019-05-02T00:00:00", + "2019-05-03T00:00:00", + "2019-05-04T00:00:00", + "2019-05-05T00:00:00", + "2019-05-06T00:00:00", + "2019-05-07T00:00:00", + "2019-05-08T00:00:00", + "2019-05-09T00:00:00", + "2019-05-10T00:00:00", + "2019-05-11T00:00:00", + "2019-05-12T00:00:00", + "2019-05-13T00:00:00", + "2019-05-14T00:00:00", + "2019-05-15T00:00:00", + "2019-05-16T00:00:00", + "2019-05-17T00:00:00", + "2019-05-18T00:00:00", + "2019-05-19T00:00:00", + "2019-05-20T00:00:00", + "2019-05-21T00:00:00", + "2019-05-22T00:00:00", + "2019-05-23T00:00:00", + "2019-05-24T00:00:00", + "2019-05-25T00:00:00", + "2019-05-26T00:00:00", + "2019-05-27T00:00:00", + "2019-05-28T00:00:00", + "2019-05-29T00:00:00", + "2019-05-30T00:00:00", + "2019-05-31T00:00:00", + "2019-06-01T00:00:00", + "2019-06-02T00:00:00", + "2019-06-03T00:00:00", + "2019-06-04T00:00:00", + "2019-06-05T00:00:00", + "2019-06-06T00:00:00", + "2019-06-07T00:00:00", + "2019-06-08T00:00:00", + "2019-06-09T00:00:00", + "2019-06-10T00:00:00", + "2019-06-11T00:00:00", + "2019-06-12T00:00:00", + "2019-06-13T00:00:00", + "2019-06-14T00:00:00", + "2019-06-15T00:00:00", + "2019-06-16T00:00:00", + "2019-06-17T00:00:00", + "2019-06-18T00:00:00", + "2019-06-19T00:00:00", + "2019-06-20T00:00:00", + "2019-06-21T00:00:00", + "2019-06-22T00:00:00", + "2019-06-23T00:00:00", + "2019-06-24T00:00:00", + "2019-06-25T00:00:00", + "2019-06-26T00:00:00", + "2019-06-27T00:00:00", + "2019-06-28T00:00:00", + "2019-06-29T00:00:00", + "2019-06-30T00:00:00", + "2019-07-01T00:00:00", + "2019-07-02T00:00:00", + "2019-07-03T00:00:00", + "2019-07-04T00:00:00", + "2019-07-05T00:00:00", + "2019-07-06T00:00:00", + "2019-07-07T00:00:00", + "2019-07-08T00:00:00", + "2019-07-09T00:00:00", + "2019-07-10T00:00:00", + "2019-07-11T00:00:00", + "2019-07-12T00:00:00", + "2019-07-13T00:00:00", + "2019-07-14T00:00:00", + "2019-07-15T00:00:00", + "2019-07-16T00:00:00", + "2019-07-17T00:00:00", + "2019-07-18T00:00:00", + "2019-07-19T00:00:00", + "2019-07-20T00:00:00", + "2019-07-21T00:00:00", + "2019-07-22T00:00:00", + "2019-07-23T00:00:00", + "2019-07-24T00:00:00", + "2019-07-25T00:00:00", + "2019-07-26T00:00:00", + "2019-07-27T00:00:00", + "2019-07-28T00:00:00", + "2019-07-29T00:00:00", + "2019-07-30T00:00:00", + "2019-07-31T00:00:00", + "2019-08-01T00:00:00", + "2019-08-02T00:00:00", + "2019-08-03T00:00:00", + "2019-08-04T00:00:00", + "2019-08-05T00:00:00", + "2019-08-06T00:00:00", + "2019-08-07T00:00:00", + "2019-08-08T00:00:00", + "2019-08-09T00:00:00", + "2019-08-10T00:00:00", + "2019-08-11T00:00:00", + "2019-08-12T00:00:00", + "2019-08-13T00:00:00", + "2019-08-14T00:00:00", + "2019-08-15T00:00:00", + "2019-08-16T00:00:00", + "2019-08-17T00:00:00", + "2019-08-18T00:00:00", + "2019-08-19T00:00:00", + "2019-08-20T00:00:00", + "2019-08-21T00:00:00", + "2019-08-22T00:00:00", + "2019-08-23T00:00:00", + "2019-08-24T00:00:00", + "2019-08-25T00:00:00", + "2019-08-26T00:00:00", + "2019-08-27T00:00:00", + "2019-08-28T00:00:00", + "2019-08-29T00:00:00", + "2019-08-30T00:00:00", + "2019-08-31T00:00:00", + "2019-09-01T00:00:00", + "2019-09-02T00:00:00", + "2019-09-03T00:00:00", + "2019-09-04T00:00:00", + "2019-09-05T00:00:00", + "2019-09-06T00:00:00", + "2019-09-07T00:00:00", + "2019-09-08T00:00:00", + "2019-09-09T00:00:00", + "2019-09-10T00:00:00", + "2019-09-11T00:00:00", + "2019-09-12T00:00:00", + "2019-09-13T00:00:00", + "2019-09-14T00:00:00", + "2019-09-15T00:00:00", + "2019-09-16T00:00:00", + "2019-09-17T00:00:00", + "2019-09-18T00:00:00", + "2019-09-19T00:00:00", + "2019-09-20T00:00:00", + "2019-09-21T00:00:00", + "2019-09-22T00:00:00", + "2019-09-23T00:00:00", + "2019-09-24T00:00:00", + "2019-09-25T00:00:00", + "2019-09-26T00:00:00", + "2019-09-27T00:00:00", + "2019-09-28T00:00:00", + "2019-09-29T00:00:00", + "2019-09-30T00:00:00", + "2019-10-01T00:00:00", + "2019-10-02T00:00:00", + "2019-10-03T00:00:00", + "2019-10-04T00:00:00", + "2019-10-05T00:00:00", + "2019-10-06T00:00:00", + "2019-10-07T00:00:00", + "2019-10-08T00:00:00", + "2019-10-09T00:00:00", + "2019-10-10T00:00:00", + "2019-10-11T00:00:00", + "2019-10-12T00:00:00", + "2019-10-13T00:00:00", + "2019-10-14T00:00:00", + "2019-10-15T00:00:00", + "2019-10-16T00:00:00", + "2019-10-17T00:00:00", + "2019-10-18T00:00:00", + "2019-10-19T00:00:00", + "2019-10-20T00:00:00", + "2019-10-21T00:00:00", + "2019-10-22T00:00:00", + "2019-10-23T00:00:00", + "2019-10-24T00:00:00", + "2019-10-25T00:00:00", + "2019-10-26T00:00:00", + "2019-10-27T00:00:00", + "2019-10-28T00:00:00", + "2019-10-29T00:00:00", + "2019-10-30T00:00:00", + "2019-10-31T00:00:00", + "2019-11-01T00:00:00", + "2019-11-02T00:00:00", + "2019-11-03T00:00:00", + "2019-11-04T00:00:00", + "2019-11-05T00:00:00", + "2019-11-06T00:00:00", + "2019-11-07T00:00:00", + "2019-11-08T00:00:00", + "2019-11-09T00:00:00", + "2019-11-10T00:00:00", + "2019-11-11T00:00:00", + "2019-11-12T00:00:00", + "2019-11-13T00:00:00", + "2019-11-14T00:00:00", + "2019-11-15T00:00:00", + "2019-11-16T00:00:00", + "2019-11-17T00:00:00", + "2019-11-18T00:00:00", + "2019-11-19T00:00:00", + "2019-11-20T00:00:00", + "2019-11-21T00:00:00", + "2019-11-22T00:00:00", + "2019-11-23T00:00:00", + "2019-11-24T00:00:00", + "2019-11-25T00:00:00", + "2019-11-26T00:00:00", + "2019-11-27T00:00:00", + "2019-11-28T00:00:00", + "2019-11-29T00:00:00", + "2019-11-30T00:00:00", + "2019-12-01T00:00:00", + "2019-12-02T00:00:00", + "2019-12-03T00:00:00", + "2019-12-04T00:00:00", + "2019-12-05T00:00:00", + "2019-12-06T00:00:00", + "2019-12-07T00:00:00", + "2019-12-08T00:00:00", + "2019-12-09T00:00:00", + "2019-12-10T00:00:00", + "2019-12-11T00:00:00", + "2019-12-12T00:00:00", + "2019-12-13T00:00:00", + "2019-12-14T00:00:00", + "2019-12-15T00:00:00", + "2019-12-16T00:00:00", + "2019-12-17T00:00:00", + "2019-12-18T00:00:00", + "2019-12-19T00:00:00", + "2019-12-20T00:00:00", + "2019-12-21T00:00:00", + "2019-12-22T00:00:00", + "2019-12-23T00:00:00", + "2019-12-24T00:00:00", + "2019-12-25T00:00:00", + "2019-12-26T00:00:00", + "2019-12-27T00:00:00", + "2019-12-28T00:00:00", + "2019-12-29T00:00:00", + "2019-12-30T00:00:00", + "2019-12-31T00:00:00" + ], + "y": [ + 0.86, + 0.79, + 0.77, + 0.7, + 0.64, + 0.63, + 0.83, + 0.98, + 0.97, + 0.86, + 0.62, + 0.5, + 0.43, + 0.42, + 0.41, + 0.49, + 0.63, + 0.91, + 0.98, + 0.98, + 0.92, + 0.93, + 0.99, + 0.99, + 0.97, + 0.9, + 0.7, + 0.5, + 0.47, + 0.49, + 0.58, + 0.78, + 0.94, + 0.95, + 0.75, + 0.62, + 0.63, + 0.67, + 0.78, + 0.85, + 0.6, + 0.49, + 0.5, + 0.59, + 0.69, + 0.94, + 0.98, + 0.96, + 0.9, + 0.98, + 0.97, + 0.88, + 0.89, + 0.85, + 0.71, + 0.61, + 0.57, + 0.62, + 0.68, + 0.85, + 0.98, + 0.74, + 0.53, + 0.5, + 0.52, + 0.62, + 0.81, + 0.92, + 0.78, + 0.7, + 0.75, + 0.8, + 0.93, + 0.94, + 0.94, + 0.91, + 0.77, + 0.74, + 0.87, + 0.91, + 0.99, + 0.99, + 0.91, + 0.81, + 0.89, + 0.87, + 0.89, + 0.97, + 0.97, + 0.85, + 0.7, + 0.69, + 0.69, + 0.82, + 0.93, + 0.97, + 0.93, + 0.83, + 0.83, + 0.85, + 0.87, + 0.94, + 1, + 0.79, + 0.68, + 0.7, + 0.76, + 0.84, + 0.98, + 0.93, + 0.73, + 0.69, + 0.77, + 0.9, + 0.97, + 0.99, + 0.98, + 0.91, + 0.79, + 0.78, + 0.76, + 0.83, + 0.94, + 0.96, + 0.88, + 0.87, + 0.97, + 0.94, + 0.84, + 0.82, + 0.81, + 0.65, + 0.62, + 0.71, + 0.85, + 0.93, + 0.95, + 0.97, + 0.95, + 0.9, + 0.76, + 0.69, + 0.74, + 0.88, + 1, + 0.98, + 0.75, + 0.64, + 0.69, + 0.85, + 0.94, + 0.98, + 0.93, + 0.9, + 0.86, + 0.86, + 0.91, + 0.95, + 0.96, + 0.91, + 0.84, + 0.85, + 0.8, + 0.89, + 0.96, + 0.97, + 0.94, + 0.88, + 0.86, + 0.89, + 0.95, + 0.97, + 0.97, + 0.97, + 0.97, + 0.94, + 0.93, + 0.96, + 0.99, + 0.96, + 0.94, + 0.88, + 0.87, + 0.97, + 1, + 1, + 0.98, + 0.9, + 0.92, + 0.89, + 0.9, + 0.95, + 0.96, + 0.99, + 0.92, + 0.85, + 0.86, + 0.93, + 0.95, + 0.98, + 0.99, + 0.95, + 0.89, + 0.96, + 0.96, + 1, + 0.97, + 0.96, + 0.98, + 1, + 0.98, + 0.88, + 0.92, + 0.98, + 0.99, + 0.91, + 0.81, + 0.89, + 0.98, + 0.99, + 0.97, + 0.98, + 0.94, + 0.84, + 0.84, + 0.77, + 0.81, + 0.93, + 0.9, + 0.72, + 0.62, + 0.63, + 0.68, + 0.74, + 0.89, + 0.89, + 0.7, + 0.56, + 0.57, + 0.54, + 0.67, + 0.9, + 0.99, + 0.97, + 0.65, + 0.58, + 0.59, + 0.7, + 0.89, + 0.94, + 0.85, + 0.77, + 0.8, + 0.77, + 0.84, + 0.98, + 0.98, + 0.85, + 0.77, + 0.78, + 0.78, + 0.85, + 0.99, + 1, + 0.95, + 0.97, + 0.94, + 0.86, + 0.9, + 0.97, + 0.97, + 0.82, + 0.72, + 0.73, + 0.78, + 0.86, + 0.96, + 0.99, + 0.91, + 0.78, + 0.78, + 0.78, + 0.86, + 0.98, + 0.98, + 0.96, + 0.89, + 0.93, + 0.99, + 0.99, + 1, + 0.99, + 0.95, + 0.9, + 0.97, + 0.93, + 0.97, + 0.99, + 0.99, + 0.91, + 0.85, + 0.82, + 0.75, + 0.85, + 0.96, + 1, + 0.94, + 0.9, + 0.98, + 0.99, + 0.98, + 0.97, + 0.99, + 0.93, + 0.75, + 0.69, + 0.74, + 0.9, + 0.96, + 1, + 0.78, + 0.61, + 0.55, + 0.53, + 0.58, + 0.67, + 0.82, + 0.83, + 0.73, + 0.74, + 0.88, + 0.97, + 0.92, + 0.82, + 0.8, + 0.86, + 0.92, + 0.99, + 0.99, + 0.96, + 0.97, + 0.92, + 0.83, + 0.91, + 0.94, + 0.96, + 0.97, + 0.92, + 0.77, + 0.63, + 0.61, + 0.56, + 0.61, + 0.74, + 0.84, + 0.88, + 0.89, + 0.88, + 0.91, + 0.88, + 0.93, + 0.95, + 0.92, + 0.92, + 0.96 + ] + } + ], + "layout": { + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Time Series of Occupancy with Rangeslider" + }, + "xaxis": { + "rangeslider": { + "visible": true + } + }, + "yaxis": { + "title": { + "text": "Occupancy %" + } + } + } + }, + "text/html": [ + "
\n", + " \n", + " \n", + "
\n", + " \n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import plotly.graph_objects as go\n", + "\n", + "fig = go.Figure()\n", + "fig.add_trace(go.Scatter(x=df.Date, y=df['occ_rate'], line_color='deepskyblue'))\n", + "\n", + "fig.update_layout(title_text='Time Series of Occupancy with Rangeslider', yaxis_title=\"Occupancy %\",\n", + " xaxis_rangeslider_visible=True)\n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Distinguishing patterns of occupancy rates can be relatively straightforward. \n", + "\n", + "*Observations*\n", + "\n", + "* The worst occupancy rate was 0.41%, it was on 2019-01-15. There were many days that occupancy reached 100%, Memorial weekend Saturday, 4th of July were among them. \n", + "\n", + "* Although the hotel reached 100% occupancy rate for the following dates, their ADR varied significantly, range from 105 to 240 U.S. dollars." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateSum of ADRSum of OccSum of Rental RevParocc_rateADR (USD)Rental_RevPar (USD)
1022019-04-13$132100%$1111.0132111
1442019-05-25$240100%$1991.0240199
1842019-07-04$186100%$1041.0186104
1852019-07-05$203100%$1451.0203145
2052019-07-25$105100%$651.010565
2092019-07-29$117100%$601.011760
2632019-09-21$214100%$1601.0214160
2902019-10-18$150100%$1271.0150127
3052019-11-02$177100%$1361.0177136
3192019-11-16$138100%$1161.0138116
\n", + "
" + ], + "text/plain": [ + " Date Sum of ADR Sum of Occ Sum of Rental RevPar occ_rate \\\n", + "102 2019-04-13 $132 100% $111 1.0 \n", + "144 2019-05-25 $240 100% $199 1.0 \n", + "184 2019-07-04 $186 100% $104 1.0 \n", + "185 2019-07-05 $203 100% $145 1.0 \n", + "205 2019-07-25 $105 100% $65 1.0 \n", + "209 2019-07-29 $117 100% $60 1.0 \n", + "263 2019-09-21 $214 100% $160 1.0 \n", + "290 2019-10-18 $150 100% $127 1.0 \n", + "305 2019-11-02 $177 100% $136 1.0 \n", + "319 2019-11-16 $138 100% $116 1.0 \n", + "\n", + " ADR (USD) Rental_RevPar (USD) \n", + "102 132 111 \n", + "144 240 199 \n", + "184 186 104 \n", + "185 203 145 \n", + "205 105 65 \n", + "209 117 60 \n", + "263 214 160 \n", + "290 150 127 \n", + "305 177 136 \n", + "319 138 116 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.loc[df['occ_rate'] == 1.0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Time series of Average Daily Rate" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "line": { + "color": "deepskyblue" + }, + "type": "scatter", + "x": [ + "2019-01-01T00:00:00", + "2019-01-02T00:00:00", + "2019-01-03T00:00:00", + "2019-01-04T00:00:00", + "2019-01-05T00:00:00", + "2019-01-06T00:00:00", + "2019-01-07T00:00:00", + "2019-01-08T00:00:00", + "2019-01-09T00:00:00", + "2019-01-10T00:00:00", + "2019-01-11T00:00:00", + "2019-01-12T00:00:00", + "2019-01-13T00:00:00", + "2019-01-14T00:00:00", + "2019-01-15T00:00:00", + "2019-01-16T00:00:00", + "2019-01-17T00:00:00", + "2019-01-18T00:00:00", + "2019-01-19T00:00:00", + "2019-01-20T00:00:00", + "2019-01-21T00:00:00", + "2019-01-22T00:00:00", + "2019-01-23T00:00:00", + "2019-01-24T00:00:00", + "2019-01-25T00:00:00", + "2019-01-26T00:00:00", + "2019-01-27T00:00:00", + "2019-01-28T00:00:00", + "2019-01-29T00:00:00", + "2019-01-30T00:00:00", + "2019-01-31T00:00:00", + "2019-02-01T00:00:00", + "2019-02-02T00:00:00", + "2019-02-03T00:00:00", + "2019-02-04T00:00:00", + "2019-02-05T00:00:00", + "2019-02-06T00:00:00", + "2019-02-07T00:00:00", + "2019-02-08T00:00:00", + "2019-02-09T00:00:00", + "2019-02-10T00:00:00", + "2019-02-11T00:00:00", + "2019-02-12T00:00:00", + "2019-02-13T00:00:00", + "2019-02-14T00:00:00", + "2019-02-15T00:00:00", + "2019-02-16T00:00:00", + "2019-02-17T00:00:00", + "2019-02-18T00:00:00", + "2019-02-19T00:00:00", + "2019-02-20T00:00:00", + "2019-02-21T00:00:00", + "2019-02-22T00:00:00", + "2019-02-23T00:00:00", + "2019-02-24T00:00:00", + "2019-02-25T00:00:00", + "2019-02-26T00:00:00", + "2019-02-27T00:00:00", + "2019-02-28T00:00:00", + "2019-03-01T00:00:00", + "2019-03-02T00:00:00", + "2019-03-03T00:00:00", + "2019-03-04T00:00:00", + "2019-03-05T00:00:00", + "2019-03-06T00:00:00", + "2019-03-07T00:00:00", + "2019-03-08T00:00:00", + "2019-03-09T00:00:00", + "2019-03-10T00:00:00", + "2019-03-11T00:00:00", + "2019-03-12T00:00:00", + "2019-03-13T00:00:00", + "2019-03-14T00:00:00", + "2019-03-15T00:00:00", + "2019-03-16T00:00:00", + "2019-03-17T00:00:00", + "2019-03-18T00:00:00", + "2019-03-19T00:00:00", + "2019-03-20T00:00:00", + "2019-03-21T00:00:00", + "2019-03-22T00:00:00", + "2019-03-23T00:00:00", + "2019-03-24T00:00:00", + "2019-03-25T00:00:00", + "2019-03-26T00:00:00", + "2019-03-27T00:00:00", + "2019-03-28T00:00:00", + "2019-03-29T00:00:00", + "2019-03-30T00:00:00", + "2019-03-31T00:00:00", + "2019-04-01T00:00:00", + "2019-04-02T00:00:00", + "2019-04-03T00:00:00", + "2019-04-04T00:00:00", + "2019-04-05T00:00:00", + "2019-04-06T00:00:00", + "2019-04-07T00:00:00", + "2019-04-08T00:00:00", + "2019-04-09T00:00:00", + "2019-04-10T00:00:00", + "2019-04-11T00:00:00", + "2019-04-12T00:00:00", + "2019-04-13T00:00:00", + "2019-04-14T00:00:00", + "2019-04-15T00:00:00", + "2019-04-16T00:00:00", + "2019-04-17T00:00:00", + "2019-04-18T00:00:00", + "2019-04-19T00:00:00", + "2019-04-20T00:00:00", + "2019-04-21T00:00:00", + "2019-04-22T00:00:00", + "2019-04-23T00:00:00", + "2019-04-24T00:00:00", + "2019-04-25T00:00:00", + "2019-04-26T00:00:00", + "2019-04-27T00:00:00", + "2019-04-28T00:00:00", + "2019-04-29T00:00:00", + "2019-04-30T00:00:00", + "2019-05-01T00:00:00", + "2019-05-02T00:00:00", + "2019-05-03T00:00:00", + "2019-05-04T00:00:00", + "2019-05-05T00:00:00", + "2019-05-06T00:00:00", + "2019-05-07T00:00:00", + "2019-05-08T00:00:00", + "2019-05-09T00:00:00", + "2019-05-10T00:00:00", + "2019-05-11T00:00:00", + "2019-05-12T00:00:00", + "2019-05-13T00:00:00", + "2019-05-14T00:00:00", + "2019-05-15T00:00:00", + "2019-05-16T00:00:00", + "2019-05-17T00:00:00", + "2019-05-18T00:00:00", + "2019-05-19T00:00:00", + "2019-05-20T00:00:00", + "2019-05-21T00:00:00", + "2019-05-22T00:00:00", + "2019-05-23T00:00:00", + "2019-05-24T00:00:00", + "2019-05-25T00:00:00", + "2019-05-26T00:00:00", + "2019-05-27T00:00:00", + "2019-05-28T00:00:00", + "2019-05-29T00:00:00", + "2019-05-30T00:00:00", + "2019-05-31T00:00:00", + "2019-06-01T00:00:00", + "2019-06-02T00:00:00", + "2019-06-03T00:00:00", + "2019-06-04T00:00:00", + "2019-06-05T00:00:00", + "2019-06-06T00:00:00", + "2019-06-07T00:00:00", + "2019-06-08T00:00:00", + "2019-06-09T00:00:00", + "2019-06-10T00:00:00", + "2019-06-11T00:00:00", + "2019-06-12T00:00:00", + "2019-06-13T00:00:00", + "2019-06-14T00:00:00", + "2019-06-15T00:00:00", + "2019-06-16T00:00:00", + "2019-06-17T00:00:00", + "2019-06-18T00:00:00", + "2019-06-19T00:00:00", + "2019-06-20T00:00:00", + "2019-06-21T00:00:00", + "2019-06-22T00:00:00", + "2019-06-23T00:00:00", + "2019-06-24T00:00:00", + "2019-06-25T00:00:00", + "2019-06-26T00:00:00", + "2019-06-27T00:00:00", + "2019-06-28T00:00:00", + "2019-06-29T00:00:00", + "2019-06-30T00:00:00", + "2019-07-01T00:00:00", + "2019-07-02T00:00:00", + "2019-07-03T00:00:00", + "2019-07-04T00:00:00", + "2019-07-05T00:00:00", + "2019-07-06T00:00:00", + "2019-07-07T00:00:00", + "2019-07-08T00:00:00", + "2019-07-09T00:00:00", + "2019-07-10T00:00:00", + "2019-07-11T00:00:00", + "2019-07-12T00:00:00", + "2019-07-13T00:00:00", + "2019-07-14T00:00:00", + "2019-07-15T00:00:00", + "2019-07-16T00:00:00", + "2019-07-17T00:00:00", + "2019-07-18T00:00:00", + "2019-07-19T00:00:00", + "2019-07-20T00:00:00", + "2019-07-21T00:00:00", + "2019-07-22T00:00:00", + "2019-07-23T00:00:00", + "2019-07-24T00:00:00", + "2019-07-25T00:00:00", + "2019-07-26T00:00:00", + "2019-07-27T00:00:00", + "2019-07-28T00:00:00", + "2019-07-29T00:00:00", + "2019-07-30T00:00:00", + "2019-07-31T00:00:00", + "2019-08-01T00:00:00", + "2019-08-02T00:00:00", + "2019-08-03T00:00:00", + "2019-08-04T00:00:00", + "2019-08-05T00:00:00", + "2019-08-06T00:00:00", + "2019-08-07T00:00:00", + "2019-08-08T00:00:00", + "2019-08-09T00:00:00", + "2019-08-10T00:00:00", + "2019-08-11T00:00:00", + "2019-08-12T00:00:00", + "2019-08-13T00:00:00", + "2019-08-14T00:00:00", + "2019-08-15T00:00:00", + "2019-08-16T00:00:00", + "2019-08-17T00:00:00", + "2019-08-18T00:00:00", + "2019-08-19T00:00:00", + "2019-08-20T00:00:00", + "2019-08-21T00:00:00", + "2019-08-22T00:00:00", + "2019-08-23T00:00:00", + "2019-08-24T00:00:00", + "2019-08-25T00:00:00", + "2019-08-26T00:00:00", + "2019-08-27T00:00:00", + "2019-08-28T00:00:00", + "2019-08-29T00:00:00", + "2019-08-30T00:00:00", + "2019-08-31T00:00:00", + "2019-09-01T00:00:00", + "2019-09-02T00:00:00", + "2019-09-03T00:00:00", + "2019-09-04T00:00:00", + "2019-09-05T00:00:00", + "2019-09-06T00:00:00", + "2019-09-07T00:00:00", + "2019-09-08T00:00:00", + "2019-09-09T00:00:00", + "2019-09-10T00:00:00", + "2019-09-11T00:00:00", + "2019-09-12T00:00:00", + "2019-09-13T00:00:00", + "2019-09-14T00:00:00", + "2019-09-15T00:00:00", + "2019-09-16T00:00:00", + "2019-09-17T00:00:00", + "2019-09-18T00:00:00", + "2019-09-19T00:00:00", + "2019-09-20T00:00:00", + "2019-09-21T00:00:00", + "2019-09-22T00:00:00", + "2019-09-23T00:00:00", + "2019-09-24T00:00:00", + "2019-09-25T00:00:00", + "2019-09-26T00:00:00", + "2019-09-27T00:00:00", + "2019-09-28T00:00:00", + "2019-09-29T00:00:00", + "2019-09-30T00:00:00", + "2019-10-01T00:00:00", + "2019-10-02T00:00:00", + "2019-10-03T00:00:00", + "2019-10-04T00:00:00", + "2019-10-05T00:00:00", + "2019-10-06T00:00:00", + "2019-10-07T00:00:00", + "2019-10-08T00:00:00", + "2019-10-09T00:00:00", + "2019-10-10T00:00:00", + "2019-10-11T00:00:00", + "2019-10-12T00:00:00", + "2019-10-13T00:00:00", + "2019-10-14T00:00:00", + "2019-10-15T00:00:00", + "2019-10-16T00:00:00", + "2019-10-17T00:00:00", + "2019-10-18T00:00:00", + "2019-10-19T00:00:00", + "2019-10-20T00:00:00", + "2019-10-21T00:00:00", + "2019-10-22T00:00:00", + "2019-10-23T00:00:00", + "2019-10-24T00:00:00", + "2019-10-25T00:00:00", + "2019-10-26T00:00:00", + "2019-10-27T00:00:00", + "2019-10-28T00:00:00", + "2019-10-29T00:00:00", + "2019-10-30T00:00:00", + "2019-10-31T00:00:00", + "2019-11-01T00:00:00", + "2019-11-02T00:00:00", + "2019-11-03T00:00:00", + "2019-11-04T00:00:00", + "2019-11-05T00:00:00", + "2019-11-06T00:00:00", + "2019-11-07T00:00:00", + "2019-11-08T00:00:00", + "2019-11-09T00:00:00", + "2019-11-10T00:00:00", + "2019-11-11T00:00:00", + "2019-11-12T00:00:00", + "2019-11-13T00:00:00", + "2019-11-14T00:00:00", + "2019-11-15T00:00:00", + "2019-11-16T00:00:00", + "2019-11-17T00:00:00", + "2019-11-18T00:00:00", + "2019-11-19T00:00:00", + "2019-11-20T00:00:00", + "2019-11-21T00:00:00", + "2019-11-22T00:00:00", + "2019-11-23T00:00:00", + "2019-11-24T00:00:00", + "2019-11-25T00:00:00", + "2019-11-26T00:00:00", + "2019-11-27T00:00:00", + "2019-11-28T00:00:00", + "2019-11-29T00:00:00", + "2019-11-30T00:00:00", + "2019-12-01T00:00:00", + "2019-12-02T00:00:00", + "2019-12-03T00:00:00", + "2019-12-04T00:00:00", + "2019-12-05T00:00:00", + "2019-12-06T00:00:00", + "2019-12-07T00:00:00", + "2019-12-08T00:00:00", + "2019-12-09T00:00:00", + "2019-12-10T00:00:00", + "2019-12-11T00:00:00", + "2019-12-12T00:00:00", + "2019-12-13T00:00:00", + "2019-12-14T00:00:00", + "2019-12-15T00:00:00", + "2019-12-16T00:00:00", + "2019-12-17T00:00:00", + "2019-12-18T00:00:00", + "2019-12-19T00:00:00", + "2019-12-20T00:00:00", + "2019-12-21T00:00:00", + "2019-12-22T00:00:00", + "2019-12-23T00:00:00", + "2019-12-24T00:00:00", + "2019-12-25T00:00:00", + "2019-12-26T00:00:00", + "2019-12-27T00:00:00", + "2019-12-28T00:00:00", + "2019-12-29T00:00:00", + "2019-12-30T00:00:00", + "2019-12-31T00:00:00" + ], + "y": [ + 108, + 92, + 87, + 105, + 102, + 112, + 187, + 357, + 367, + 246, + 197, + 155, + 126, + 133, + 93, + 81, + 95, + 137, + 148, + 111, + 99, + 136, + 157, + 127, + 133, + 118, + 121, + 111, + 111, + 111, + 126, + 160, + 171, + 122, + 93, + 95, + 101, + 100, + 122, + 110, + 78, + 71, + 81, + 87, + 148, + 186, + 207, + 157, + 88, + 120, + 98, + 96, + 134, + 127, + 77, + 76, + 75, + 88, + 78, + 170, + 152, + 156, + 89, + 106, + 106, + 115, + 133, + 122, + 96, + 101, + 101, + 114, + 120, + 175, + 172, + 107, + 108, + 96, + 129, + 133, + 166, + 175, + 108, + 104, + 87, + 205, + 110, + 169, + 134, + 92, + 90, + 100, + 118, + 113, + 173, + 174, + 114, + 114, + 120, + 120, + 122, + 115, + 132, + 91, + 147, + 154, + 141, + 141, + 155, + 150, + 118, + 79, + 84, + 80, + 90, + 160, + 188, + 80, + 78, + 70, + 72, + 78, + 170, + 170, + 92, + 73, + 74, + 70, + 76, + 150, + 156, + 112, + 81, + 90, + 126, + 141, + 264, + 263, + 158, + 130, + 135, + 143, + 90, + 195, + 240, + 160, + 149, + 87, + 81, + 82, + 135, + 136, + 80, + 69, + 78, + 72, + 82, + 146, + 150, + 85, + 74, + 87, + 78, + 84, + 170, + 176, + 133, + 79, + 93, + 76, + 91, + 146, + 140, + 92, + 88, + 74, + 84, + 85, + 137, + 152, + 72, + 66, + 76, + 147, + 186, + 203, + 199, + 95, + 96, + 93, + 98, + 96, + 160, + 160, + 115, + 97, + 101, + 107, + 110, + 152, + 144, + 85, + 83, + 88, + 93, + 105, + 160, + 160, + 146, + 117, + 116, + 125, + 127, + 137, + 137, + 94, + 93, + 76, + 97, + 88, + 179, + 173, + 86, + 82, + 88, + 96, + 103, + 152, + 153, + 91, + 78, + 90, + 87, + 98, + 150, + 156, + 81, + 82, + 84, + 87, + 88, + 178, + 218, + 161, + 144, + 76, + 84, + 86, + 146, + 155, + 92, + 60, + 74, + 70, + 82, + 165, + 190, + 96, + 90, + 103, + 97, + 96, + 207, + 214, + 137, + 99, + 94, + 85, + 110, + 156, + 165, + 84, + 82, + 82, + 89, + 93, + 151, + 168, + 94, + 79, + 100, + 97, + 102, + 149, + 157, + 92, + 79, + 80, + 80, + 98, + 150, + 170, + 88, + 78, + 75, + 79, + 93, + 154, + 150, + 84, + 85, + 90, + 94, + 103, + 162, + 177, + 106, + 104, + 100, + 98, + 105, + 165, + 154, + 94, + 74, + 88, + 89, + 82, + 135, + 138, + 84, + 78, + 80, + 81, + 102, + 123, + 119, + 97, + 98, + 126, + 121, + 193, + 204, + 186, + 158, + 102, + 109, + 112, + 151, + 159, + 165, + 89, + 101, + 92, + 93, + 91, + 137, + 141, + 141, + 152, + 171, + 159, + 170, + 197, + 180, + 170, + 168, + 170, + 170, + 186, + 264, + 244, + 202, + 201, + 292 + ] + } + ], + "layout": { + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Time Series of ADR with Rangeslider" + }, + "xaxis": { + "rangeslider": { + "visible": true + } + }, + "yaxis": { + "title": { + "text": "ADR (USD)" + } + } + } + }, + "text/html": [ + "
\n", + " \n", + " \n", + "
\n", + " \n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = go.Figure()\n", + "fig.add_trace(go.Scatter(x=df.Date, y=df['ADR (USD)'], line_color='deepskyblue'))\n", + "\n", + "fig.update_layout(title_text='Time Series of ADR with Rangeslider', yaxis_title=\"ADR (USD)\",\n", + " xaxis_rangeslider_visible=True)\n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Observation*\n", + "\n", + "* 2019-01-09 had the highest ADR at 367 U.S. dollars, no any other days were even come to close to it.\n", + "* 2019-09-09 had the lowest ADR at 60 U.S. dollars." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Average Occupancy by Month" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "alignmentgroup": "True", + "customdata": [ + [ + 0.7367741935483869 + ], + [ + 0.7635714285714287 + ], + [ + 0.8274193548387095 + ], + [ + 0.8413333333333333 + ], + [ + 0.840967741935484 + ], + [ + 0.923 + ], + [ + 0.9425806451612903 + ], + [ + 0.8241935483870966 + ], + [ + 0.8476666666666665 + ], + [ + 0.9038709677419353 + ], + [ + 0.837 + ], + [ + 0.8651612903225806 + ] + ], + "hoverlabel": { + "namelength": 0 + }, + "hovertemplate": "month=%{x}
occ_rate=%{marker.color}", + "legendgroup": "", + "marker": { + "color": [ + 0.7367741935483869, + 0.7635714285714287, + 0.8274193548387095, + 0.8413333333333333, + 0.840967741935484, + 0.923, + 0.9425806451612903, + 0.8241935483870966, + 0.8476666666666665, + 0.9038709677419353, + 0.837, + 0.8651612903225806 + ], + "coloraxis": "coloraxis" + }, + "name": "", + "offsetgroup": "", + "orientation": "v", + "showlegend": false, + "textposition": "auto", + "type": "bar", + "x": [ + "Jan", + "Feb", + "Mar", + "Apr", + "May", + "Jun", + "Jul", + "Aug", + "Sep", + "Oct", + "Nov", + "Dec" + ], + "xaxis": "x", + "y": [ + 0.7367741935483869, + 0.7635714285714287, + 0.8274193548387095, + 0.8413333333333333, + 0.840967741935484, + 0.923, + 0.9425806451612903, + 0.8241935483870966, + 0.8476666666666665, + 0.9038709677419353, + 0.837, + 0.8651612903225806 + ], + "yaxis": "y" + } + ], + "layout": { + "barmode": "relative", + "coloraxis": { + "colorbar": { + "title": { + "text": "occ_rate" + } + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "height": 400, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Monthly Average Occupancy" + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 0.98 + ], + "title": { + "text": "month" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "Occupancy %" + } + } + } + }, + "text/html": [ + "
\n", + " \n", + " \n", + "
\n", + " \n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df['month'] = df['Date'].dt.strftime('%b')\n", + "df['day_of_week'] = df['Date'].dt.day_name()\n", + "\n", + "month_occ = df.groupby('month')['occ_rate'].mean().reset_index()\n", + "months = [\"Jan\", \"Feb\", \"Mar\", \"Apr\", \"May\", \"Jun\", \n", + " \"Jul\", \"Aug\", \"Sep\", \"Oct\", \"Nov\", \"Dec\"]\n", + "month_occ['month'] = pd.Categorical(month_occ['month'], categories=months, ordered=True)\n", + "month_occ.sort_values(by='month', inplace=True)\n", + "\n", + "fig = px.bar(month_occ, x='month', y='occ_rate',\n", + " hover_data=['occ_rate'], color='occ_rate', labels={'Occupancy rate'}, height=400)\n", + "fig.update_layout(title_text='Monthly Average Occupancy', yaxis_title=\"Occupancy %\")\n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Observations*\n", + "\n", + "June and July had the highest average occupancy rates, followed by October, January and February had the lowest average occupancy rate." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Average ADR by Month" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "alignmentgroup": "True", + "customdata": [ + [ + 141.58064516129033 + ], + [ + 112.35714285714286 + ], + [ + 127.45161290322581 + ], + [ + 120.36666666666666 + ], + [ + 130.41935483870967 + ], + [ + 103.63333333333334 + ], + [ + 121.90322580645162 + ], + [ + 113.83870967741936 + ], + [ + 116.66666666666667 + ], + [ + 105.90322580645162 + ], + [ + 118.76666666666667 + ], + [ + 159.25806451612902 + ] + ], + "hoverlabel": { + "namelength": 0 + }, + "hovertemplate": "month=%{x}
ADR (USD)=%{marker.color}", + "legendgroup": "", + "marker": { + "color": [ + 141.58064516129033, + 112.35714285714286, + 127.45161290322581, + 120.36666666666666, + 130.41935483870967, + 103.63333333333334, + 121.90322580645162, + 113.83870967741936, + 116.66666666666667, + 105.90322580645162, + 118.76666666666667, + 159.25806451612902 + ], + "coloraxis": "coloraxis" + }, + "name": "", + "offsetgroup": "", + "orientation": "v", + "showlegend": false, + "textposition": "auto", + "type": "bar", + "x": [ + "Jan", + "Feb", + "Mar", + "Apr", + "May", + "Jun", + "Jul", + "Aug", + "Sep", + "Oct", + "Nov", + "Dec" + ], + "xaxis": "x", + "y": [ + 141.58064516129033, + 112.35714285714286, + 127.45161290322581, + 120.36666666666666, + 130.41935483870967, + 103.63333333333334, + 121.90322580645162, + 113.83870967741936, + 116.66666666666667, + 105.90322580645162, + 118.76666666666667, + 159.25806451612902 + ], + "yaxis": "y" + } + ], + "layout": { + "barmode": "relative", + "coloraxis": { + "colorbar": { + "title": { + "text": "ADR (USD)" + } + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "height": 400, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Monthly Average ADR" + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 0.98 + ], + "title": { + "text": "month" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "ADR (USD)" + } + } + } + }, + "text/html": [ + "
\n", + " \n", + " \n", + "
\n", + " \n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "month_adr = df.groupby('month')['ADR (USD)'].mean().reset_index()\n", + "months = [\"Jan\", \"Feb\", \"Mar\", \"Apr\", \"May\", \"Jun\", \n", + " \"Jul\", \"Aug\", \"Sep\", \"Oct\", \"Nov\", \"Dec\"]\n", + "month_adr['month'] = pd.Categorical(month_adr['month'], categories=months, ordered=True)\n", + "month_adr.sort_values(by='month', inplace=True)\n", + "\n", + "fig = px.bar(month_adr, x='month', y='ADR (USD)',\n", + " hover_data=['ADR (USD)'], color='ADR (USD)',\n", + " labels={'ADR (USD)'}, height=400)\n", + "fig.update_layout(title_text='Monthly Average ADR', yaxis_title=\"ADR (USD)\")\n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Observation*\n", + "\n", + "* December had the highest average ADR, and June and October had the lowest average ADR. \n", + "\n", + "* Remember, June July and October had the highest occupancy rates. It seems that the hotel sacrificed rate for occupancy in the summer months as well as October. \n", + "\n", + "* December should be one of the best months in the year, for both average occupancy rate and average ADR; February should be one of the worst months for average occupancy rate and average ADR." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Average Occupancy rate by week" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "alignmentgroup": "True", + "customdata": [ + [ + 0.7776923076923077 + ], + [ + 0.7852830188679245 + ], + [ + 0.7998076923076923 + ], + [ + 0.8503846153846154 + ], + [ + 0.9194230769230768 + ], + [ + 0.9369230769230769 + ], + [ + 0.8580769230769232 + ] + ], + "hoverlabel": { + "namelength": 0 + }, + "hovertemplate": "day_of_week=%{x}
occ_rate=%{marker.color}", + "legendgroup": "", + "marker": { + "color": [ + 0.7776923076923077, + 0.7852830188679245, + 0.7998076923076923, + 0.8503846153846154, + 0.9194230769230768, + 0.9369230769230769, + 0.8580769230769232 + ], + "coloraxis": "coloraxis" + }, + "name": "", + "offsetgroup": "", + "orientation": "v", + "showlegend": false, + "textposition": "auto", + "type": "bar", + "x": [ + "Monday", + "Tuesday", + "Wednesday", + "Thursday", + "Friday", + "Saturday", + "Sunday" + ], + "xaxis": "x", + "y": [ + 0.7776923076923077, + 0.7852830188679245, + 0.7998076923076923, + 0.8503846153846154, + 0.9194230769230768, + 0.9369230769230769, + 0.8580769230769232 + ], + "yaxis": "y" + } + ], + "layout": { + "barmode": "relative", + "coloraxis": { + "colorbar": { + "title": { + "text": "occ_rate" + } + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "height": 400, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Weekly Average Occupancy Rate" + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 0.98 + ], + "title": { + "text": "day_of_week" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "Occupancy %" + } + } + } + }, + "text/html": [ + "
\n", + " \n", + " \n", + "
\n", + " \n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "weekly_occ = df.groupby('day_of_week')['occ_rate'].mean().reset_index()\n", + "weekly_occ['day_of_week'] = pd.Categorical(weekly_occ['day_of_week'], categories=\n", + " ['Monday','Tuesday','Wednesday','Thursday','Friday','Saturday', 'Sunday'],\n", + " ordered=True)\n", + "weekly_occ.sort_values(by='day_of_week', inplace=True)\n", + "\n", + "fig = px.bar(weekly_occ, x='day_of_week', y='occ_rate',\n", + " hover_data=['occ_rate'], color='occ_rate',\n", + " labels={'Occupancy rate'}, height=400)\n", + "fig.update_layout(title_text='Weekly Average Occupancy Rate', yaxis_title=\"Occupancy %\")\n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Average ADR by week" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "alignmentgroup": "True", + "customdata": [ + [ + 99.59615384615384 + ], + [ + 106.15094339622641 + ], + [ + 108.3076923076923 + ], + [ + 111.53846153846153 + ], + [ + 161.5 + ], + [ + 163.32692307692307 + ], + [ + 109.84615384615384 + ] + ], + "hoverlabel": { + "namelength": 0 + }, + "hovertemplate": "day_of_week=%{x}
ADR (USD)=%{marker.color}", + "legendgroup": "", + "marker": { + "color": [ + 99.59615384615384, + 106.15094339622641, + 108.3076923076923, + 111.53846153846153, + 161.5, + 163.32692307692307, + 109.84615384615384 + ], + "coloraxis": "coloraxis" + }, + "name": "", + "offsetgroup": "", + "orientation": "v", + "showlegend": false, + "textposition": "auto", + "type": "bar", + "x": [ + "Monday", + "Tuesday", + "Wednesday", + "Thursday", + "Friday", + "Saturday", + "Sunday" + ], + "xaxis": "x", + "y": [ + 99.59615384615384, + 106.15094339622641, + 108.3076923076923, + 111.53846153846153, + 161.5, + 163.32692307692307, + 109.84615384615384 + ], + "yaxis": "y" + } + ], + "layout": { + "barmode": "relative", + "coloraxis": { + "colorbar": { + "title": { + "text": "ADR (USD)" + } + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "height": 400, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Weekly Average ADR" + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 0.98 + ], + "title": { + "text": "day_of_week" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "ADR (USD)" + } + } + } + }, + "text/html": [ + "
\n", + " \n", + " \n", + "
\n", + " \n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "weekly_adr = df.groupby('day_of_week')['ADR (USD)'].mean().reset_index()\n", + "weekly_adr['day_of_week'] = pd.Categorical(weekly_adr['day_of_week'], categories=\n", + " ['Monday','Tuesday','Wednesday','Thursday','Friday','Saturday', 'Sunday'],\n", + " ordered=True)\n", + "weekly_adr.sort_values(by='day_of_week', inplace=True)\n", + "\n", + "fig = px.bar(weekly_adr, x='day_of_week', y='ADR (USD)',\n", + " hover_data=['ADR (USD)'], color='ADR (USD)',\n", + " labels={'ADR (USD)'}, height=400)\n", + "fig.update_layout(title_text='Weekly Average ADR', yaxis_title=\"ADR (USD)\")\n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Observation*\n", + "\n", + "* Friday and Saturday had the highest average occupancy rates, as well as the highest ADR. Apparently, the hotel is catered to leisure travelers.\n", + "* There was a rather large gap on ADR between weekends and weekdays." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "RevPAR should be calculated by multiplying average daily rate (ADR) by occupancy rate. But it is not the case here. So I want to see how they are correlated." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Average ADR vs. Average Rental RevPar by month" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "marker": { + "color": "indianred" + }, + "name": "ADR", + "type": "bar", + "x": [ + "Jan", + "Feb", + "Mar", + "Apr", + "May", + "Jun", + "Jul", + "Aug", + "Sep", + "Oct", + "Nov", + "Dec" + ], + "y": [ + 141.58064516129033, + 112.35714285714286, + 127.45161290322581, + 120.36666666666666, + 130.41935483870967, + 103.63333333333334, + 121.90322580645162, + 113.83870967741936, + 116.66666666666667, + 105.90322580645162, + 118.76666666666667, + 159.25806451612902 + ] + }, + { + "marker": { + "color": "lightsalmon" + }, + "name": "Rental RevPar", + "type": "bar", + "x": [ + "Jan", + "Feb", + "Mar", + "Apr", + "May", + "Jun", + "Jul", + "Aug", + "Sep", + "Oct", + "Nov", + "Dec" + ], + "y": [ + 70.70967741935483, + 49.5, + 63.61290322580645, + 60.233333333333334, + 67.87096774193549, + 60.6, + 71.90322580645162, + 55.58064516129032, + 65.2, + 66.16129032258064, + 57.233333333333334, + 61.87096774193548 + ] + } + ], + "layout": { + "barmode": "group", + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Monthly Average ADR vs. Average Rental RevPar (USD)" + }, + "xaxis": { + "tickangle": -45 + } + } + }, + "text/html": [ + "
\n", + " \n", + " \n", + "
\n", + " \n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "monthly_adr_revpar = df.groupby('month')['ADR (USD)', 'Rental_RevPar (USD)'].mean().reset_index()\n", + "months = [\"Jan\", \"Feb\", \"Mar\", \"Apr\", \"May\", \"Jun\", \n", + " \"Jul\", \"Aug\", \"Sep\", \"Oct\", \"Nov\", \"Dec\"]\n", + "monthly_adr_revpar['month'] = pd.Categorical(monthly_adr_revpar['month'], categories=months, ordered=True)\n", + "monthly_adr_revpar.sort_values(by='month', inplace=True)\n", + "\n", + "fig = go.Figure()\n", + "fig.add_trace(go.Bar(\n", + " x=monthly_adr_revpar['month'],\n", + " y=monthly_adr_revpar['ADR (USD)'],\n", + " name='ADR',\n", + " marker_color='indianred'\n", + "))\n", + "fig.add_trace(go.Bar(\n", + " x=monthly_adr_revpar['month'],\n", + " y=monthly_adr_revpar['Rental_RevPar (USD)'],\n", + " name='Rental RevPar',\n", + " marker_color='lightsalmon'\n", + "))\n", + "\n", + "fig.update_layout(barmode='group', xaxis_tickangle=-45, title_text='Monthly Average ADR vs. Average Rental RevPar (USD)')\n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Observations*\n", + "\n", + "* If you remember, December was the best in terms of occupancy and ADR, however, when comes to Rental RevPar, December is among the lowest. \n", + "\n", + "* February is a tough month for everything, occupancy, ADR & Rental RevPar." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Average ADR vs. Average Rental RevPar by week" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "marker": { + "color": "indianred" + }, + "name": "ADR", + "type": "bar", + "x": [ + "Monday", + "Tuesday", + "Wednesday", + "Thursday", + "Friday", + "Saturday", + "Sunday" + ], + "y": [ + 99.59615384615384, + 106.15094339622641, + 108.3076923076923, + 111.53846153846153, + 161.5, + 163.32692307692307, + 109.84615384615384 + ] + }, + { + "marker": { + "color": "lightsalmon" + }, + "name": "Rental RevPar", + "type": "bar", + "x": [ + "Monday", + "Tuesday", + "Wednesday", + "Thursday", + "Friday", + "Saturday", + "Sunday" + ], + "y": [ + 38.42307692307692, + 46.37735849056604, + 47.61538461538461, + 50.63461538461539, + 96.65384615384616, + 109.07692307692308, + 50.19230769230769 + ] + } + ], + "layout": { + "barmode": "group", + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Weekly Average ADR vs. Average Rental RevPar (USD)" + }, + "xaxis": { + "tickangle": -45 + } + } + }, + "text/html": [ + "
\n", + " \n", + " \n", + "
\n", + " \n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "weekly_adr_revpar = df.groupby('day_of_week')['ADR (USD)', 'Rental_RevPar (USD)'].mean().reset_index()\n", + "weekly_adr_revpar['day_of_week'] = pd.Categorical(weekly_adr_revpar['day_of_week'], categories=\n", + " ['Monday','Tuesday','Wednesday','Thursday','Friday','Saturday', 'Sunday'],\n", + " ordered=True)\n", + "weekly_adr_revpar.sort_values(by='day_of_week', inplace=True)\n", + "\n", + "fig = go.Figure()\n", + "fig.add_trace(go.Bar(\n", + " x=weekly_adr_revpar['day_of_week'],\n", + " y=weekly_adr_revpar['ADR (USD)'],\n", + " name='ADR',\n", + " marker_color='indianred'\n", + "))\n", + "fig.add_trace(go.Bar(\n", + " x=weekly_adr_revpar['day_of_week'],\n", + " y=weekly_adr_revpar['Rental_RevPar (USD)'],\n", + " name='Rental RevPar',\n", + " marker_color='lightsalmon'\n", + "))\n", + "\n", + "fig.update_layout(barmode='group', xaxis_tickangle=-45, title_text='Weekly Average ADR vs. Average Rental RevPar (USD)')\n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This pretty much inline with the other variables." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Simple Regression Analysis\n", + "\n", + "Checking the correlation between ADR and Occupancy rate" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/tljh/user/lib/python3.6/site-packages/numpy/core/fromnumeric.py:2389: FutureWarning:\n", + "\n", + "Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead.\n", + "\n" + ] + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "hoverlabel": { + "namelength": 0 + }, + "hovertemplate": "ADR (USD)=%{x}
occ_rate=%{y}", + "legendgroup": "", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "", + "showlegend": false, + "type": "scatter", + "x": [ + 108, + 92, + 87, + 105, + 102, + 112, + 187, + 357, + 367, + 246, + 197, + 155, + 126, + 133, + 93, + 81, + 95, + 137, + 148, + 111, + 99, + 136, + 157, + 127, + 133, + 118, + 121, + 111, + 111, + 111, + 126, + 160, + 171, + 122, + 93, + 95, + 101, + 100, + 122, + 110, + 78, + 71, + 81, + 87, + 148, + 186, + 207, + 157, + 88, + 120, + 98, + 96, + 134, + 127, + 77, + 76, + 75, + 88, + 78, + 170, + 152, + 156, + 89, + 106, + 106, + 115, + 133, + 122, + 96, + 101, + 101, + 114, + 120, + 175, + 172, + 107, + 108, + 96, + 129, + 133, + 166, + 175, + 108, + 104, + 87, + 205, + 110, + 169, + 134, + 92, + 90, + 100, + 118, + 113, + 173, + 174, + 114, + 114, + 120, + 120, + 122, + 115, + 132, + 91, + 147, + 154, + 141, + 141, + 155, + 150, + 118, + 79, + 84, + 80, + 90, + 160, + 188, + 80, + 78, + 70, + 72, + 78, + 170, + 170, + 92, + 73, + 74, + 70, + 76, + 150, + 156, + 112, + 81, + 90, + 126, + 141, + 264, + 263, + 158, + 130, + 135, + 143, + 90, + 195, + 240, + 160, + 149, + 87, + 81, + 82, + 135, + 136, + 80, + 69, + 78, + 72, + 82, + 146, + 150, + 85, + 74, + 87, + 78, + 84, + 170, + 176, + 133, + 79, + 93, + 76, + 91, + 146, + 140, + 92, + 88, + 74, + 84, + 85, + 137, + 152, + 72, + 66, + 76, + 147, + 186, + 203, + 199, + 95, + 96, + 93, + 98, + 96, + 160, + 160, + 115, + 97, + 101, + 107, + 110, + 152, + 144, + 85, + 83, + 88, + 93, + 105, + 160, + 160, + 146, + 117, + 116, + 125, + 127, + 137, + 137, + 94, + 93, + 76, + 97, + 88, + 179, + 173, + 86, + 82, + 88, + 96, + 103, + 152, + 153, + 91, + 78, + 90, + 87, + 98, + 150, + 156, + 81, + 82, + 84, + 87, + 88, + 178, + 218, + 161, + 144, + 76, + 84, + 86, + 146, + 155, + 92, + 60, + 74, + 70, + 82, + 165, + 190, + 96, + 90, + 103, + 97, + 96, + 207, + 214, + 137, + 99, + 94, + 85, + 110, + 156, + 165, + 84, + 82, + 82, + 89, + 93, + 151, + 168, + 94, + 79, + 100, + 97, + 102, + 149, + 157, + 92, + 79, + 80, + 80, + 98, + 150, + 170, + 88, + 78, + 75, + 79, + 93, + 154, + 150, + 84, + 85, + 90, + 94, + 103, + 162, + 177, + 106, + 104, + 100, + 98, + 105, + 165, + 154, + 94, + 74, + 88, + 89, + 82, + 135, + 138, + 84, + 78, + 80, + 81, + 102, + 123, + 119, + 97, + 98, + 126, + 121, + 193, + 204, + 186, + 158, + 102, + 109, + 112, + 151, + 159, + 165, + 89, + 101, + 92, + 93, + 91, + 137, + 141, + 141, + 152, + 171, + 159, + 170, + 197, + 180, + 170, + 168, + 170, + 170, + 186, + 264, + 244, + 202, + 201, + 292 + ], + "xaxis": "x", + "y": [ + 0.86, + 0.79, + 0.77, + 0.7, + 0.64, + 0.63, + 0.83, + 0.98, + 0.97, + 0.86, + 0.62, + 0.5, + 0.43, + 0.42, + 0.41, + 0.49, + 0.63, + 0.91, + 0.98, + 0.98, + 0.92, + 0.93, + 0.99, + 0.99, + 0.97, + 0.9, + 0.7, + 0.5, + 0.47, + 0.49, + 0.58, + 0.78, + 0.94, + 0.95, + 0.75, + 0.62, + 0.63, + 0.67, + 0.78, + 0.85, + 0.6, + 0.49, + 0.5, + 0.59, + 0.69, + 0.94, + 0.98, + 0.96, + 0.9, + 0.98, + 0.97, + 0.88, + 0.89, + 0.85, + 0.71, + 0.61, + 0.57, + 0.62, + 0.68, + 0.85, + 0.98, + 0.74, + 0.53, + 0.5, + 0.52, + 0.62, + 0.81, + 0.92, + 0.78, + 0.7, + 0.75, + 0.8, + 0.93, + 0.94, + 0.94, + 0.91, + 0.77, + 0.74, + 0.87, + 0.91, + 0.99, + 0.99, + 0.91, + 0.81, + 0.89, + 0.87, + 0.89, + 0.97, + 0.97, + 0.85, + 0.7, + 0.69, + 0.69, + 0.82, + 0.93, + 0.97, + 0.93, + 0.83, + 0.83, + 0.85, + 0.87, + 0.94, + 1, + 0.79, + 0.68, + 0.7, + 0.76, + 0.84, + 0.98, + 0.93, + 0.73, + 0.69, + 0.77, + 0.9, + 0.97, + 0.99, + 0.98, + 0.91, + 0.79, + 0.78, + 0.76, + 0.83, + 0.94, + 0.96, + 0.88, + 0.87, + 0.97, + 0.94, + 0.84, + 0.82, + 0.81, + 0.65, + 0.62, + 0.71, + 0.85, + 0.93, + 0.95, + 0.97, + 0.95, + 0.9, + 0.76, + 0.69, + 0.74, + 0.88, + 1, + 0.98, + 0.75, + 0.64, + 0.69, + 0.85, + 0.94, + 0.98, + 0.93, + 0.9, + 0.86, + 0.86, + 0.91, + 0.95, + 0.96, + 0.91, + 0.84, + 0.85, + 0.8, + 0.89, + 0.96, + 0.97, + 0.94, + 0.88, + 0.86, + 0.89, + 0.95, + 0.97, + 0.97, + 0.97, + 0.97, + 0.94, + 0.93, + 0.96, + 0.99, + 0.96, + 0.94, + 0.88, + 0.87, + 0.97, + 1, + 1, + 0.98, + 0.9, + 0.92, + 0.89, + 0.9, + 0.95, + 0.96, + 0.99, + 0.92, + 0.85, + 0.86, + 0.93, + 0.95, + 0.98, + 0.99, + 0.95, + 0.89, + 0.96, + 0.96, + 1, + 0.97, + 0.96, + 0.98, + 1, + 0.98, + 0.88, + 0.92, + 0.98, + 0.99, + 0.91, + 0.81, + 0.89, + 0.98, + 0.99, + 0.97, + 0.98, + 0.94, + 0.84, + 0.84, + 0.77, + 0.81, + 0.93, + 0.9, + 0.72, + 0.62, + 0.63, + 0.68, + 0.74, + 0.89, + 0.89, + 0.7, + 0.56, + 0.57, + 0.54, + 0.67, + 0.9, + 0.99, + 0.97, + 0.65, + 0.58, + 0.59, + 0.7, + 0.89, + 0.94, + 0.85, + 0.77, + 0.8, + 0.77, + 0.84, + 0.98, + 0.98, + 0.85, + 0.77, + 0.78, + 0.78, + 0.85, + 0.99, + 1, + 0.95, + 0.97, + 0.94, + 0.86, + 0.9, + 0.97, + 0.97, + 0.82, + 0.72, + 0.73, + 0.78, + 0.86, + 0.96, + 0.99, + 0.91, + 0.78, + 0.78, + 0.78, + 0.86, + 0.98, + 0.98, + 0.96, + 0.89, + 0.93, + 0.99, + 0.99, + 1, + 0.99, + 0.95, + 0.9, + 0.97, + 0.93, + 0.97, + 0.99, + 0.99, + 0.91, + 0.85, + 0.82, + 0.75, + 0.85, + 0.96, + 1, + 0.94, + 0.9, + 0.98, + 0.99, + 0.98, + 0.97, + 0.99, + 0.93, + 0.75, + 0.69, + 0.74, + 0.9, + 0.96, + 1, + 0.78, + 0.61, + 0.55, + 0.53, + 0.58, + 0.67, + 0.82, + 0.83, + 0.73, + 0.74, + 0.88, + 0.97, + 0.92, + 0.82, + 0.8, + 0.86, + 0.92, + 0.99, + 0.99, + 0.96, + 0.97, + 0.92, + 0.83, + 0.91, + 0.94, + 0.96, + 0.97, + 0.92, + 0.77, + 0.63, + 0.61, + 0.56, + 0.61, + 0.74, + 0.84, + 0.88, + 0.89, + 0.88, + 0.91, + 0.88, + 0.93, + 0.95, + 0.92, + 0.92, + 0.96 + ], + "yaxis": "y" + }, + { + "hoverlabel": { + "namelength": 0 + }, + "hovertemplate": "OLS trendline
occ_rate = 0.001043 * ADR (USD) + 0.718463
R2=0.115394

ADR (USD)=%{x}
occ_rate=%{y} (trend)", + "legendgroup": "", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "lines", + "name": "", + "showlegend": false, + "type": "scatter", + "x": [ + 60, + 66, + 69, + 70, + 70, + 70, + 71, + 72, + 72, + 72, + 73, + 74, + 74, + 74, + 74, + 74, + 75, + 75, + 76, + 76, + 76, + 76, + 76, + 76, + 77, + 78, + 78, + 78, + 78, + 78, + 78, + 78, + 78, + 78, + 79, + 79, + 79, + 79, + 79, + 80, + 80, + 80, + 80, + 80, + 80, + 81, + 81, + 81, + 81, + 81, + 81, + 82, + 82, + 82, + 82, + 82, + 82, + 82, + 82, + 83, + 84, + 84, + 84, + 84, + 84, + 84, + 84, + 84, + 85, + 85, + 85, + 85, + 85, + 86, + 86, + 87, + 87, + 87, + 87, + 87, + 87, + 87, + 88, + 88, + 88, + 88, + 88, + 88, + 88, + 88, + 88, + 89, + 89, + 89, + 89, + 90, + 90, + 90, + 90, + 90, + 90, + 90, + 91, + 91, + 91, + 91, + 92, + 92, + 92, + 92, + 92, + 92, + 92, + 93, + 93, + 93, + 93, + 93, + 93, + 93, + 93, + 93, + 94, + 94, + 94, + 94, + 94, + 95, + 95, + 95, + 96, + 96, + 96, + 96, + 96, + 96, + 96, + 96, + 97, + 97, + 97, + 97, + 97, + 98, + 98, + 98, + 98, + 98, + 98, + 99, + 99, + 100, + 100, + 100, + 100, + 101, + 101, + 101, + 101, + 101, + 102, + 102, + 102, + 102, + 103, + 103, + 103, + 104, + 104, + 105, + 105, + 105, + 106, + 106, + 106, + 107, + 107, + 108, + 108, + 108, + 109, + 110, + 110, + 110, + 110, + 111, + 111, + 111, + 111, + 112, + 112, + 112, + 113, + 114, + 114, + 114, + 115, + 115, + 115, + 116, + 117, + 118, + 118, + 118, + 119, + 120, + 120, + 120, + 120, + 121, + 121, + 122, + 122, + 122, + 122, + 123, + 125, + 126, + 126, + 126, + 126, + 127, + 127, + 127, + 129, + 130, + 132, + 133, + 133, + 133, + 133, + 133, + 134, + 134, + 135, + 135, + 135, + 136, + 136, + 137, + 137, + 137, + 137, + 137, + 137, + 138, + 140, + 141, + 141, + 141, + 141, + 141, + 143, + 144, + 144, + 146, + 146, + 146, + 146, + 147, + 147, + 148, + 148, + 149, + 149, + 150, + 150, + 150, + 150, + 150, + 150, + 151, + 151, + 152, + 152, + 152, + 152, + 152, + 153, + 154, + 154, + 154, + 155, + 155, + 155, + 156, + 156, + 156, + 156, + 157, + 157, + 157, + 158, + 158, + 159, + 159, + 160, + 160, + 160, + 160, + 160, + 160, + 160, + 161, + 162, + 165, + 165, + 165, + 165, + 166, + 168, + 168, + 169, + 170, + 170, + 170, + 170, + 170, + 170, + 170, + 170, + 170, + 171, + 171, + 172, + 173, + 173, + 174, + 175, + 175, + 176, + 177, + 178, + 179, + 180, + 186, + 186, + 186, + 186, + 187, + 188, + 190, + 193, + 195, + 197, + 197, + 199, + 201, + 202, + 203, + 204, + 205, + 207, + 207, + 214, + 218, + 240, + 244, + 246, + 263, + 264, + 264, + 292, + 357, + 367 + ], + "xaxis": "x", + "y": [ + 0.7810603198093821, + 0.787320036444842, + 0.7904498947625721, + 0.7914931808684821, + 0.7914931808684821, + 0.7914931808684821, + 0.7925364669743921, + 0.7935797530803022, + 0.7935797530803022, + 0.7935797530803022, + 0.7946230391862121, + 0.7956663252921221, + 0.7956663252921221, + 0.7956663252921221, + 0.7956663252921221, + 0.7956663252921221, + 0.7967096113980321, + 0.7967096113980321, + 0.7977528975039421, + 0.7977528975039421, + 0.7977528975039421, + 0.7977528975039421, + 0.7977528975039421, + 0.7977528975039421, + 0.7987961836098522, + 0.7998394697157621, + 0.7998394697157621, + 0.7998394697157621, + 0.7998394697157621, + 0.7998394697157621, + 0.7998394697157621, + 0.7998394697157621, + 0.7998394697157621, + 0.7998394697157621, + 0.8008827558216721, + 0.8008827558216721, + 0.8008827558216721, + 0.8008827558216721, + 0.8008827558216721, + 0.8019260419275822, + 0.8019260419275822, + 0.8019260419275822, + 0.8019260419275822, + 0.8019260419275822, + 0.8019260419275822, + 0.8029693280334922, + 0.8029693280334922, + 0.8029693280334922, + 0.8029693280334922, + 0.8029693280334922, + 0.8029693280334922, + 0.8040126141394022, + 0.8040126141394022, + 0.8040126141394022, + 0.8040126141394022, + 0.8040126141394022, + 0.8040126141394022, + 0.8040126141394022, + 0.8040126141394022, + 0.8050559002453122, + 0.8060991863512221, + 0.8060991863512221, + 0.8060991863512221, + 0.8060991863512221, + 0.8060991863512221, + 0.8060991863512221, + 0.8060991863512221, + 0.8060991863512221, + 0.8071424724571322, + 0.8071424724571322, + 0.8071424724571322, + 0.8071424724571322, + 0.8071424724571322, + 0.8081857585630422, + 0.8081857585630422, + 0.8092290446689522, + 0.8092290446689522, + 0.8092290446689522, + 0.8092290446689522, + 0.8092290446689522, + 0.8092290446689522, + 0.8092290446689522, + 0.8102723307748622, + 0.8102723307748622, + 0.8102723307748622, + 0.8102723307748622, + 0.8102723307748622, + 0.8102723307748622, + 0.8102723307748622, + 0.8102723307748622, + 0.8102723307748622, + 0.8113156168807723, + 0.8113156168807723, + 0.8113156168807723, + 0.8113156168807723, + 0.8123589029866822, + 0.8123589029866822, + 0.8123589029866822, + 0.8123589029866822, + 0.8123589029866822, + 0.8123589029866822, + 0.8123589029866822, + 0.8134021890925922, + 0.8134021890925922, + 0.8134021890925922, + 0.8134021890925922, + 0.8144454751985022, + 0.8144454751985022, + 0.8144454751985022, + 0.8144454751985022, + 0.8144454751985022, + 0.8144454751985022, + 0.8144454751985022, + 0.8154887613044122, + 0.8154887613044122, + 0.8154887613044122, + 0.8154887613044122, + 0.8154887613044122, + 0.8154887613044122, + 0.8154887613044122, + 0.8154887613044122, + 0.8154887613044122, + 0.8165320474103223, + 0.8165320474103223, + 0.8165320474103223, + 0.8165320474103223, + 0.8165320474103223, + 0.8175753335162322, + 0.8175753335162322, + 0.8175753335162322, + 0.8186186196221422, + 0.8186186196221422, + 0.8186186196221422, + 0.8186186196221422, + 0.8186186196221422, + 0.8186186196221422, + 0.8186186196221422, + 0.8186186196221422, + 0.8196619057280522, + 0.8196619057280522, + 0.8196619057280522, + 0.8196619057280522, + 0.8196619057280522, + 0.8207051918339623, + 0.8207051918339623, + 0.8207051918339623, + 0.8207051918339623, + 0.8207051918339623, + 0.8207051918339623, + 0.8217484779398723, + 0.8217484779398723, + 0.8227917640457822, + 0.8227917640457822, + 0.8227917640457822, + 0.8227917640457822, + 0.8238350501516922, + 0.8238350501516922, + 0.8238350501516922, + 0.8238350501516922, + 0.8238350501516922, + 0.8248783362576022, + 0.8248783362576022, + 0.8248783362576022, + 0.8248783362576022, + 0.8259216223635123, + 0.8259216223635123, + 0.8259216223635123, + 0.8269649084694223, + 0.8269649084694223, + 0.8280081945753323, + 0.8280081945753323, + 0.8280081945753323, + 0.8290514806812422, + 0.8290514806812422, + 0.8290514806812422, + 0.8300947667871523, + 0.8300947667871523, + 0.8311380528930623, + 0.8311380528930623, + 0.8311380528930623, + 0.8321813389989723, + 0.8332246251048823, + 0.8332246251048823, + 0.8332246251048823, + 0.8332246251048823, + 0.8342679112107924, + 0.8342679112107924, + 0.8342679112107924, + 0.8342679112107924, + 0.8353111973167023, + 0.8353111973167023, + 0.8353111973167023, + 0.8363544834226123, + 0.8373977695285223, + 0.8373977695285223, + 0.8373977695285223, + 0.8384410556344324, + 0.8384410556344324, + 0.8384410556344324, + 0.8394843417403424, + 0.8405276278462523, + 0.8415709139521623, + 0.8415709139521623, + 0.8415709139521623, + 0.8426142000580723, + 0.8436574861639824, + 0.8436574861639824, + 0.8436574861639824, + 0.8436574861639824, + 0.8447007722698924, + 0.8447007722698924, + 0.8457440583758024, + 0.8457440583758024, + 0.8457440583758024, + 0.8457440583758024, + 0.8467873444817123, + 0.8488739166935324, + 0.8499172027994424, + 0.8499172027994424, + 0.8499172027994424, + 0.8499172027994424, + 0.8509604889053524, + 0.8509604889053524, + 0.8509604889053524, + 0.8530470611171724, + 0.8540903472230824, + 0.8561769194349025, + 0.8572202055408125, + 0.8572202055408125, + 0.8572202055408125, + 0.8572202055408125, + 0.8572202055408125, + 0.8582634916467224, + 0.8582634916467224, + 0.8593067777526324, + 0.8593067777526324, + 0.8593067777526324, + 0.8603500638585424, + 0.8603500638585424, + 0.8613933499644524, + 0.8613933499644524, + 0.8613933499644524, + 0.8613933499644524, + 0.8613933499644524, + 0.8613933499644524, + 0.8624366360703625, + 0.8645232082821824, + 0.8655664943880925, + 0.8655664943880925, + 0.8655664943880925, + 0.8655664943880925, + 0.8655664943880925, + 0.8676530665999125, + 0.8686963527058225, + 0.8686963527058225, + 0.8707829249176425, + 0.8707829249176425, + 0.8707829249176425, + 0.8707829249176425, + 0.8718262110235525, + 0.8718262110235525, + 0.8728694971294625, + 0.8728694971294625, + 0.8739127832353725, + 0.8739127832353725, + 0.8749560693412826, + 0.8749560693412826, + 0.8749560693412826, + 0.8749560693412826, + 0.8749560693412826, + 0.8749560693412826, + 0.8759993554471925, + 0.8759993554471925, + 0.8770426415531025, + 0.8770426415531025, + 0.8770426415531025, + 0.8770426415531025, + 0.8770426415531025, + 0.8780859276590125, + 0.8791292137649225, + 0.8791292137649225, + 0.8791292137649225, + 0.8801724998708326, + 0.8801724998708326, + 0.8801724998708326, + 0.8812157859767425, + 0.8812157859767425, + 0.8812157859767425, + 0.8812157859767425, + 0.8822590720826525, + 0.8822590720826525, + 0.8822590720826525, + 0.8833023581885626, + 0.8833023581885626, + 0.8843456442944726, + 0.8843456442944726, + 0.8853889304003826, + 0.8853889304003826, + 0.8853889304003826, + 0.8853889304003826, + 0.8853889304003826, + 0.8853889304003826, + 0.8853889304003826, + 0.8864322165062926, + 0.8874755026122025, + 0.8906053609299326, + 0.8906053609299326, + 0.8906053609299326, + 0.8906053609299326, + 0.8916486470358426, + 0.8937352192476626, + 0.8937352192476626, + 0.8947785053535726, + 0.8958217914594826, + 0.8958217914594826, + 0.8958217914594826, + 0.8958217914594826, + 0.8958217914594826, + 0.8958217914594826, + 0.8958217914594826, + 0.8958217914594826, + 0.8958217914594826, + 0.8968650775653926, + 0.8968650775653926, + 0.8979083636713027, + 0.8989516497772126, + 0.8989516497772126, + 0.8999949358831226, + 0.9010382219890326, + 0.9010382219890326, + 0.9020815080949427, + 0.9031247942008527, + 0.9041680803067627, + 0.9052113664126726, + 0.9062546525185826, + 0.9125143691540427, + 0.9125143691540427, + 0.9125143691540427, + 0.9125143691540427, + 0.9135576552599527, + 0.9146009413658627, + 0.9166875135776827, + 0.9198173718954128, + 0.9219039441072328, + 0.9239905163190527, + 0.9239905163190527, + 0.9260770885308728, + 0.9281636607426927, + 0.9292069468486028, + 0.9302502329545128, + 0.9312935190604228, + 0.9323368051663328, + 0.9344233773781528, + 0.9344233773781528, + 0.9417263801195228, + 0.9458995245431628, + 0.968851818873183, + 0.973024963296823, + 0.975111535508643, + 0.9928473993091131, + 0.9938906854150231, + 0.9938906854150231, + 1.0231026963805032, + 1.0909162932646537, + 1.1013491543237537 + ], + "yaxis": "y" + } + ], + "layout": { + "height": 600, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "ADR vs. occupancy" + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 0.98 + ], + "title": { + "text": "ADR (USD)" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "Occupancy rate %" + } + } + } + }, + "text/html": [ + "
\n", + " \n", + " \n", + "
\n", + " \n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " px_fit_results\n", + "0 \n", + "OLS Regression Results\n", + "\n", + " Dep. Variable: occ_rate R-squared: 0.115\n", + "\n", + "\n", + " Model: OLS Adj. R-squared: 0.113\n", + "\n", + "\n", + " Method: Least Squares F-statistic: 47.35\n", + "\n", + "\n", + " Date: Wed, 05 Feb 2020 Prob (F-statistic): 2.61e-11\n", + "\n", + "\n", + " Time: 07:13:57 Log-Likelihood: 230.22\n", + "\n", + "\n", + " No. Observations: 365 AIC: -456.4\n", + "\n", + "\n", + " Df Residuals: 363 BIC: -448.6\n", + "\n", + "\n", + " Df Model: 1 \n", + "\n", + "\n", + " Covariance Type: nonrobust \n", + "\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
coef std err t P>|t| [0.025 0.975]
const 0.7185 0.020 36.261 0.000 0.679 0.757
ADR (USD) 0.0010 0.000 6.881 0.000 0.001 0.001
\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Omnibus: 54.187 Durbin-Watson: 1.752
Prob(Omnibus): 0.000 Jarque-Bera (JB): 74.200
Skew: -1.068 Prob(JB): 7.72e-17
Kurtosis: 3.565 Cond. No. 383.


Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified." + ], + "text/plain": [ + "\n", + "\"\"\"\n", + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: occ_rate R-squared: 0.115\n", + "Model: OLS Adj. R-squared: 0.113\n", + "Method: Least Squares F-statistic: 47.35\n", + "Date: Wed, 05 Feb 2020 Prob (F-statistic): 2.61e-11\n", + "Time: 07:13:57 Log-Likelihood: 230.22\n", + "No. Observations: 365 AIC: -456.4\n", + "Df Residuals: 363 BIC: -448.6\n", + "Df Model: 1 \n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "const 0.7185 0.020 36.261 0.000 0.679 0.757\n", + "ADR (USD) 0.0010 0.000 6.881 0.000 0.001 0.001\n", + "==============================================================================\n", + "Omnibus: 54.187 Durbin-Watson: 1.752\n", + "Prob(Omnibus): 0.000 Jarque-Bera (JB): 74.200\n", + "Skew: -1.068 Prob(JB): 7.72e-17\n", + "Kurtosis: 3.565 Cond. No. 383.\n", + "==============================================================================\n", + "\n", + "Warnings:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", + "\"\"\"" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fig = px.scatter(df, x=\"ADR (USD)\", y=\"occ_rate\", trendline=\"ols\")\n", + "fig.update_layout(title_text='ADR vs. occupancy', yaxis_title='Occupancy rate %')\n", + "fig.show()\n", + "\n", + "results = px.get_trendline_results(fig)\n", + "print(results)\n", + "\n", + "results.px_fit_results.iloc[0].summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Interpretation*\n", + "\n", + "* With one independent variable - ADR, only 11% of the variablity in Occupancy rate can be explained by the model.\n", + "\n", + "* ADR coefficient(0.0010): For every one unit increase in Occupancy rate, the model predicts a 0.0010 increase in ADR." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Checking the correlation between Rental RevPar and Occupancy rate" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "hoverlabel": { + "namelength": 0 + }, + "hovertemplate": "Rental_RevPar (USD)=%{x}
occ_rate=%{y}", + "legendgroup": "", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "", + "showlegend": false, + "type": "scatter", + "x": [ + 32, + 26, + 27, + 30, + 29, + 40, + 121, + 318, + 323, + 153, + 51, + 16, + 8, + 10, + 12, + 12, + 20, + 82, + 115, + 80, + 69, + 109, + 138, + 107, + 100, + 78, + 27, + 14, + 13, + 14, + 18, + 55, + 104, + 63, + 29, + 24, + 22, + 24, + 55, + 62, + 20, + 13, + 11, + 12, + 20, + 87, + 152, + 89, + 59, + 105, + 78, + 54, + 74, + 67, + 23, + 21, + 18, + 24, + 21, + 67, + 103, + 36, + 13, + 13, + 10, + 17, + 54, + 80, + 38, + 33, + 40, + 43, + 76, + 113, + 118, + 54, + 33, + 26, + 55, + 70, + 134, + 143, + 61, + 41, + 44, + 132, + 48, + 141, + 98, + 38, + 25, + 21, + 25, + 36, + 110, + 140, + 75, + 63, + 67, + 68, + 71, + 76, + 111, + 40, + 26, + 28, + 26, + 38, + 94, + 82, + 29, + 25, + 29, + 44, + 59, + 129, + 154, + 49, + 38, + 29, + 32, + 35, + 113, + 124, + 54, + 46, + 58, + 53, + 41, + 65, + 65, + 21, + 21, + 30, + 64, + 90, + 181, + 198, + 107, + 62, + 28, + 19, + 22, + 85, + 199, + 92, + 28, + 17, + 23, + 38, + 93, + 107, + 55, + 43, + 43, + 38, + 45, + 99, + 107, + 45, + 34, + 32, + 26, + 35, + 89, + 98, + 51, + 36, + 34, + 32, + 51, + 99, + 107, + 66, + 60, + 38, + 44, + 48, + 103, + 109, + 44, + 31, + 31, + 60, + 104, + 145, + 112, + 45, + 50, + 46, + 48, + 55, + 113, + 134, + 69, + 48, + 47, + 66, + 60, + 114, + 113, + 49, + 41, + 56, + 53, + 65, + 114, + 118, + 79, + 60, + 58, + 45, + 46, + 99, + 101, + 46, + 38, + 37, + 66, + 59, + 139, + 143, + 57, + 37, + 37, + 31, + 33, + 89, + 86, + 26, + 17, + 22, + 22, + 28, + 75, + 89, + 22, + 15, + 15, + 13, + 21, + 72, + 142, + 69, + 16, + 11, + 14, + 22, + 82, + 115, + 46, + 25, + 34, + 32, + 42, + 141, + 164, + 52, + 39, + 44, + 38, + 43, + 140, + 160, + 82, + 82, + 69, + 47, + 58, + 109, + 122, + 32, + 26, + 29, + 30, + 42, + 111, + 132, + 54, + 24, + 36, + 27, + 43, + 112, + 129, + 66, + 44, + 56, + 64, + 76, + 127, + 142, + 62, + 48, + 58, + 53, + 65, + 113, + 116, + 51, + 39, + 36, + 26, + 40, + 106, + 136, + 70, + 71, + 87, + 88, + 90, + 128, + 138, + 49, + 26, + 19, + 26, + 46, + 96, + 116, + 29, + 12, + 7, + 6, + 11, + 20, + 36, + 29, + 17, + 22, + 36, + 81, + 68, + 51, + 70, + 70, + 87, + 100, + 134, + 122, + 129, + 50, + 39, + 52, + 55, + 59, + 93, + 70, + 21, + 8, + 4, + 4, + 8, + 20, + 25, + 20, + 31, + 32, + 43, + 38, + 99, + 87, + 60, + 81, + 207 + ], + "xaxis": "x", + "y": [ + 0.86, + 0.79, + 0.77, + 0.7, + 0.64, + 0.63, + 0.83, + 0.98, + 0.97, + 0.86, + 0.62, + 0.5, + 0.43, + 0.42, + 0.41, + 0.49, + 0.63, + 0.91, + 0.98, + 0.98, + 0.92, + 0.93, + 0.99, + 0.99, + 0.97, + 0.9, + 0.7, + 0.5, + 0.47, + 0.49, + 0.58, + 0.78, + 0.94, + 0.95, + 0.75, + 0.62, + 0.63, + 0.67, + 0.78, + 0.85, + 0.6, + 0.49, + 0.5, + 0.59, + 0.69, + 0.94, + 0.98, + 0.96, + 0.9, + 0.98, + 0.97, + 0.88, + 0.89, + 0.85, + 0.71, + 0.61, + 0.57, + 0.62, + 0.68, + 0.85, + 0.98, + 0.74, + 0.53, + 0.5, + 0.52, + 0.62, + 0.81, + 0.92, + 0.78, + 0.7, + 0.75, + 0.8, + 0.93, + 0.94, + 0.94, + 0.91, + 0.77, + 0.74, + 0.87, + 0.91, + 0.99, + 0.99, + 0.91, + 0.81, + 0.89, + 0.87, + 0.89, + 0.97, + 0.97, + 0.85, + 0.7, + 0.69, + 0.69, + 0.82, + 0.93, + 0.97, + 0.93, + 0.83, + 0.83, + 0.85, + 0.87, + 0.94, + 1, + 0.79, + 0.68, + 0.7, + 0.76, + 0.84, + 0.98, + 0.93, + 0.73, + 0.69, + 0.77, + 0.9, + 0.97, + 0.99, + 0.98, + 0.91, + 0.79, + 0.78, + 0.76, + 0.83, + 0.94, + 0.96, + 0.88, + 0.87, + 0.97, + 0.94, + 0.84, + 0.82, + 0.81, + 0.65, + 0.62, + 0.71, + 0.85, + 0.93, + 0.95, + 0.97, + 0.95, + 0.9, + 0.76, + 0.69, + 0.74, + 0.88, + 1, + 0.98, + 0.75, + 0.64, + 0.69, + 0.85, + 0.94, + 0.98, + 0.93, + 0.9, + 0.86, + 0.86, + 0.91, + 0.95, + 0.96, + 0.91, + 0.84, + 0.85, + 0.8, + 0.89, + 0.96, + 0.97, + 0.94, + 0.88, + 0.86, + 0.89, + 0.95, + 0.97, + 0.97, + 0.97, + 0.97, + 0.94, + 0.93, + 0.96, + 0.99, + 0.96, + 0.94, + 0.88, + 0.87, + 0.97, + 1, + 1, + 0.98, + 0.9, + 0.92, + 0.89, + 0.9, + 0.95, + 0.96, + 0.99, + 0.92, + 0.85, + 0.86, + 0.93, + 0.95, + 0.98, + 0.99, + 0.95, + 0.89, + 0.96, + 0.96, + 1, + 0.97, + 0.96, + 0.98, + 1, + 0.98, + 0.88, + 0.92, + 0.98, + 0.99, + 0.91, + 0.81, + 0.89, + 0.98, + 0.99, + 0.97, + 0.98, + 0.94, + 0.84, + 0.84, + 0.77, + 0.81, + 0.93, + 0.9, + 0.72, + 0.62, + 0.63, + 0.68, + 0.74, + 0.89, + 0.89, + 0.7, + 0.56, + 0.57, + 0.54, + 0.67, + 0.9, + 0.99, + 0.97, + 0.65, + 0.58, + 0.59, + 0.7, + 0.89, + 0.94, + 0.85, + 0.77, + 0.8, + 0.77, + 0.84, + 0.98, + 0.98, + 0.85, + 0.77, + 0.78, + 0.78, + 0.85, + 0.99, + 1, + 0.95, + 0.97, + 0.94, + 0.86, + 0.9, + 0.97, + 0.97, + 0.82, + 0.72, + 0.73, + 0.78, + 0.86, + 0.96, + 0.99, + 0.91, + 0.78, + 0.78, + 0.78, + 0.86, + 0.98, + 0.98, + 0.96, + 0.89, + 0.93, + 0.99, + 0.99, + 1, + 0.99, + 0.95, + 0.9, + 0.97, + 0.93, + 0.97, + 0.99, + 0.99, + 0.91, + 0.85, + 0.82, + 0.75, + 0.85, + 0.96, + 1, + 0.94, + 0.9, + 0.98, + 0.99, + 0.98, + 0.97, + 0.99, + 0.93, + 0.75, + 0.69, + 0.74, + 0.9, + 0.96, + 1, + 0.78, + 0.61, + 0.55, + 0.53, + 0.58, + 0.67, + 0.82, + 0.83, + 0.73, + 0.74, + 0.88, + 0.97, + 0.92, + 0.82, + 0.8, + 0.86, + 0.92, + 0.99, + 0.99, + 0.96, + 0.97, + 0.92, + 0.83, + 0.91, + 0.94, + 0.96, + 0.97, + 0.92, + 0.77, + 0.63, + 0.61, + 0.56, + 0.61, + 0.74, + 0.84, + 0.88, + 0.89, + 0.88, + 0.91, + 0.88, + 0.93, + 0.95, + 0.92, + 0.92, + 0.96 + ], + "yaxis": "y" + }, + { + "hoverlabel": { + "namelength": 0 + }, + "hovertemplate": "OLS trendline
occ_rate = 0.002154 * Rental_RevPar (USD) + 0.711670
R2=0.486079

Rental_RevPar (USD)=%{x}
occ_rate=%{y} (trend)", + "legendgroup": "", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "lines", + "name": "", + "showlegend": false, + "type": "scatter", + "x": [ + 4, + 4, + 6, + 7, + 8, + 8, + 8, + 10, + 10, + 11, + 11, + 11, + 12, + 12, + 12, + 12, + 13, + 13, + 13, + 13, + 13, + 14, + 14, + 14, + 15, + 15, + 16, + 16, + 17, + 17, + 17, + 17, + 18, + 18, + 19, + 19, + 20, + 20, + 20, + 20, + 20, + 20, + 21, + 21, + 21, + 21, + 21, + 21, + 21, + 22, + 22, + 22, + 22, + 22, + 22, + 22, + 23, + 23, + 24, + 24, + 24, + 24, + 25, + 25, + 25, + 25, + 25, + 26, + 26, + 26, + 26, + 26, + 26, + 26, + 26, + 26, + 26, + 27, + 27, + 27, + 28, + 28, + 28, + 28, + 29, + 29, + 29, + 29, + 29, + 29, + 29, + 29, + 30, + 30, + 30, + 31, + 31, + 31, + 31, + 32, + 32, + 32, + 32, + 32, + 32, + 32, + 33, + 33, + 33, + 34, + 34, + 34, + 35, + 35, + 36, + 36, + 36, + 36, + 36, + 36, + 36, + 37, + 37, + 37, + 38, + 38, + 38, + 38, + 38, + 38, + 38, + 38, + 38, + 38, + 39, + 39, + 39, + 40, + 40, + 40, + 40, + 41, + 41, + 41, + 42, + 42, + 43, + 43, + 43, + 43, + 43, + 43, + 44, + 44, + 44, + 44, + 44, + 44, + 45, + 45, + 45, + 45, + 46, + 46, + 46, + 46, + 46, + 46, + 47, + 47, + 48, + 48, + 48, + 48, + 48, + 49, + 49, + 49, + 50, + 50, + 51, + 51, + 51, + 51, + 51, + 52, + 52, + 53, + 53, + 53, + 54, + 54, + 54, + 54, + 54, + 55, + 55, + 55, + 55, + 55, + 55, + 56, + 56, + 57, + 58, + 58, + 58, + 58, + 59, + 59, + 59, + 59, + 60, + 60, + 60, + 60, + 60, + 61, + 62, + 62, + 62, + 63, + 63, + 64, + 64, + 65, + 65, + 65, + 65, + 66, + 66, + 66, + 66, + 67, + 67, + 67, + 68, + 68, + 69, + 69, + 69, + 69, + 70, + 70, + 70, + 70, + 70, + 71, + 71, + 72, + 74, + 75, + 75, + 76, + 76, + 76, + 78, + 78, + 79, + 80, + 80, + 81, + 81, + 82, + 82, + 82, + 82, + 82, + 85, + 86, + 87, + 87, + 87, + 87, + 88, + 89, + 89, + 89, + 89, + 90, + 90, + 92, + 93, + 93, + 94, + 96, + 98, + 98, + 99, + 99, + 99, + 99, + 100, + 100, + 101, + 103, + 103, + 104, + 104, + 105, + 106, + 107, + 107, + 107, + 107, + 107, + 109, + 109, + 109, + 110, + 111, + 111, + 112, + 112, + 113, + 113, + 113, + 113, + 113, + 114, + 114, + 115, + 115, + 116, + 116, + 118, + 118, + 121, + 122, + 122, + 124, + 127, + 128, + 129, + 129, + 129, + 132, + 132, + 134, + 134, + 134, + 136, + 138, + 138, + 139, + 140, + 140, + 141, + 141, + 142, + 142, + 143, + 143, + 145, + 152, + 153, + 154, + 160, + 164, + 181, + 198, + 199, + 207, + 318, + 323 + ], + "xaxis": "x", + "y": [ + 0.7202844123881337, + 0.7202844123881337, + 0.7245917200496786, + 0.7267453738804511, + 0.7288990277112236, + 0.7288990277112236, + 0.7288990277112236, + 0.7332063353727686, + 0.7332063353727686, + 0.7353599892035411, + 0.7353599892035411, + 0.7353599892035411, + 0.7375136430343135, + 0.7375136430343135, + 0.7375136430343135, + 0.7375136430343135, + 0.7396672968650859, + 0.7396672968650859, + 0.7396672968650859, + 0.7396672968650859, + 0.7396672968650859, + 0.7418209506958584, + 0.7418209506958584, + 0.7418209506958584, + 0.7439746045266309, + 0.7439746045266309, + 0.7461282583574034, + 0.7461282583574034, + 0.7482819121881759, + 0.7482819121881759, + 0.7482819121881759, + 0.7482819121881759, + 0.7504355660189483, + 0.7504355660189483, + 0.7525892198497208, + 0.7525892198497208, + 0.7547428736804933, + 0.7547428736804933, + 0.7547428736804933, + 0.7547428736804933, + 0.7547428736804933, + 0.7547428736804933, + 0.7568965275112658, + 0.7568965275112658, + 0.7568965275112658, + 0.7568965275112658, + 0.7568965275112658, + 0.7568965275112658, + 0.7568965275112658, + 0.7590501813420383, + 0.7590501813420383, + 0.7590501813420383, + 0.7590501813420383, + 0.7590501813420383, + 0.7590501813420383, + 0.7590501813420383, + 0.7612038351728108, + 0.7612038351728108, + 0.7633574890035832, + 0.7633574890035832, + 0.7633574890035832, + 0.7633574890035832, + 0.7655111428343557, + 0.7655111428343557, + 0.7655111428343557, + 0.7655111428343557, + 0.7655111428343557, + 0.7676647966651282, + 0.7676647966651282, + 0.7676647966651282, + 0.7676647966651282, + 0.7676647966651282, + 0.7676647966651282, + 0.7676647966651282, + 0.7676647966651282, + 0.7676647966651282, + 0.7676647966651282, + 0.7698184504959007, + 0.7698184504959007, + 0.7698184504959007, + 0.7719721043266732, + 0.7719721043266732, + 0.7719721043266732, + 0.7719721043266732, + 0.7741257581574457, + 0.7741257581574457, + 0.7741257581574457, + 0.7741257581574457, + 0.7741257581574457, + 0.7741257581574457, + 0.7741257581574457, + 0.7741257581574457, + 0.7762794119882181, + 0.7762794119882181, + 0.7762794119882181, + 0.7784330658189906, + 0.7784330658189906, + 0.7784330658189906, + 0.7784330658189906, + 0.7805867196497631, + 0.7805867196497631, + 0.7805867196497631, + 0.7805867196497631, + 0.7805867196497631, + 0.7805867196497631, + 0.7805867196497631, + 0.7827403734805356, + 0.7827403734805356, + 0.7827403734805356, + 0.7848940273113081, + 0.7848940273113081, + 0.7848940273113081, + 0.7870476811420806, + 0.7870476811420806, + 0.789201334972853, + 0.789201334972853, + 0.789201334972853, + 0.789201334972853, + 0.789201334972853, + 0.789201334972853, + 0.789201334972853, + 0.7913549888036255, + 0.7913549888036255, + 0.7913549888036255, + 0.793508642634398, + 0.793508642634398, + 0.793508642634398, + 0.793508642634398, + 0.793508642634398, + 0.793508642634398, + 0.793508642634398, + 0.793508642634398, + 0.793508642634398, + 0.793508642634398, + 0.7956622964651705, + 0.7956622964651705, + 0.7956622964651705, + 0.797815950295943, + 0.797815950295943, + 0.797815950295943, + 0.797815950295943, + 0.7999696041267154, + 0.7999696041267154, + 0.7999696041267154, + 0.8021232579574878, + 0.8021232579574878, + 0.8042769117882603, + 0.8042769117882603, + 0.8042769117882603, + 0.8042769117882603, + 0.8042769117882603, + 0.8042769117882603, + 0.8064305656190328, + 0.8064305656190328, + 0.8064305656190328, + 0.8064305656190328, + 0.8064305656190328, + 0.8064305656190328, + 0.8085842194498053, + 0.8085842194498053, + 0.8085842194498053, + 0.8085842194498053, + 0.8107378732805778, + 0.8107378732805778, + 0.8107378732805778, + 0.8107378732805778, + 0.8107378732805778, + 0.8107378732805778, + 0.8128915271113503, + 0.8128915271113503, + 0.8150451809421227, + 0.8150451809421227, + 0.8150451809421227, + 0.8150451809421227, + 0.8150451809421227, + 0.8171988347728952, + 0.8171988347728952, + 0.8171988347728952, + 0.8193524886036677, + 0.8193524886036677, + 0.8215061424344402, + 0.8215061424344402, + 0.8215061424344402, + 0.8215061424344402, + 0.8215061424344402, + 0.8236597962652127, + 0.8236597962652127, + 0.8258134500959852, + 0.8258134500959852, + 0.8258134500959852, + 0.8279671039267577, + 0.8279671039267577, + 0.8279671039267577, + 0.8279671039267577, + 0.8279671039267577, + 0.8301207577575301, + 0.8301207577575301, + 0.8301207577575301, + 0.8301207577575301, + 0.8301207577575301, + 0.8301207577575301, + 0.8322744115883026, + 0.8322744115883026, + 0.8344280654190751, + 0.8365817192498476, + 0.8365817192498476, + 0.8365817192498476, + 0.8365817192498476, + 0.8387353730806201, + 0.8387353730806201, + 0.8387353730806201, + 0.8387353730806201, + 0.8408890269113926, + 0.8408890269113926, + 0.8408890269113926, + 0.8408890269113926, + 0.8408890269113926, + 0.8430426807421649, + 0.8451963345729374, + 0.8451963345729374, + 0.8451963345729374, + 0.8473499884037099, + 0.8473499884037099, + 0.8495036422344824, + 0.8495036422344824, + 0.8516572960652549, + 0.8516572960652549, + 0.8516572960652549, + 0.8516572960652549, + 0.8538109498960273, + 0.8538109498960273, + 0.8538109498960273, + 0.8538109498960273, + 0.8559646037267998, + 0.8559646037267998, + 0.8559646037267998, + 0.8581182575575723, + 0.8581182575575723, + 0.8602719113883448, + 0.8602719113883448, + 0.8602719113883448, + 0.8602719113883448, + 0.8624255652191173, + 0.8624255652191173, + 0.8624255652191173, + 0.8624255652191173, + 0.8624255652191173, + 0.8645792190498898, + 0.8645792190498898, + 0.8667328728806623, + 0.8710401805422072, + 0.8731938343729797, + 0.8731938343729797, + 0.8753474882037522, + 0.8753474882037522, + 0.8753474882037522, + 0.8796547958652972, + 0.8796547958652972, + 0.8818084496960696, + 0.8839621035268421, + 0.8839621035268421, + 0.8861157573576146, + 0.8861157573576146, + 0.8882694111883871, + 0.8882694111883871, + 0.8882694111883871, + 0.8882694111883871, + 0.8882694111883871, + 0.8947303726807045, + 0.896884026511477, + 0.8990376803422495, + 0.8990376803422495, + 0.8990376803422495, + 0.8990376803422495, + 0.901191334173022, + 0.9033449880037945, + 0.9033449880037945, + 0.9033449880037945, + 0.9033449880037945, + 0.905498641834567, + 0.905498641834567, + 0.9098059494961119, + 0.9119596033268843, + 0.9119596033268843, + 0.9141132571576568, + 0.9184205648192018, + 0.9227278724807467, + 0.9227278724807467, + 0.9248815263115192, + 0.9248815263115192, + 0.9248815263115192, + 0.9248815263115192, + 0.9270351801422917, + 0.9270351801422917, + 0.9291888339730642, + 0.9334961416346091, + 0.9334961416346091, + 0.9356497954653816, + 0.9356497954653816, + 0.9378034492961541, + 0.9399571031269266, + 0.9421107569576991, + 0.9421107569576991, + 0.9421107569576991, + 0.9421107569576991, + 0.9421107569576991, + 0.946418064619244, + 0.946418064619244, + 0.946418064619244, + 0.9485717184500165, + 0.950725372280789, + 0.950725372280789, + 0.9528790261115614, + 0.9528790261115614, + 0.9550326799423339, + 0.9550326799423339, + 0.9550326799423339, + 0.9550326799423339, + 0.9550326799423339, + 0.9571863337731064, + 0.9571863337731064, + 0.9593399876038788, + 0.9593399876038788, + 0.9614936414346513, + 0.9614936414346513, + 0.9658009490961963, + 0.9658009490961963, + 0.9722619105885137, + 0.9744155644192862, + 0.9744155644192862, + 0.9787228720808312, + 0.9851838335731486, + 0.9873374874039211, + 0.9894911412346936, + 0.9894911412346936, + 0.9894911412346936, + 0.9959521027270111, + 0.9959521027270111, + 1.000259410388556, + 1.000259410388556, + 1.000259410388556, + 1.004566718050101, + 1.008874025711646, + 1.008874025711646, + 1.0110276795424185, + 1.013181333373191, + 1.013181333373191, + 1.0153349872039634, + 1.0153349872039634, + 1.017488641034736, + 1.017488641034736, + 1.0196422948655084, + 1.0196422948655084, + 1.0239496025270534, + 1.0390251793424605, + 1.041178833173233, + 1.0433324870040055, + 1.0562544099886404, + 1.0648690253117303, + 1.1014811404348626, + 1.1380932555579948, + 1.1402469093887673, + 1.1574761400349471, + 1.3965317152506924, + 1.4072999844045546 + ], + "yaxis": "y" + } + ], + "layout": { + "height": 600, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Rental RevPar vs. occupancy" + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 0.98 + ], + "title": { + "text": "Rental_RevPar (USD)" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "Occupancy rate %" + } + } + } + }, + "text/html": [ + "
\n", + " \n", + " \n", + "
\n", + " \n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " px_fit_results\n", + "0 \n", + "OLS Regression Results\n", + "\n", + " Dep. Variable: occ_rate R-squared: 0.486\n", + "\n", + "\n", + " Model: OLS Adj. R-squared: 0.485\n", + "\n", + "\n", + " Method: Least Squares F-statistic: 343.3\n", + "\n", + "\n", + " Date: Wed, 05 Feb 2020 Prob (F-statistic): 2.02e-54\n", + "\n", + "\n", + " Time: 07:14:20 Log-Likelihood: 329.33\n", + "\n", + "\n", + " No. Observations: 365 AIC: -654.7\n", + "\n", + "\n", + " Df Residuals: 363 BIC: -646.9\n", + "\n", + "\n", + " Df Model: 1 \n", + "\n", + "\n", + " Covariance Type: nonrobust \n", + "\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
coef std err t P>|t| [0.025 0.975]
const 0.7117 0.009 79.771 0.000 0.694 0.729
Rental_RevPar (USD) 0.0022 0.000 18.529 0.000 0.002 0.002
\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Omnibus: 80.654 Durbin-Watson: 0.523
Prob(Omnibus): 0.000 Jarque-Bera (JB): 148.495
Skew: -1.217 Prob(JB): 5.69e-33
Kurtosis: 4.959 Cond. No. 133.


Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified." + ], + "text/plain": [ + "\n", + "\"\"\"\n", + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: occ_rate R-squared: 0.486\n", + "Model: OLS Adj. R-squared: 0.485\n", + "Method: Least Squares F-statistic: 343.3\n", + "Date: Wed, 05 Feb 2020 Prob (F-statistic): 2.02e-54\n", + "Time: 07:14:20 Log-Likelihood: 329.33\n", + "No. Observations: 365 AIC: -654.7\n", + "Df Residuals: 363 BIC: -646.9\n", + "Df Model: 1 \n", + "Covariance Type: nonrobust \n", + "=======================================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "---------------------------------------------------------------------------------------\n", + "const 0.7117 0.009 79.771 0.000 0.694 0.729\n", + "Rental_RevPar (USD) 0.0022 0.000 18.529 0.000 0.002 0.002\n", + "==============================================================================\n", + "Omnibus: 80.654 Durbin-Watson: 0.523\n", + "Prob(Omnibus): 0.000 Jarque-Bera (JB): 148.495\n", + "Skew: -1.217 Prob(JB): 5.69e-33\n", + "Kurtosis: 4.959 Cond. No. 133.\n", + "==============================================================================\n", + "\n", + "Warnings:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", + "\"\"\"" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fig = px.scatter(df, x='Rental_RevPar (USD)', y=\"occ_rate\", trendline=\"ols\")\n", + "fig.update_layout(title_text='Rental RevPar vs. occupancy', yaxis_title='Occupancy rate %')\n", + "fig.show()\n", + "\n", + "results = px.get_trendline_results(fig)\n", + "print(results)\n", + "\n", + "results.px_fit_results.iloc[0].summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Interpretation*\n", + "\n", + "* With one independent variable - Rental RevPar, 48% of the variablity in Occupancy rate can be explained by the model.\n", + "\n", + "* Rental RevPar coefficient (0.0022): For every one unit increase in Occupancy rate, the model predicts a 0.0022 increase in Rental RevPar." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Multiple Linear Regression" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "df['weekday'] = df['Date'].dt.dayofweek \n", + "df['is_weekend'] = 0\n", + "df.loc[df['weekday'].isin([4, 5]), 'is_weekend'] = 1 \n", + "df['Month'] = df['Date'].dt.month" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
OLS Regression Results
Dep. Variable: occ_rate R-squared: 0.621
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 147.3
Date: Wed, 05 Feb 2020 Prob (F-statistic): 1.86e-74
Time: 07:14:49 Log-Likelihood: 384.76
No. Observations: 365 AIC: -759.5
Df Residuals: 360 BIC: -740.0
Df Model: 4
Covariance Type: nonrobust
\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
coef std err t P>|t| [0.025 0.975]
const 0.7524 0.016 45.786 0.000 0.720 0.785
ADR (USD) -0.0013 0.000 -8.691 0.000 -0.002 -0.001
Rental_RevPar (USD) 0.0031 0.000 19.579 0.000 0.003 0.003
is_weekend 0.0152 0.012 1.225 0.222 -0.009 0.039
Month 0.0095 0.001 7.383 0.000 0.007 0.012
\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Omnibus: 29.561 Durbin-Watson: 0.680
Prob(Omnibus): 0.000 Jarque-Bera (JB): 34.625
Skew: -0.697 Prob(JB): 3.03e-08
Kurtosis: 3.580 Cond. No. 569.


Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified." + ], + "text/plain": [ + "\n", + "\"\"\"\n", + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: occ_rate R-squared: 0.621\n", + "Model: OLS Adj. R-squared: 0.616\n", + "Method: Least Squares F-statistic: 147.3\n", + "Date: Wed, 05 Feb 2020 Prob (F-statistic): 1.86e-74\n", + "Time: 07:14:49 Log-Likelihood: 384.76\n", + "No. Observations: 365 AIC: -759.5\n", + "Df Residuals: 360 BIC: -740.0\n", + "Df Model: 4 \n", + "Covariance Type: nonrobust \n", + "=======================================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "---------------------------------------------------------------------------------------\n", + "const 0.7524 0.016 45.786 0.000 0.720 0.785\n", + "ADR (USD) -0.0013 0.000 -8.691 0.000 -0.002 -0.001\n", + "Rental_RevPar (USD) 0.0031 0.000 19.579 0.000 0.003 0.003\n", + "is_weekend 0.0152 0.012 1.225 0.222 -0.009 0.039\n", + "Month 0.0095 0.001 7.383 0.000 0.007 0.012\n", + "==============================================================================\n", + "Omnibus: 29.561 Durbin-Watson: 0.680\n", + "Prob(Omnibus): 0.000 Jarque-Bera (JB): 34.625\n", + "Skew: -0.697 Prob(JB): 3.03e-08\n", + "Kurtosis: 3.580 Cond. No. 569.\n", + "==============================================================================\n", + "\n", + "Warnings:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", + "\"\"\"" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import statsmodels.api as sm\n", + "\n", + "X = df[['ADR (USD)', 'Rental_RevPar (USD)', 'is_weekend', 'Month']]\n", + "y = df['occ_rate']\n", + "\n", + "X = sm.add_constant(X)\n", + "est = sm.OLS(y, X).fit()\n", + "est.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Interpretation*\n", + "\n", + "* This model explains 62% of the variance in occupancy rate.\n", + "* Except \"is_weekend\", the other variables are all statistically significant in predicting (or estimating) the Average Occupancy rate." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time Series forecasting with Prophet\n", + "\n", + "According to this [Github issue](https://github.com/facebook/prophet/issues/783), If we want to capture yearly seasonality, then we need at least a year of data, if we only care about weekly seasonality then a couple weeks would suffice. I don't think the hotels need us to forecast for the next a couple of weeks, because they know better from reservations on their books. And I still want to keep some data for testing purpose. So, I will use first 10 months data for training, and last two months data for testing. This is not ideal as you will see." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from fbprophet import Prophet\n", + "from sklearn.metrics import mean_squared_error, mean_absolute_error\n", + "from math import sqrt\n", + "\n", + "plt.style.use('fivethirtyeight')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('2019_Polo_Towers.csv')\n", + "df = df[:365]\n", + "df['occ_rate'] = df['Sum of Occ'].str.replace('%', '').astype(int) / 100\n", + "df['ADR (USD)'] = df['Sum of ADR'].str.replace('$', '').astype(int)\n", + "df['Rental_RevPar (USD)'] = df['Sum of Rental RevPar'].str.replace('$', '').astype(int)\n", + "df['Row Labels'] = pd.to_datetime(df['Row Labels'])\n", + "df = df.rename(columns={'Row Labels': 'Date'})" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "df = df[['Date', 'occ_rate']]\n", + "df.set_index('Date', inplace=True)\n", + "\n", + "split_date = '2019-11-01'\n", + "train = df.loc[df.index < split_date].copy()\n", + "test = df.loc[df.index >= split_date].copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "pd.plotting.register_matplotlib_converters()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is how we split." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAFZCAYAAAAmUb/LAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5gkV3U2/p6qThN3Znc2512NdoUCQiCwQIAkEEgmCJABi5wM5kOkD4zhMxiTjMH6gQMG2yAhCRAgkiQUAWUJ5ZxWms15Z3byTE/Hur8/qrun6t5zb1V194SV6n0ePdqprq6+XV11673vOec9JIRAjBgxYsSIESNGjBj1wprrAcSIESNGjBgxYsQ4shETyhgxYsSIESNGjBgNISaUMWLEiBEjRowYMRpCTChjxIgRI0aMGDFiNISYUMaIESNGjBgxYsRoCDGhjBEjRowYMWLEiNEQYkIZI0aMGDFixIgRoyHEhDJGjBizCiJaSkT/SUQ7iahARANE9BsiOnGux/ZcARGtIiJBRKfN9VhixIjx7EBMKGPEiDFrIKLVAO4H8FIAHwVwFIDXASgAuJuIzprD4R3xIKLUXI8hRowYz03EhDJGjBizif8CkARwuhDiOiHEbiHEvUKI8wDcBOBiImqp7kxEryai24koS0SjRHQrEW30vP52InqAiHJENEhE1xFRd+W1W4joR94PJ6IvEtFOz98XE9GfiOjTRLSv8jm/IqKFnn1Oqhy3n4gmiOg+mfhW1NavEtG/E9EQER0iou8SUULa72NE9CQR5SvH+01l+z8R0dPyySKii4joRt3JrHzHC4noa0R0AMDuyvZ3ENE9lXN2mIiuIaKjPW/dU/n/zRWl0ntOziSiO4loqnJOfkxEi3RjiBEjRgwgJpQxYsSYJVSI3usAfE8IMcbs8k0ASwGcWdn/1QBuAPAAgFMAvATApXAJKYjo/QB+CuAKACcBOB3A9QDsiEN7ceW9ZwH4SwAnArjQ83ongF9W9jmpMqarJIIGAB8HcKAyzo8DOB/Aez3f/ysAvgXg+wCOr3zeg5WXfwRgIxG90rN/B4C3AfjfgPG/DcBiAK9C5dwBSAP4emW8ZwIoA7jGo2CeVPn/uQCWAzi58plnALgSwC8AnADgTQDWAfgtEVHAOGLEiPEcBsW9vGPEiDEbIKIXA7gHwFuEEL9jXl8IYBDA54QQ/0pEtwMYFUK8XnO83QCuEkKcr3n9FgBbhRAf8mz7IoAPCSHWVf6+GMBfAVgphBitbHsNXNLYK4TYqjn2IwAuF0J8o/L3TgCPCiHe6NnnOgAjQojziKgNwGEAXxJCXKA55lUAxoQQ76r8/RG4pHClEKJg+I4rAGwWQjjcPpX9quf2VCHEnUS0Cq5KeboQ4hbpeHcLIT7v2bYGwC4ALxBCPKz7jBgxYjy3ESuUMWLEmK94IYA/cC8Q0RIAq3WvR8STVTJZwZ2V/z+v8lmLiej7RLSFiEaIaALAsQDWSseRydZ+uIorKvtnAsb7PwDOrYbsAfwNgEt0ZNKDB2QySUQnEtHviGgHEY2jEgpnxizjZACfqoT2Jyrf9cnKa70B740RI8ZzGIngXWLEiBGjKdgKQAA4DoCiUMIlXQCg5BLWCQeAHKZN1nGciwGsAfA5ADsATMENCcsFMDLxE4i2aL8OQD+AdxPRbXAJ9TtDvG/S+wcRtcIlrncAeD+AQ5WXnmDGLMOCG5b/CfPawRBjiREjxnMUsUIZI0aMWYEQYgjAtQDOJ6JOZpcvwCU/f6z8/QCA12iO1Q9gr+71CvrhhoO9OInZ7xhpPC+t/L+qzL0CwPeFEFcJIR6Dmye5wfC5HJ4EkDONt6Iy/hCuMvk3AG4TQtRDro+Bm1P5D0KIW4QQTwHohp9cV8mvnG96P4BjhRBbmf8m6hhLjBgxniOICWWMGDFmEx8DUAJwExGdRUSriehkIroMwBkA3ieEmKrs+zUAZxPRvxHRCUS0iYjeR0SbKq9/BcBHiOhLRHQMER1LROcTUU/l9T8BeDURvZWIjiKizwN4OTMmAeBSIjqOiF4BtxL9Kk/+5NMA3klEx5PrlflzRCz8qZCx/w/AP1UqvY8moucT0RekXS8EsBnAhxBcjKPDLgB5AB8noo1E9CoA/175nlUcBjAB4DVEtMwTZv9HAOcQ0XcqYfONld/pQvJU38eIESOGjJhQxogRY9YghNgFN5R7D9ycwW1wQ71pAKcIIa737PsHuFXXL6nsfy/cquli5fUfAXgf3KKahwHcBuBsuIQVAC6BSw7/C67ythrAfzDDuhduePiPcKvEHwPwAc/r74c7V94Lt6L8egD31fH1vwTgHwB8AsDjcMPSPsVUCHEAwNVwyd6v6/gMCCEOA3gX3OruJwBcAOCzcFMAqvs4cMn92+AqvQ9Vtt8Ml9ifAOB2AI8C+C6AcVTOe4wYMWJwiKu8Y8SI8ZxFpcp7lRDi1XM9liqI6F4AdwohPj3XY4kRI0aMsIiLcmLEiBFjHqASqn89XNXyr+d4ODFixIgRCTGhjBEjRoz5gQEAwwA+IYTYPteDiREjRowoiEPeMWLEiBEjRowYMRpCXJQTI0aMGDFixIgRoyHMWsh7dHQ0lkJjxIgRI0aMGDGOcCxYsEBuGhErlDFixIgRI0aMGDEaQ0woY8SIESNGjBgxYjSEmFA2iL6+vrkeQkM40sfP4dn2nZ5t3wd49n2nZ9v3AZ6d3wl4dn2vZ9N38eLZ9L2eTd8lCDGhjBEjRowYMWLEiNEQYkIZI0aMGDFixIgRoyHEhDJGjBgxYsSIESNGQ4gJZYwYMWLEiBEjRoyGEBPKGDFixIgRI0aMGA0hJpQxYsSIESNGjBgxGkIgoSSii4ion4ge17xORPQfRLSViB4lopOaP8wYMWLEiBEjRowY8xVhWi9eDOB7AC7VvH42gN7Kfy8B8IPK/2PEOPIxMYbUFZeApiZQeMO7IZatmusRzS84DpI3/Ar2tidRfOmZKJ906lyPaO6Rn0Lqtz+GtasPEALOuqNRPPvtEF2L5mY85RKS118Oa8czKL38LJSf/xfTrxXySF73S1gH96D4qjfBOerYuRnjcwn5HFJXXgIaHkTx7LfDWbNxrkcUGvZDf0byzhtQ3nAMime/HSCl+17DcITArw4k0Ld3CG9Ym8FbNrQ29fhCCPx6+xSu2Z3D6SvSeM/RraAZ+B7PRQQSSiHEbUS0zrDLOQAuFUIIAHcTURcRLRdCHGjSGGPEmDOkL/03JO+5CQBgP/MYst/+2YxMokcqEndcj/QvfgAAsO+/Hdl//jHEirVzPKq5Rery/0XqT7+b3rDlYVj9+5H75NfnZDyJW69B+vL/df99/23IfvunEEtWAABSV1+G1JWXuK89di8mv/VToK1jTsb5XEH64u8g+ec/AADsLQ8je8FlgB1G25lbWDufQeY/vwQql5G471YgkUDxNX/V9M+5ZncO396WAjCF3+2cwvrOBF7Qk2ra8e8fKOJvbhsGAFyxcwrLWm28dnWmacd/LqMZV/FKAHs8f++tbNMSymebc/yR/n2O9PFzaNZ3ekGFTAKA1b8fu++5A/lFy5py7CiYr7/R5qt+Wvs3CQflH/0rtp33yVDvna/fqV5Uv88xD92lvGY/dCe2PfE4nFR6toeF5//se7V/k3CQ/eUPsfesdwAAXlAhkwBA46MYvOZXGHrBy2vbnm2/URVz9b2So4M4rkImAcAa6sfeO2/B1PL6F2Gz9V3WXnERWsvl2t/0+8vQt/Z4wGpuKcbH724BML1o/8qdB/Cvzys07fgffTADb7bfl+4awIZcrmnH5/BsuY96e3uNr8/JsihoUEcS+vr6jujvc6SPn0PTvpPjKJvWrl0LsXxN48eOgPn8G7UM7Pf93bnt8VBjnc/fqR7Uvo/jID02qLxOQqA36cCZg+9slYq+vxcOH0JLby8wOa7suzw/jkWVMT7bfqMq5vJ7pX5zm7JtbXcnynWOZ9a+y/gI2h+/27cpNTaEzZOHUT7pZU39qJE79vn+3l1Mo7e3eVGPrdLxd05ZM3oOn633EYdmEMp9AFZ7/l5V2TbvYT/1EOxH7wVKRYjFy1D8i1cDnV1zPaznJoRA4t6bYW17ChACYskKFF/5OmAOFJ0acll1WxPD3daOLbAffwDl414EZ/2mph13NuF0LYI1ohKoZyWyE0jedi1EaztKL3sNG6ak4cOgYpF5M2BvfxrO0ScEfgwN9iPx5z/CWbku1MOaBg8hcf9tcJasRPnEU4Kv0WLeHc/Op5WXrH071eOPDSNx7y0QHQtQOvk0VpGynnkM9tOPoPyCl8JZtSFwzLOKUhGJ264FlcsovuLsuR3Hrdcom2lspLmfIwTsB26HdWgvSqecCbFwcf3Hchwk/vxHZH74Tfbl5E1XGq9R6t+PxN03gsZHgUwLSiefFjlnNGP7r+c/7MnhsaEizlmXwVELkgCABwYKuHl/HmesSOOkxdHC4z2Z2TW7ua+/gGt3TyFXFuhOWzjvqFasbp//KQ9h0IxvcRWA84noF3CLcUaPhPxJ+8kHkfn2Z0BC1LYl7r4RU1/8r6ZL+DGCkfzDr5G+7L9826ytTyD/0S/N0YgAYhQcKpUgmH2jwtrVh5avfBQkBMRVl2Lqi9+Ds/bIW8WKJSsBiVDS6BDEgoVzNKIZghBoueDvYG97CgBQ2LMNhXd+XNnN6tevpS2GwCnIZdH6jx8CTYy5f/7N51E69Sz9/tkJtPzLp2H1u0px7n2fQen0N0y/zqjsVHDDh9Z2dTz2zmfc91TnwGIBmQv+HvauZwAA+bfsRfGc9/i/15aH0fKt/wtyHIgrL0H2m5dCLF4e/F1nCekffQvJu/4EALAfvw94/QfmZBz2Q3+GNTqkbKfx0aZ+TuLmq5C55LsAgOQffoPsBT8HkvXlICavvBTpKy7Wvm4/fh9o4AD/e2cn0PL1833fOXn9r9w86wjXRyYxTSgv35bFhyv5jz94cgJ3nLMEh6bKeNXVAwCAf3kIuOWNS3DcwmTo4/dk7ND7NopHBgs4+9oBlDwPkYufnsRDf7UMafvIz80PYxv0cwB3AdhERHuJ6INE9LdE9LeVXa4FsB3AVgA/BPB/Zmy0TYT94J0+MgkA9ranYO18Zo5G9NxG4sE7mG13zsFIpsERSpRLTTl24tZratcfFfJI/eqHTTnurIMhLNaOLXMwkJkFHdxTI5MAkPrDb/j9+vez2wHA3h58XpK3XF0jkwACr4vUdb+skUkAtWKP2njGhtUxDg+4KhZDcGlqEnRob+3vxG3X1cgkACQ8OcVVpH/2PVDlOqBiEck7rjeOebZRJZMAkHj4LiQmmkvgwsLe+gS7ncabq1BWySQAWCODsB+9p+5jJR683fg6CQH7mcf4995/u0KgqZCD/eSD2uMVHXW5XiVajhD45kPT98bhnIMfbZnE3989/XuWBPCzvknjmGUsbpk9AekPe3I+MgkA+7MO7j7UvBzRuUTgmRRCnCeEWC6ESAohVgkhLhRC/LcQ4r8rrwshxMeEEBuFEMcLIe6f+WE3Dt1N/Gx8GB4RmJxQNlEhB5T48OFsgCeUZXVbHUjedq3v78Rj94KOxNBxJXzqhb0jhBJ3hMHqZ4IuU+qDyzIQSuvQXjZv0Qv5YWtMJxACqat+4n+/9HDnrinK50CjQ7A0BNdLfFPX/dL/mhQSp/27YO/e6t/nAXVxOGdg5o/Wg7vnYCDueWe3N5lQyrAG6g8Y0lgw+abhAXa7rXmWsvNqBf1T6gJ1sugysFv257Fj3D///u+TE7i730/Gfr9LX2BTKKuEtTs9e4RyKK9+PwDYMd4coWKuMT9ju4U87MfuAw31N36ssREk7rkZiTuuh/3gnbW8ON1FPe8ehoU87EfvAR3wTIJCwHr6UVh7tjd+fMeB/eSDzTlWAyAuXxHg8xhnCxEVShoagP3IPYGkAaUiq+wlJJJ5JICK6sraCriHaGgAnVsfCz5P8wh0WH0oc+TRpFAClZCy6XMiqGf2Uw/xL3giLzRymN3F2vokLM38Wg3NZ/r3wRowf5/kzVep7x/qh7X1CVi7txnfOyvITSmbWvfvbNrhafAQEnf9yX2+PHYfUDIQA+ZeAZpMKKfU+VK0GmygJkZh33eLO/5H7lYIOGX99+jUJ76G/Nv/1r+PZtGjmweI+U2qOJhVF+zDBXeuvHCLuoAbK6oEcX2HPoR9aEo9vmhGDlNIcOMFgB1jzw5COf8yQQt5tP6/98Ma2A+RacHU//uPunPLaGgALf/0EZ/sXl6zEVNf/h8toZxXCqVTRss3Pg575zMQloXcJ7+B8omnIH3ht5G8/ToAQO49n0LpVW+q+yM2XP49tGx9DIII+Q99HqVTX9us0UeCjlDSVBaifcEsj6by2REIpbV3B1q+cT4oOwmnqwfZb1wEtHfy++7ZDmKOk7z59yi+/h2ANXs5PQ2joCqU1vYt7izNFIdYe3eg5Wsfw8ZcFs4NlyH7df15mk/gyeM+QJqb5BxKZ/EKHymzdmxB+dgXaj8nSj5d8qYr+Rcmx4DKPUPDPKFM3KuGrquwK7mVPQ/eyu9QzbHM59jwNk2Oo/VrHwMA5N7zaZRedY72s2YanCrYemBnU45t7XgaLf/8STeSUkHpRa9A7uNf5d+gibaEUQFDj4lZAHjH5//cYbR8+cOwhqYVxvLaXkx9+QduwVkhD/Lc38KyUD7pVNDd/mvH4q6xUhHWHs2CwiASHGAI5Wjewb7JMq7bE87apzWhz0Xkjs+F2WcKY4VYoZxV2I/eU7spKDeFzHe/UP+xHrpTyeGwd2+Dtf1JPaHctwvI61dQswmr74maokGOg/TPvw9MjiNx5w21fTKX/hsbegt1/N3bsGCrGyIjIbSVfLMCZmUNuIRyrkCTY+o2DaFMXv0zUNb9HayRw0qo0AtdcYY11A9r/646RjqHYELe1vgIoCFGySsvrS0erOHDSDJVr/MRXLENRzLlbaWXnO5/fe8O4+eEVigdx1WUGFhD0w94a5hXj5L33Kw9tLXPHWPHNj7nrzo/Wju21K55HVI3XG58fcbBzOWtB3Y1RZZK/PmPCllL3H8boFEcOTUfaK5CySrkmjnUfuRuH5kEAHtXH+yHXR9VyvrTkERbJ0AEp9vf8YlbtFh7toF0BNrwvOII31hR4KZ9OYTlfSMF/Y4HsiqhK/Icb0YwphmbHMo/UjHvCKV1wJ/fYg0fBh3cq9k74FhMRR0A0MgQSxYA1/jX2jU/TEjlkJZ1cA9odKiWAF9F4s9/rOv42hXkbKNU1E4+cxnyJiavEyX+xvcm/gPm8LWpOKPZFZ8zjWrFsLKdIZoAkLzXT2SSt17d9DHNBLgHtXVI2jYx5nsIi2QS5Y3H+I+TZa6pKkpFnqA56jVHw4d96pHvNU+YWxfyNiKXBYRAUjdHVggKTQSnLFiH9rHpHbMFLryanBjV5v1FOvaE5vxw8wagVyibSChZJV0X/dGMv1p8prze7obORXeP/zhMyNuY9hIx5A1EU/CGNXmKuuOXZzHmPaZhrzvHSxCzGXufIcw7Qom02gKJy9MJBc3qmcZH2SKQKmzGTmNOwPjccTmeyRuvqG/F3aQCk4ZhII3a3ErADavs3e7makXJx8tOAJrJ1PfZ3AM1ZJW3aRVutI8xEQ4TSkVXKWjGpOQ4IM1iTIFGdTHmknkxEy3nhHAfcmHOxcQorN3blP9814cQbFEOSeFF+WHuLF4JtLT532NQ3OnwQf4F5j0meyLvA14X8jaBhAByWdiaUGktDz1kJGemi06Mn60ZY1CebyjoCKLuntAplNkJ0MAB/nXHAR3YDWv3tlC/JXtd6OZQzYKkNj9J+ZPVXEy5Jz2NDLqLhnLJ/Xe5ZKxFMM3pnIIIAHsn/M8qU57kiCas7B6fC3lrd4+EyaKDwznzM1UX8h4vCmwdK7FFQzJyJYERA2meS8y/HErGFDh5+3UonPvByCbXNMU/nK3BQyCh/0HmSx4lpy5wifj2vp2wnnkMzqZg02QfGOVjLmAMa2tWs9auPrR8+zO1VbQgQuGdH0fxzLcYPytx941I/+hbQLmEwl9/FMXXvlU/rgZsg7QPlXzOGPY0EVHtewYPoeXbn4V1cA9Km09E7u8uABL13do0eAgt//wJWIcPoXjyach/7Mt6o2ynrFeWQ15bos5xapHLouVbn4G9/Sk3H+wL/6aQuipSv/sxkr//KYhZWAkiFN71CRRf/WY3KsCQK/nhLf8tlqyAyLQq49NBUTwroOwEhNRf21T84yUeYRRKkUoDdsJ37ZnIC+WmXC/WsIRyZHDufEk1Y7R3PI3yC1/OvhYWkYmjbn8AbZ89D86SFZj6++9A9FRau46NoOVfPuWrrC++4i+R/+Dn9GOKolBqxmPveNpdlEkKtKjmOqdbIFrbamo6lUug/n3I/PfX3fO6tpe1qwoaD6BXKPdM+refd1Qr/vepSRzOqc/x4bwDIQSImbdmKofy9gN5vOumQYwWBM4/th1ffzGf968LeQPAyb/tx7oOG785swcbF/Dz4i+2ZvGxO4aRsggXnLIA7+zl57a5wvxTKJkHFE2Ow97ycORD6fJ7Aisx50nIm7MMsZ/iPbwS92sS6E2YL4TSEALRTT7J63/lC8mQEEj97uLA8Frq1xeCigWQ4yD124u0q3QArOqpy6EUmRbj51Zh7duppCz4jh+Qk8Yheeu1sA7uAQAktjyMxN03Rj5GFakrLoF1+JB73PtucY2gdTA8INnzxH3vJiuUqWt+Dnu7G7Kzd/UheSufekCD/Uhe+ROWTAKV6+k3F7qkWaMG0mC/7xzQgF9hdJasgGjxE0rTw1SnOnKLDKM9kZdQanIovXDW9irjlHPrfOOpKpSG+9a3fxPCy/VCN0ZLsjqqC6VohNJ0vwDub5q88Yra38m7b1RsmpK3XeuqmYZjyND+TibFtH+fUuEtWttr/3a6/N13Ujf8uqZK2rv6+EKdKiIW5QDAHkmhXJSx8O7eVnbfogNkZbPHCg4yCmipCWLftx8ew2iFLH7viQns0oTodSHvKnaOl/HfT/JC2HDewaf+PIyyAKbKAl99YGzehcnnHaHUJi7X055Ko/YooanObv9nzZHxrQw22bnysFf2HdWvCLXHn8PcJh/qCHlbQ+p5oMkxs29lseCrgqTclNGaig958xOeyIRbKZpW7gDqKrBKXXmJ/+9f12+SLvtjJm/+vX5nExlnzhN3X+m8+epCqaj4MiYe4I2Z7a2PG6MUQOXBOnxYS95ICF+YWnkAL+gGFIXSsHjSkURmkWFUKKsL0WLBLZAKQHn9ZiXViAyEMnLIOwSpnTFozncziv20zyrdfRHCUzd17S+mj6NJgdCqx6UiiHs+6AoeDfevvf1pvUIJQEiFOVrHAe5zp/TXjY5Q7pUUyvakhfdvbtNWdOvyKLnjl5pAym4/6L8Wbtqnntt8WSAfQsP5xTb+9/pZ3yS8EfVDU06NxM4XzDtCqb3pdPk8BujUHmtACk0tXubfITs5u+ZUGkQxuq7rwTxvFErD5K6b+HWTkmGSZE2eDUScTa7XhbxbwimUQSFtY9FGSNBIyPxHGZwiawpdmRQXjlAyD8Jm5tclOEPtnGYOkAqjnAXdKK/aACERK6t/v1kN9L4m34OpjKJcmxVKDXFlFUpTDqV7nsPmwTrrN0GkJEJpUBVrZEz6voWz347iK1+vjrWewqAmQWeZ05RCIU3P9npC3uz+mrlCWz19mE/l0l5zhrnS2vm0skCCx89SdPUgLJyFS/wbNOOZKgljhbYX7QnCmvYEfnrGQrxmlZoKpzsOF1KfiSrvLJMLqcuflFFgQvCOEPjx0+r1MMiE/OcS849Qald90VsT6XIoZaIpFiyC8ITeqFwKDE/MOBwnWoVmPVZHR0RRjkZh0BAF06qbVXxND84IRTkizRBKjrAHhLQDCefAAbR8/Xy0fvJcJG/4lfvZMhkIUN504Ey3rf279Ysr0z2pqUxWMDFmXtiUS0j/8Jto/cRbkL7ku8Z9E4xKoiNVctvBwjs/galvXITSC17mf/+hfUY10EsC5UWdSGfcfDNPLhcV8novU13Im1lkmEguDR+Gfe8taPvMX/u2O8tXqzmdAMobVIXSFPKGJuTtLF6O/Ac+i/y7P6mMZ86gU4SbsZiOShx1BFRG5frQLi41x9EuMnTzq8aJAag4UUiFi6LdQyi7IxDK5at9f+vmbs50XIeOlEtdzliZweVn9uCUpf5e5ZxCOVF0WGPxmfChzDEhd1P+pBddKZWW3bo/j21j6vkJKgKabcw7Qkm6m64ehTJk+FC0dwKtUjVmE5SiRkATo9r8Lnb/kPlMPswXhdJU+ar7DeuYJFmFUqcCl0rsOSVd9TJHuhhbFXmR48gTc5Cv328vgt33OKyRQaR+/n3QUD9EV3MKHrhiNJoc0+Zsmcg7V+XNnn8h2PNURfK6XyJ5xw2wRoeQvOlK2A/9mR/LUD8STJ61NTqsXitOGZZEnssbNgNwC2l87+/fZ1YDD3lek89HKgMQAfJig7tX81NK1XjtM+R7QLYnIv80bo0MInPht5TjOEtXo3TSy5TtYsnKaApl9XzKi9jK93S6gm1lZgvaebEJc5+2IK3OHMracatkXjf3aXI3tfepNuStH4+16xnFNkj4FMpF8lu0EEtW+q5RKhbZ+WG8KLCqzYbBl7yGjqR/pwUSCeMqvXUFP43mUHJ5jFMcoZSk0M4U/0UHc45yzJ9v5X9DrihpJuAIga2jwQuieUcotVYMpocXByECH861Xds6IORK0DrNwpuFyKv6ekLe80ShNIa8tR10NMqlYdLmQm+686yEe6rQFXEwn8uFcxV1fNFS/+um604IJD2eoyQE7Kce9iXL11BHW0Od1YeuJ6+RvDMqnPZc68LeThnpX/nzQROP3ssfY0BjuQO1Dzcd3OsjGqK9s1ZZ6yiE0hzy9hbwyTmF1fC5rApy13vi7pv0i2npmlBywJevgejwV5VyRMpZvQHF173D93AvvegVbtebCDmUNR9K6TOq4X05v25OFcoZDXlHrPIOkUMJTCuN2qJS3TNS54upXXwbiuryOViD/nxMr0KpLIQNcBYuBuSiRWZMxy9M4hYJQ3kAACAASURBVPG3LUP/e1fg/HVm8t0uEUq5HzenUOrCw40qlFxe5ChDaOWQ97HdSaxoVSlYSUDJjbynnz8fg7NkH3Q45+BFvw1uhT0PCaXmQopKKIsFbUWuDNHWqTyU66m2bSaiTsJhE+R94MjRXOSOmhRKTmFwyvrcKMOqm83h06knOkKmu6YYMsASSokcOIuWSK/rlXFWNUok2O9sUtV00HnzaXvymu5JRgHSVX7qCKX9sNoJRtuQwHTeJAImG8uX129C1RrJWbLS95q1q89oNm/temb6u8rnI13J7ZIrvZnr3VTUIM9FnD2RrArKKD3vJBRe+1dwVq1H/r2fgrNwMcpHHYf82z7sHiNSyLtyT8qL2CqBDmF8PVuYSYVSF3qOaiekvL9yvWoXl7rP1YkKFaN6Zf+AZ6pcFORTKCMQStHVE83tgAhrW8zPofakn7p0SWrfKEO0hjU5jJqC8NCYZCROTjmUSWJ32sJ3X9qNdYynpjeUPZQrY9cEf73OlkKpK5aSMe98KHWr9KgKZZSQtWhrVwllFIXScZC68hJY255C8bTXo/yiV4R/rwZRJ+F6Qt4s4RYOQLPbS9o4dm7iMe1fyAM2byfB51BqSI6OUEYIc7FEaUpWKP0FYaaFDEvsCnlQQT0fVv9+OOs3a48lg8aGFUWiCr1CaSrK4ULe0Qhl8qYr1I0aQm88b/374J0O5dC+9zypIW9JDVy22k0DqJBMyufcPFNwOZQVxS7Ai9LavoXNX61CJssyQXaWrIBVLgGazlflo45F7u+/U/u7dPobUTr9jf6d5JC3hrgD02RAVWQr37dzIQSRm84AwBobdu+bRFJ7zBmDLge7CQplJOIoRHiFsppGoVskRSxcJcdxxyT7OBsiDIBqW+er8o5QlCO6FyluB5TLwsTjOhJBhDJAoWTI40ieP2apQYVygsnL5HIblZB3kvDa1Rm8dvUynPH7fjx4ePp3PZxzcFQl6PDQoP66makcyjsO5vHvj45jRZuNL7+w88gllPqbJaJCGYUQtnWq5scGxUNG8tqfI3WFa92SeOxeTF7wc4jFy8N/PoPIYSKGVASCm/hKJSA124Qymm2Qcf+igVCyOZTRCKXWt5BR1mmMscmRFjpOjz/kbbpuuZA05aaAvHpvBHmtyjB1DrF2PuOGCC0poGEqyuGqvDWLJPY8DfUj8ZjqgcntC8B43mRSKJ/H8vpNtX+LrkUQqbR2AessWQGI5Ug8Nh16t3Y+DSzdqD7QKw9wVZ3x36uyVZMCWaE8xBioG+4JNiVC3ofpUKZDbbEtk7VqWDORgOjs8jko0OiQkt4xG5jRKu8oPpQRijyr16s25K0LqRvSniiXdQ3svZCucZFpMS/uPdeRWOBfNJggunqYRZX5ebUggFC2JcyEkiOPOiuhRqu8JxmJkwuvy0U5nZ68z56Mf/xe5fHBAf21MxMK5WjBwTtvHKwpqo4AXrg4FfAuF/Mw5K1TKKPlCEYJWXM5lGHfT+WSkufFdbOJCqMxLDcOTaKzEWyrrznIq4zqQ2majEw5lFzIe5hv0afLR9KHvEPmUCoKpRTyNiltXA/wXJZ9kJjy/kIfuzqm3BT/XUwKB0sowyuU1m5ebdOpmabzJpNrOZTnrDnK8yLBMSwGnaUr4WzwK7/Vc8dWeQOB+WOWpCwWX362f7xyDuWe7f4xLVtl7ESj5IdziNKFrHL/ab8vVAVrrvIoZzbkHaHKm3muCY2pP/Xvdz0ltW1NNaKLKY+eSbOQjx/UzcjXrSmRgOjoMu5fhdPdo9pnBfiAdhikrvYEwZK64MiV0Rx51IW8G82h5EzUDzOfL+dQegnlooxfxPESUpNCORO2QdfuzvnC8z/py4ZWKOcdodTeRFFD3hEUStHWAVFnlfeCp1XyWE/7POUY9Xi3RcyjZM/1HBTqmH0omUprU86l0YeSIZSFHNs/W/v76wgl1+GJIz9yUU73YslWJscvDIRQrG7ccU6GagsYBO7Yvs/hvovpXMvXUamkbU7AklWdmqkjlIaIgo9cC6Goz/KDUUh5lP7XVqC8bpNvW+3cKQpluKIc+TuVNx7jf917zRTysPb6CWV57dG+cKSC1mBCydpeaRBU5Q0weZRzVZgzU4SyXNKHzbnFpbTN6ehC8Q3vZN9u9e8zF5TWUbjKzrGF8IRSpDJA0q9SyYVg7PuSSaCtgzH4Nz8jTQplB1MdrSiUbMhbk0PZqELJSJyDOQeOJFTIIe8FnrC9SaF86PDsKpRbhtXra7cmh1PGszjkHSWHsgNoqS+Hsuf+W9TjJcLJwybUk8hO+ZzS89eImSSU5RISt13rFkAIAWfpKhRfc65STQrA3D2EDXkbfhtdGHYqq/e0HBlUz1sUhdIps6HwUApla7tbtOF9gOQmgXapard/PxuG1xKsKAqlEEpeoWhp8/d2ZgpTzMbm/vNEo0Pa8BirUGpsayg74RJuqQe4UaEcPDj9nkLOl8smkklFnXOW6gmls2QFHIlQWru3uv2MtQqluShH/v5i6Sr/h3rmMmvPdl/us9OzFOjsMt73oiU45F0rIAoDjQ+lV4WSFUprZBBz4SmhLVY0hbwLeST/9DugkEfxzLe4hEiGIR+SJXby/skkCm9+PwqvejNg22j79Ftr1w/lc7AO7dUfX+cGYBIUOAs0KcJgJJTt6jkIo1CKrh6ASF1UGbrlAEDaAlIWwImKckEOAHSFqPLWEsoGC1G5HMpypVK7Oz1NGuWiHHPI271bDmTLOMC0i6xiJhTKp0bU6+ve/nD8a/4RyqYV5TSmUIaxHKKDe9C+W02mD1tdbjx2PSv6JiiU5JSNydJhkfrNRUhdc5lvm7VvB/J/+0X1M41V3lk1f880GWnCsCZfPWvkMMor1/n311Z5M49F3TXLkTBpoSNa2iBa2n3XK2UnISRCqSuM0Rl3W0MD7iIsRCiThgdcv8bqmFJplDc9H4mHpz0fWXXR2HpRIpQGxZ09T4Z2fTQxqvrgGRaA5DigwUMQS1eq6mRrByCFz2TrIP9rKyG6FsHp7qmlUFCxiEz/PjWXtapQthiKckpF328vyILTIxVqeb6bJSnJVXJrJJRhFMpUhBzKyj2pKOOeYzhd88Q6qA5Cmb7kO0jecQMAIPHYfZj60vfUnUwm5WFyKKtqX6dLypwlK2F7Uh9MRVpaH0qTQsndH9L+cgtiL7wV3rVtYQhlRamOUuUNuLdkd9rCoSn1d5ILcgCgO4QPJbcNaDyHUtc3/HCu7FNO1ZD39PdYJBHKKlGU1cljuhJ4amR6bj2cK0MIAaIQ5p0hIITwFQdVwZmqc5h/Ie8mKZShTc2JgJY2NYcyhMKp8+0L07M1CPJDVoS4YCJXerMKZeNkGNkJJP/4W2Vz4sE7+HzFgPCHnBtkLsrhJ1u5YtH3Hoa86ELerLF52P7zjqPmMrW0Mtce07v5kKaLiql1ZEiV29oukZQ1vQphY5VQk0IphRR14W7da0YCyu0fcL9blZ7tSn/iNjVUrCiE1e1E036Va4/2vdbSv9fXoUjYiZqKqqoz09eAcp+3dyrk0Es4FcujqiE78z2mBxcihzJSUc6UEt4XqYxv0adcP0E97GcIWoXSEImpkkmg0vOdWbQZ1Xk25O1/Jgip4l0u4rT27TQcP3oOpTJnChEth5JTKDuDCWXNzirA6YCDHMauDYVxPu9K+7exOZQahdIRUMLTUcAV5QBqONpUlLNYyqGsvvfJYf/z5tRlaaQ9u+bK+s+vB3snyw2F0ecdoaxn9cXuH1ahbO0ALIvJoQzxft2YGg0bO47/4UQEYVg91hDV3HyGQt7JO//A5vVRPscragHhDyXnzDQZaX4Tk0LC+lNGyKHUGg2PSw/R/JQv7CvSGcBOhOrSpLv+Tf2awxayyfmT5fWbVKNsLnxvUkQk4m1a7LDHNv1erGG8pPzKlc1VZVI2rG9Tw8Hl3uNYVU9090xXbkuEKSkTJm8I2fAwVcLdHV2qb2UuWyPoiuVRNfzOfI/aMUMQSlOVt6J+5iaN4W4AaiFSHZ3OGoYQ0W2DuDkxTAjbe+woCmUFim2dqVNRPYWr8nmQyWQi6avilsEplAiTQ1m5T6IqlACwtIV3G+FC3nKnnNGCQFkqtjH1CW9EpZzQvFkhlIptUHCV945x/zx61IIEetI8+WwGOHUyCuYfoWxW60W5xd3CxexutdwQOc8ojMKpm1QaVfnkhHHLNisQFUQ1N2cJQaPJ6kKYTZqZ3D55clGSveXJx6RQ6oiXSfHiinV0CjX32+oUyvFRX2hN6ZJTueZCdWnSecyN6Qll2AWGXOHtrN+kqg+cuXcUY3PDtUkTo4pybVJXw/h7KmHjCqEMo1AinUHxZWcpm70elTLJSkmLB5Hy5BMqRTnT50L5Lp0L3PtdJmRTWSCXrXleVlFed7T+e1Q/P4RtkOxD6Xv/goW+imQql1UXBImQygRVZ2ljbXsSiXtujp4jHwalop44Co39F7dY4cYeUaFUhBIpz14hXCZj+TqqvBUCJ48xlTJeJ1zRV6iQd/V9EW2DAGAZ00UGUNsuAkDCInRK2+W+3TqFEmjMi1IX8pbzG+sJee8Y8z9vNnQmlH2bSSgfNhQAhcG8I5T61Ve0L6o8vKUHTG17ZeVVj22Q1oS90ZC3rBLatlGBqH1uE0Le2l7VIWE9/Qis/bv0r8uEUgiFbCi9gBWFMrptkCknjw2H635/NodS85mO46sgV0hqRQUL06VJd/2bDJpDqfpM9Xh5w2blYcGGmY1FOVLI26RQlsv+SvtSyTXD1u3P5VzK97sUQqwRyqxMKPncw+IZb1S2CXs6TCm/z6RQihbJMsWrUEq+mtXzzqVBWLu2+iIXztJVtYIRc1FOExRKmRSPSqbXcpW4fDzmWkzccT1av/p/kPn+V9Dyz59k02EagmmBrblv2K5IzHGih7wlRTAlFW5K57eaohH2+ECAQikXgskelMm08TrhyGZY2yBAVbCDbIMAYEVreIUSMBfmCCG0RTlAYwrlJFOUA0QLeSsKZd7NjdwpKZTrO2xtAU8zECuUGigt7np4b7nqCkoJeYepEi/rFMpGQ971KZRRQ97spNigQpkI8OBUCKUcBk6lldCLQkbqUShNoWHO8FyjULM9qk09cb1KjqJQVq65EDmUdYUMQyjWNDLoK1QRmVaIpatUQsnmUIYvygkai/f3Mf1WurGo97ukUFZ+B1lZ0xExsWItHMmIu3zMC7TvS8oKpZdQRQ15Q63MpuwkrH07/OPxGLIjlYZIatwlQhTlmIq3RFunSopHpN9IIgxykQ8XPUn95qLav+0dW2B7zOKbAePCU9eggFs4cccx3fNsyFt6Vsg5lLJCqXOZgEGwiKJQyvNkKm0s3mIVyjA5lCvXu/sqKn2wYLNMQyg5hRJQvSi9/bQnSsLYYrGRSm99DqX/GuM65VTRliB40yjzZbdP935PhbdFwJr2hNFiqFFwFd5RMP8IpS6HsliI1t1AtmdZzCuU5d7j3H+EeajL0JHfRkPe8vttm7VtkBG5n/dMFOVIK09n2Wrf3yT5I6q5WK18uM/7HtNvo+0iYTg3zESsVai582PKp/K8ploGVRRKWRmIkENpAjEddBTIY+pa5OYUh8ihjNIpJ+ja9C40TPljAPPQdxxlkSFHJKrKpJJrafBvzH34CxCVQhNh2yj9xRnT75ND3vKYvCFveW4JQSgVEjg1qVaoS2k8WnIcSqHU+1CKtg6VEEikP1ChZK5FWYWzn3wwcJyRYFpgaxVK5jrnrl1TFKqeHEp50WGCpsOZrosXoM6zCulNpozFW1zBTpAPpbNwMconnuL+IR87VMhbp1DyhDJj+7fny9NEz6ROAjOTQ+kNeefLAnnPz2MT0OopLiIi9EiFOQ8M+K+xlW02UjZpw+ONwhGiYXI6v2yDnLK5x2qxELoaUW1xpyqUwrJQesVfuv+WJf3spBuCMVRXa1eKDZIyeWIQdoJPipbRlCrvYIWSBg4A6QxbKKQY+K5cB+vgntrfikIpr5wzLUxVrJ/0GJUHHfEyFZDIDwwh9D6mEXIo5f0VMlPNoVTU8WCLj1AIoVgrJLdC5lWFkgkzG43NpfMUcG1a/ftrPoVB1enKQz+XVYqdlHDcRDWHUlJ+DHljzuYTMfX5f4O95WGUX3iqP4wuEdGEbAflK8rxky3rwB7QwAGIxcsZQuk+pDnXCTUH17+PaOsAmHMXLofSpFAyIW/5c+QcSkWhDHEt1uG9azye6ZqLQCi5sRujEmwqkbnKW1GxTeCEjCAxQcmhZELephxKyage0Ie8y0cfj9IJf4HSy8/yOB3MfMg7Ke3u5Xmm/El33+bnUHrJGZc/KVv9LMpY2Ds5/fy9T2q5uL7SPkgmns1SKIfzDhpsGjTPCKXJ2wtww35hCWUIhbJ80qnTN0oyBWEnag9CKpdcomDy8dPlezaYh6iQOss2d8Kofm4zOuUEhLxTP/8+UtdfDpFMIveRL6J88iv9OzCEEg/cPv2Zchs8aWIRmdbgBG6Tb6XOh9JEyOTXCjn9woYzMDddt95rQVY9W6oKZXAOZT2EMsz1oBREVc69olBOjKp+oFFyKKWHcq57CTLD0wqV97qQW2Q6i5fDGjgwva9EbpV7vaUdok0+p3yVd9B95Ww6Ac6mE5TtgSTN24ZQJmPZCbR99jwUXneeahtUCSNyrhNKGo6s+ujyKGUfTAZBOZTKd5DInxJVUHIoQxDKJntVmq5/Eg4rGLA5lGzIu9kKZYRORVxXroD5QVmkytGFVMqcQ9nFEErNvVM87Q0ovew1/o0B3aI46IpydAplyvJv95JEU4U3AJQbyaEMRSil/EmGFMuh7Pv6ZUJps/s1i1A24zjzK+QdUMwSqTAna86pAoDiGed4Dk6h7Ft8mK0qb9s2Kik1NCHkbQybjA4hdf3l7r+LRWQu+tfAYzpLV0HY0ysqa3zERwiViaWlLdBiwmwbFL11p0x2jF1XIvhQAvArlLKKVb3emPCm8rn1KJRh3iNbNlUn/qT/AeMWGPnJmLmXt2QbJF2bU5LXo7dVpEwsfL22oapIyu/V2qbkHNOEpso7jPLPIIiIehU6XTgzef3lII96D3hUH851QlYopTmB9dTMtAAWr/T4YFqot3WoKuuorFDKOZT+hXgYhdLkFVsXgj6TWTyzOZSRi3KY+0ImoMkGFEouLSzguyohb7koJ5U2Ljyc7kXqRjvBX3MMMTWa+2ugsw3q0CiUUgolCh5COZMKpa4oZ9CTQ6nkT8qDhVrpfb9GoZT3G2pSUc6zjlAab1IgUmGColosWIjS5hNrf5fXb0L5eSf59wlj3+L9jJkilCEVSiFNSpGqvIWIHPKWewizfolyNWOmRcln8/WZVhRKJuQdxTZIWwFpUiil68r0u0fNofSFvPmQZShT/TqKckKFGWWF0jPxKyql/LCNYhuUkwmlP7fWRyglYlEOIJRyeoJobWfMwTVV3iFykzkEElFTUU51TOUy7L3+QptaUQ6rUAaFvJlK3DCm5gCQSPoWfr5jdHar1+iInEMpEVI5p7KQC6ziDsqdjYrA+ZCJQvA5lMx9FNGHUpkXG8qh5BTKgHs9IOSNZMoliMzCwu3HzS+gRKeaR8l6uBqss3RI2aSocYBeoUxKCmXBMwXNZA6lTqGcKOlzOLuYfuSyl6Z83PWdLqGUv78u5B4VMqFsYwzkgzCvCGWwQhlSpSnk/f167QSQTCH/4S+g+MrXo3j6G5H71D8r4Y5QoUcvZrMoh2t9JYchoiiU5RLfW9mUQxlmFceEduRWdt7wJhtyDVjN1pdDaaiALJd9155RmY5Y5e0NeSthp1ZNDiVrG1SPQhmdUHrJT2AeZQNFObklfoWSBg7WSKjsC+qs3uA/9sSYj7ByRF0mijRZrfIOZxsUiEyLloABUg5hIqEs/rTvi5JD2SoTSk4tChHZqELjRel09wSGvBUj80TCd37IcfzzO9cxK58zprNERtB8GJJQRq3yboYPpQmskCH3kZcXVPIcqhDcimE/c71U+3FzYPMouUWMfH3kpgIXGACwnMmj1Ia8bVPIeyYVSv7YUyX953NdgIIIXDXkLYf2A75aaMjFPW9Z34L/eFkXzliRxilLUzh7dXC64fzKoQzybwz5UFUf3G0AEcSipch/4LPa94UqjvBCQxwbzaEkRy7K4au8xYJFgDe3LIptkG5CNJFhEeLKZQnlSgD31TZ5CzDUopzWwNWsMeStzaEMUL/zuZqVh/F3j+BD6e7vOZ86hUleyDSpKCfU9WBUKM3WQaaQt3IPSGMpdHZDtHVOE71SETR8GGLRUsUzVPQsg2htrxF9EgI0MVYrCmOr5zlvT6cc2ocyEEQQrR28ogWoRSqZNlBR336ytl+1hzvnixuQQ8l+lzCWQdX3pzPstSe6exRCoCwEuSrxdMYfpi/kp3MHNXO9NbBfSXGoF8EKJRPyboIPJRWLSn4mW1XtRZMVSrFgod8VIIRtEAD3epEWdHJXKN9rDKFk84vtBEQyVTsPJJxKTYQ5d3R5q4XHJIcqXcg7oYS8p/8dFPJuROTTKZRFZ5qoDuf9+8iemUAIQllRKNOGavaoEELgs3eP4ifPTCrEtCdj4T1Ht+E9R4efQ+aVQmksbkAIWb+KgNCQFkrI25xDqZ1Umh3ytnkfStElWTlECHlrx24qygmxouRCO2LJSt82a8CrUEq2QS2t6mrWq1oIUZcPpdJ7WF48eAiPMYcyqkJpqvKuGZvLtkGzqVCqtk21f3eaCWWkXt7S5ziMcl11ALBG/KFP0d1jNlpXip3a3TQR+bxOjKuWTGFyk3UwhMvlHMIwhEG0dUxXxcrjmmJC3vI+DKEMVeFdhaYAUSxYGKigcYTS6EWp84tlOmnVjblSKLnX5V7eSbMPpREhcigdyYGD5FxppijHHYf6rHS6+S5zQARCyRw7TKU3Zx1UV1FOEKGcgSpv72syoe1mcijbNEQZcMldlUjLSmyhAUJ516ECLtyikklAzdUMg1DvIKKziOhpItpKRJ9nXl9LRDcS0aNEdAsRreKOEwiNB2UNIYtyZDVKmdw1iNzPW6dEzkjrRfUmdSRvsEhV3rpcQ9PYudfksTIrccXDzNs9Ruow4laUSmqI93sVC8bCIfZ7OY5KdNuk3B/vA66JOZTexYGi/lRzKKWHMRWY33GWFEovmQ/KoTSS3ABjcyeVVlMhDu1zf1/PfSfIgmhfoCr0hg5E00Td/x5r4IDfXqilze2lXieMeZRykUpLcBWv9+Gsdu4KaRskHzPsYhoaUtjW6RLNACVJWQQCxm45ukWYYivWAALnQ3nuKpUUr0/tcYKiaQqhDFAog86vdzxclbfk86kswKQcVjm6UAt5c/mPJoWSK07TkeMQfrsyOEKpMzY3EcrhwJB34FBYCCEwoSnKAaYJpRzyjqpQes+D/NZ8A2T4f57S/wayPVEYBBJKIrIB/BeAswE8D8B5RPQ8abcLAFwqhDgBwFcBfDPySIBA26DQCqVSJR3uoaHmUNZb5d1g1RXXepFrfSWvQpsS8jZUeXMEQvrNWIVSmjy9+8gVvaK7R5lcvb97kN0EG9rmxmQgrVFzKI1dM7zXiK5KV17wyMdznPraeYYgoaoPZYQcSmOVt9k2yEllfL2xAZdMsL6MlqXem55xa4udJFVfJivcIi0KTJXePh9KqLmb7Hs8BF5Z3E6OM44I/gc3S3AjhLy5Sm+nYqtmshVyXw+jUHquAc21aUmNDxpCQMRGXpjSBBPuBqK3XmReV+5f2YfSsrTnWJD0mA7jQ9nS6uu/DsD/vNIQXDaHkvGgrL3GiTUaVwElr5Mh7zKWM5XeWh9KOeTtK8oxk656FcqpsoDpndmiRqHkCKWGKAN+Ei0rlPkG6MaQobKbK4gKQph3vBjAViHEdiFEAcAvAJwj7fM8ADdV/n0z83ooBD40w6o0cigjjG0GoNoGBVZ5a1S+ZvfytmyeFMs3c5SQt+5cmkLeLKEMsRKXCxI8E6Kl5Ov0qJOU90Ekd+KRQy4cyZEXIqm0WT0x/e4lJu/KqFDqi3Jq6pFCuIu+a9gKUu41COdDqbENQkAOpeMYU1R8SrcQyrVZruXWet7Tv1/1ZdQVqXhIpFb5lb0oJbISqp2pAcZwskSmjL2Zq8fznm/5+0oV0CLToswJbJ51hKIcjhyIql2MpmCnBo4MKd1yPPehLkLSVIUyyDbI/5zgLIMATci7QYWSa5Opq/RWWhyyPpRSSk8qraqg3oU8ZxsEsAU1JkJZTdEIA5VQ6ttLVtGVVkmWTKh024sG26DutLxv4FBYBFVYZyvhaLXKO5pC6SWUcg5loQGF0hQtnylCuRKA1yxtb2WbF48AeEvl328G0EFEep1ch0Bj87CEUiZk4U6M2gJvbkLealGO5qaViUgTQt7a7wR+glbIFJfsbZrY5AKM7h5j2zalGEAJ7eSVXE8uBcLokxc15B3S4FvrQ0mkVgF7jmkF3Rc6hGq9yBubAwGEMuiB6r2GiwU3Cb963EQSsBNsDqX8UNe2IvSqyJrcwmCFss6CnOr7jQpluAYMvvd4Q94SWbWGJELJPfjZHMooCiWjMnaFVCiZkLfpHtMtaGc15C0VGWoLrDhiGjWHMkihBLR5tsp9WCqq+ezyvZ7OqOffOyZNUU7UkDfscO4FAEcog0PeugIcDqoP5fS/5ZDzYimcW28vb1O4GwCyFaYqh9xlQgsArXJVkQdeVdbUYjIqDmT1AlI9OZTNqvL+LIDvEdH7ANwGYB8A7Uj7+vrY7Qv27MIG9hUXg/v3oV/zXi/adu/E0Z6/pwoF7Wd6sWhsAms8f48N9GOP4X2bJsbBTQH5yclQn6dDx+7d8NY5ZvN5bOvrw1FrN6Fj19MAAEGEvu6VOM6zn8hNhf7c9l3b0cts7z94AIOaYyw5sF9ZSex85mkUPEnbx+dzvlXKtt17kDl8yPd71FMYugAAIABJREFU5CbG3XEKgROkB+XWoVHYuSyO9WwrTY7Xvlfb7mf8v61lo9WyYXltZMol33lIDx6EN0ejAAu5UhneafrAzu0YTbtq2JqDB6CbQp2iei2tHBjAEs3+Awf243Bl/xNz/gfT1r37IWxXuTreTiLhIY7btzyFcoVUJIMeXhoUxkcDr4ejR4Z8k8CewSFMVt7TOjyCTZ7X8sODtePZU5NQ+8dMY3JsDNur+2bHffuWKwuM7ZM53/XrDOzHob4tWOfZNk42dvb1YUW+iKWe7UN7duFQ5fgbBg7Bm+25b2QUY319WF124NVW8ru2wfv4GxeEnQ3cp8tyBagNXStjODyIcc+xl7/sL7HszmuNxxugRO07BZ3fvJ1Uflv5PANA/0S2dv0FYV2+ALmZ6qCwcKCvD+0Dh9n5oopdhwaQg/9z1sv32K4dGM24W9p2b/Pdx1WI0eGG5k4vNgwPwdRteue2bSgMTatkXX1bsJ7Zrzg+poxp9eHDMOh22LNtK6Ymp+/b9cND/nMxOIQR6ZibyGKfJ1k7iXbL9gkNW7c8VWvf2NfXh+UH9sHr9js4PolFIHiX8jueeQbFCjlcNdAPb6lN/8goDvf1YWk2B/8yD9gxOoG85jdJ9qz23cMjR5+IHZp9V5Uc32ce3rkNA0v0v3VfXx8WlQCbWlAWLok6vqOsvT7GRxKA5xsfHBhEX99BAMBorgXANBFrEXkA06Ryz74D6Ksjdrx1kgDo81/7du/FS7qA/rEcvPrd2KG96Jv0E8HhcQsAv3ArZ8fR1+eKL1NlAJ4rJVdy6rpnSgLYPeE/L16M7N2BnBTc7e01zQLhCOU+AF4X4lWVbTUIIfajolASUTuAc4UQWo8M3aASQ3vY7VX0dHZgQcAXAgC75F/5ZNraA08EACQObPX9vaC9FRnD+9IJPpSeTtihPk8HO+v3SWht70Bvby+sd38czn9+CTQ2gsI578W6F74YwrJqbQKtcgm969fxq1/5M3LD7PalixZhoWbsycfvVLatW7USYsXa6eNKCt6GzcfA2ue/4Vpsyz0/2QnYnhC1SKaw4fjnK4U6SadcO5921q9oZroXgQYP+lQqq1TEhmOmKaQlCaTJ9g7YUueHFYsWYknlMzKGVbEtHOW3Td+hr9BcsrAb3b29ru+n54EgyMJRmzbXrEWsTIuvQGbj6lUQC93pd/ddB1AP0hCB12EG/pXzqqOOhrNmozsmaRWdsaeva5IWAjLa0unpfQf847cqRHndiS+EIKoVyiSzE1ie9k9JbStWo7e3F8kn/XV+Pa0ZdFaO3yL9XMs39mJpby9Sy/3vaR33X1ftS5Y3dJ8md6zTvrZi/UY4nmPTwvfC2fEErP27tO9ZcPZfoXNZZcwBUY5U10J17Mx7Fq9e615/IZDuUat5uzYcjfbeXliWeTxreo+GWOpfbqble2xhd+0es/N8vqLF3F/1ItNiVlXXrVkDsWz6GknufIzdL+WU1Hu+1VxEs2b5MjhHTb8nk/ZPQsvWrMFi6ZiproXAwd3KsTIrVgMHd/mS5Y5atxZoaUNfXx96e3uRus+vLC5csRKJZ9qAselnyfpVKyCWu5JJ+lb/+BevWInu3l4kd6yBjDUnvtDgUtCLwuvegdQ1l8HpWoTUX38EvRv53y/12Grg/um/l7Rm0KX5ravfCwC+Uh7HP90/hrYk4aunLEHvSv53XZodB3ZPLxA6urrR2+suKZx79gOebMeejlZgbPrZ07N0GXo3RKi0r2C4Pw88pG8Z2r1kBVDYiyyS8GpsJxy1Dms7/HNdeaQIPMKnxqzq6ap9l5IjgLumlfyioLrumZ3jJZTFIfa1tgTh+M3RjxmGUN4HoJeI1sMlkn8N4B3eHYioB8CQEMIB8AUAF0UeCRBclBO26IQragkDeb8AP0ldDpmxUjoMGGNzAHB6j0P2O5e7uT/VcEamxReaT1/67yi8+X3mvBegvqIcJj+RioXp21QINVk9kdTmUCr9gLtdA10lmX9iFMnfXQyaHHO9N73vybRCpFL+Ig15DEp4J2XO7zKlOnDnx5TjWN1fDnklU/CZBSflwpzpMVt1KpSBrefA2AZ5fSilhYkvZ9hUkAP4jcfl0GP13NsJiM5u0Oj0Q8/as82/b4fGl9Eb5tb1SJdC0kq+bp1dcmrvN+Vgyj6Ui5Yi+40fA/kpJG+5Gulf/MD3eunYF/rITbVriW7OY6u32dSY8OEwtktKlRSmA5wyIlZ515Nyg3IJyRt+DXv7U4AQcBYvR+F15wGcuTYQXBwpW1tpQt7sbxCxKEfZP6HmUGpD3t097v6+HNSiTxiTxyhSGbYYsnY1yOOpPk+4HPoAy6vC2z6Mwjnvca8/Q06lUjQWoigHAM4/rgMf2NyGBJE2fxJQQ97evEg5LNyamJ0cyqly+CpveUxeeK2SEhbBouk+I45wSWbC0r/fi0JZ4AdPTuCnffoC13rC3UAIQimEKBHR+QBugKsRXySEeIKIvgrgfiHEVQBOA/BNIhJwQ94fq2s0gYnOM5tDKd8MgcRQN16mcCMSGNugGqSHvEi3+AoUkrdeDWv/Tkx98XvGj6jLhzKoKEc6HyKRdKsXNVXellzhXe38I1fICoH0FRfzY2ppVXI0LWkcagJ6Rnl4+irJm5pDWeL3kVuvpaRzVJie/OsllGFcEdRORZ6nlCn3NeiB6j1P8sPOk6snunsAA6HUtSL0KtI6f8YgD8aGcygNVeJszqFlAS1tSu4oABTPUOsYRUu7nlCGzY2MkrDPFN5M51CaFTk2h1K+x7xOCjofSuG4cxBTSJm8+jKkf+vXKqzd25D73AX8sQIIJTmOj27rinKQr3R18RqVR7S4k3PN2aIcjd2O6O6BSCZ9gUkqFfxLBfleT2fqK8qJ4hQif14A1O5V4QglYM4vrCKpKVYRQig+iyqhnKEcypJAUfjNz20COpmK7vaQhBIA0hbVyCrgEuawhPKfHhjF958w14fUU5ADhPShFEJcK4Q4WgixUQjxjcq2f6yQSQghfi2E6K3s8yEhRB0uzIzljGSXIHttaWEiZAYIOcG4XkLZaFFOOWRRDsAm0tt9j/tUHxZ1mLKzD4EQVhTKarwyGcuWQU5VDbHs8K3qWtsVdU8mlGwCuvzwDGtsLoSqbJiqnStjUSZwebKX//bsL38fEXaBxBQo+Q/EmMR71QjlgeQZR5AnrLcYSTFP9xBKqX2otrc148tY+7dSPe9+B1PRDNCEKm/T+w1V0c7Kdf6/FyxE+QUvVXc0kUZN9bb8nZ0Nm9j92PeyCmXl9wny8pUVdkA9Bz6F0jCXa1RKe8vDobbVEDQPy88JjV0YCaHOIUrVtr6ojv2bLcrhSbvT1aPuL9u1KYs2czGk2svb/f3KzzvJ/9nLVqNZkBXKKIQyDHQ+lLL6aJNaKV1vXYuuS04V2ZLAmHQZLkhZIKaVpcnYXC5OSkmUJmz7xeG8g4u2BBQbY4YJ5axBJgKyAhBWoaw35C3nRAatcLWEskHbIMVH09AzWKMcKL12ZdQR8uYUSjKoVlXSpFMo5Z7NwtuRIRXO6NdZvUGtZgxQKJFKM+qJV6EM8h+VZogwVd5BxsaKF6U+5C06JaP46nbbT8RJiMCew97FS7Xnfe1vg3+ofC0oD1SfQqkJecMTUtWgZpkit1L0kkj5+FVSHKBAisW6kppwMCmcpqposWw1ii853f03EfLv+TQbrjaZkusUytz7PlNbgJZOOhXOKlOZowRm4V09/8bvk2lho0Cme8zo2KFracu5TJRLbMcb03FqkG2DTItp+RqTO9/IPqkBnXKU+x/Q2wZ1LVLThpRFs2yN1qLev15rNE2nHOeoY1HafKL7uckU8u/6BDumetCIQhkGig9l5eeVjb/TNiFpMEGPgmwIhXKs5P8srsIbcEP2uoi+olDWWel92dYsciECqJxPZhjM617eoq0DNDGdZBu6/VydCqUyqQeF4DWvU6Mhb86HUgdNf20aPgys1SfV6kKWsmWR7zU2lyiEQqlZvSs5lB57CpFOg4IXUiiv34ykrFAqOZRqfpE2h1II1YbGtv2qsfz7hAh568j29N96iw85vCY6u5R+uwBcRciy/L9JfkqrLilG2fIDTVZFPNe7kk+baQWKnkILr0JpCHmb2roB0PpQ1vImS0WVFFfGHRTS5kLPkWA6foCil//oP6J41tvdtoaLeI8AU1hbRzbLJ78S2bW9oLFhOBuOMY5BBruQqs6Jhu+jI0KmPGVjyoQ2lcgQEZIr7wDlPhVk+eyrFCJqyt+UrmFl/K3tgLeYUDY2D1I0YSCU3T0QUpSHSkV/uD6yQqmZj4iQ+9wFsLZvcT+3ZxmaBkWhDPahjALFh7JCsooS2UpagBxdrjeHcqJkfmO2JDAm/B/GeVACABGhLUkYK6jkUCaUshobhlA6QuCiLcFWTQAQ8LW0mFcKpRw6VHKgQhJKkiYKUSehrDuHcoaKcjjYu7ey2+VwsoJ6kuI1RTnaY9YIpRzyds+bNocSCJeTk85ALF+t5B8Gh7xTqqpZ3aeQ9xOURFJNK5B+H6OxeSlcDqXywC4YFMoFsrlLZXuayw013DOyB6Wcw8UtBKohdFmhlB+G3oe5Yp7uDXkHKJS6kHeV9MvH9qqfJgXRTmiJXFjoji/IYhUoH4jgbNhsHIPRlNykXi5ZAeeoY8PnjleHZCpGs2w2788di4YImbxeDSkTpJuDdKklYf2A5fHLi2dDZEkxN5fFD/n3iNp6EdAX5XQtYkLe0vE4H8oIEQbf/GMn4PQe11wyCSYFJYQPZRTIaYnTCqV/O6dQ1tspZ1JSKOVuhdmSo4S8TeqfLo9S7g6UVkLeweO//UAB28bCiV3jdTLseUUo5WpZJecibOvFOkPeQq5QMymNjqNP+m52L29DDmXxpWey2+WKVgW6Cd2oUJpzKLUqnELUy4BT1udQAkqlNzvUdZtc9VaeOEMU5SgksRLS4rrZyDmsykJjhopyqlByKBdoSFhAbqgMtSBHeqBZNoTn3iEhaveW8ltL7/WeIzlc6CW9cg6ljOpDSGlFWFHTlGN7yarJeLxnWfjIhQ6JJK8qpdP+Cv56YQx5N9Y2kkN5vT/f0pFznzX3pF6hlO4xb+GbMYdSF/mJlvetRFsCCaVhvpeuM+X6l1My6jA254pyRHsn321MmeOk+yCVqYWxa/ClJ2mKcmYQyjmaHDPneEeEriinIKl3KYsg1/g0q8pb7n89VRIYl0LeXIV3FbriI7l/eVpRKAOHitsOhC+4esXy+q6H+UUoZYVSVgBmuChHIW6mXMgwqlSdUIty9OMvnfJq/hjD5hxKbcjJRIa5h0AYhZJIVTeKRd42qIoQCmXtAZiSi3KCbIOYTjnVfeTE/NY25rqQCaWpKEcT8pYne+X8GBTK9k6U129WPkukW8x5azIMbRf14yr4/197r0QevPegPAa5ylsD0dY5fe5ltW4q64YsDcdGugXOoqXg0HC4u4Ly5ucr2+rpksOhnpB3Iyj9xRm+VqY73/RB/2fqek3rlLUm51DqiWY4tw1lDpJzKA1zelAOpVJAFRjyDqdQVlNCFAsv+fMZhdIY8pbPP1dU1WxI8y6Vy2yf9LoPr1EdZfUuZUGpiK63U05OIqsLJbI4WRIYLUo5lJqQN6Dv560W5UjkOUTIe9+knnU+r2v6GdeZIryzt775ZV7lUCo3tLwKn+minCDi4IVp8hGOO1lFDDnVEIEQl094CbL/+AOkrrgYiUfvmR5DkEKpO5fGVXpAUQ7n91hFMqlUGZpzKEMolBVCKecfyq0KWYsMTX4Xp1AqiqR0joz5YCEVStWH0tt6USXExTPeCPvCLf7tlqWGzqMolC1MIVQiCcAz6RcLbohTVk1lQulVKA1V3o6hKEd0evqcJBIQqUwtSkFCAPkp9djS7+qs3wRrUDXvdSQT7npRPP2NSDx8l29bkKVSWNRTlNMQ0i2Y+tqPkHjgdpRXbcCo3ervAKXzotQplIY0DpOqT6US756pW7iFjRTJkYwoOZTy4itQoZTuWXmRG7IopzYnatKGap8X0oey9m+5HW1QikaTIFo7/MVBk+N6hTsidK0XC9Ll4Ya8/dvqVShlIieHs7NFNYdygUGh1PXzDizKCRHyPjjl/5I/Pq0bRccl4m9Ym8H9AwU8MljEWWsydRflzC+FUinKkW7S0AqldHVQyK+pFOUYyFWQCtlI2DsiIXY2HoPCm97r2xaUQ1lXUU5EhdI7SckTljU04CNqorXNry6FCHnXVDqlyttclONWefsJUI2oZBlPw6CFhtHYPGzIW6OYggl5pzIoveQM5aPsXX3a78UhsCgH6u9WPbfK9aPkmXoVSjnP0bNv+wJFfal9tmRYrYS9s5OqciQRWzmMWztWsxTKE16sbDPmIkaBKaw9Awol4CrGxVe/GQ6nvGqcFzgPSgDqtRjChxKAPoQdtVhHCXnLTgRyyNtQ5S0RSqVQzpRDKYSqKLIhb8bLs6rgKwVyAXNckEKpGJvPEqGcwUpvJeRd5hXKpNW8HEpZoZSJ2FRZYDxKDqVGoVSLcvyvh1EoD0gK5cbOBN62sRVvWt8C2yK8ZGkaH35eO9a0168zzi9CGbDqq9vYvM4cSqONRJCxbUOEUnpviJC9nIs2M7ZBDDkJ40MJKF6UdPig7295/GEUyiopUMiqRPaV1XgqrVXylG4ZLWrIWy4aMFeslvgxRCjKUY5f6fRTkjzjSi94WSSFUinK4ZQCOY+uFvI2K5TmHEpviw/SFubIhFLtljOhKEcyiXGY1AAAcJY0R6GEZaN42ht8m8oRq6t1MCuUzc+hDMQsKZT6Ku+IOZTS9qCQtzGNSZ77Ap9VhoYPdoKPXnELugqhNIa8nbI6RyRTqiJb3UcI9Vk6CzmUAJhK7+YRSrVTjkuy5ArotK0W8NStUErvky2BsiWBUdk2KKXPr+ZyKC0CWuwAhTJEDuWBKf9Oy1sbzCFnMK8IpdJNoK2+opwoOYg+RMqhDKoAnz2FEoBrP+IpBLDGhgMqtqMTSsW7DFIYxZQnJE9uE/6JRHl4BiiUhTPPnS58UKq8wyiUfH6XtavPt91ZulI1llcUSkP6Q1iF0hCekkP41YKl/Ps+4yOBpRNPiZRDGViUw46rMhb5tzYolKaQN6AvzAlSKMEolPI4yuuOZo/drBxKAMif+0EUPXNV6cRTmnLc2c6hDII2h1IzFqPXq0mh5OYtTuWrHktb5R1QlCOk1BXT3BdQ5a34pBYMaqAmvMzdf04t5G0oyuGKDpkOZbVxlIpuykh1fzvReIFaSCjtTieaZx0k51DWQt4S6UvZBLtJPpRBCmU2YlEOl0PZniTFCF3OoQwKeU8WHZ8dUdKqv72iCfMqh1JNdJZtg0LmJjXNh9IU8g7oO17W5AGFgBJ2DkOIEwmIzi7Q6LQXGo0OaW1J6mu9WL9CqaywpeIXxZfRoFDm3/o3KL7qzZ73yh6OYaq85S4e7nezdz7t21xevxn2kw/6950BH0pTeIrLoQQAsXQlpj77bSTu+hOcVetRevlZsLdLeZWmRZikULL2LzoPUfn6V3IoQ4a8Aa25edWDsva3bB49NWm0JAIAtHXA6VkK67A/j7JRU3MfOruw9R3/Fxt3PQ6xcAmKr35z8HvCwEQaNVY9MwptlbemCYHmHnP/rSeUbGjbFPHRvdZMhdJ7nTllv7UYkVqh7fORlU3NNSkebA5lNeSt71qlLBqrSrJuTlEKcmYn3A1gRrvlyIU2Vf9JrspbzqGst1OOkkOZUgmlfJmZQt5cDmUHo1rKVd5BIe+DWf8glrbYsJrhRCFhfhFKxttLENVWU1QqupOEqRUhoE4UdfbyNubUBJmeNzGHMqyPpujqAbyEcnhA73MX1YeyVOJX8GGqvOV/A6qJclAIuILCa9+K4uvfadw3uMo7xasnThnWzmd82531m8w5lNLDRUGdnXLMOZTT+zq9x6HQe9z0a01WKLXFAIEKpTfkLZsuS4UzmkrvWpec6t9K+8VghRKoKJ0SoWx2iC+3dBUKp57e1GPqwtoinQmeA2cA2kWezofSdC2GSBPxweCkoJ1rg2yDouRQeq8zLh/SUFRnyi33gbMNqiy2dLnMAFSFsnLetR3KFMeJWQp3A4qV14yGvKuWuXKVdxM75cgKpaw+TpUECk44Y3OAJ5RcXqXcejHI2FwNd89McHqehby5PBA5DyeEShml04wHgX6DXpgmOGDWQ94AlFw0Ux5l5KIcTf6qVw2MEvJW7HkUhVKjeoQgPTIBU1IlUhmmz3AOdGCPL7Ql2jtdv0IToQy8DngCFlSUYzI2N6YDKKqQQQlSQtHMA03J3arDNihARQwb8lasWaYmGNsg9dw4a/mw93yHllCaDM9nElF9KJl7rAqjDyWXamTKWdcugs2EMkqVt5EMJ1NmE/EQBTnc+ADPPWAIeSuFadXzLh+voLl3Z6kgB2DS2JpJKHVFOdJl4NoG+bfVX+Xt/1tWHydLDtN60RTyVl/rYHIu5RzKoF7eB7P+gS6bgfxJYJ4RSiXRP5FkKvNC9MmusyhHDXnXZxsEoDGFss6QvZDa2MmdaHyI6EOpVbpCKpRyq7GgkLeuAIALrwX18pYXISLltiXz5pxSsQh721O+/crrN7tFI6ZirRCpD+7xg0Le+l7eyvcxPABUVcjg86ZUeTMknvEPBTiVI+M/n0LUrmOT+TgAOBv4whk5/5HrlhOUnwkAhdec6xtb4Zz3sJ8336DLTXSWr57lkbiI6kPJ3WO1uc0kDDBzkC5/EgCIeyY4jr/NItSiyyi9vL2LIiXXP5k0pqyE8qCsoHz08dPDW7ICYmElwqR0yvGMQVeYphmTcs9oqvdnAjNJKHWqo6xQpm1CQgr3zlSVt9vL2/+e6AplcMg7UKHMygrlc4FQMt0E5HCvMbyo2Sd860VpvwZC3oFtG02Qv6M8EWrgRFAoIxflaEPk+onTGPIOUih1agib5ycplAG9vJGqdDKRiKj99MO+v6s+l8p14VE+Aj0HQ4a8FYXD2ylH6WphUChNlbUSVB/K8DmUyr2aTDFKbuW7y4sRafzlzScif+4H4SxfDWfhYpRXrkPuvZ+GWL7GPz658CE7GZifCQBi5Trk3/cZlNf2onjqa1E4623KPvMSmlBy6dSzZnkgFehCo7ocSuYeq7kpGHMombkzaiMJaVHOFp7IC3ejQil5sXoRpFDK6qqcD+lB7v2fRem4k1He9HzkPvIPtXQtJVLgVShlgli5bpSFdnVM8kKS85+dKcjNSmYw5F1rvaj08lZzKOvtXS2T1QXSIPJloOzxoWyxCRmN1ySgKcph9o9qbD5bhHJ+5VDKq9BkUv+QMqFehZJTooQA20YtUKHkx5n80++QuPFKOKvWI//eTwNce7i6FUrJOsigUEYtytEplKZe3r5JVl5hy159ikKpIU1cWFbJoQxRlAN3Je/9XvaWR3z71XwujSHvAEIZMuRtapOmhrz1OU+q998s+VAmk5Xr1HPuyyUgmdKoiB57JiIU3/huFN/4bu1YAShFKqmrf6aOV3PdlE57PUqnvd58/PkGJk9S2DZKLz5t9scCfRqK0d5Iuscon3P3j2obZJpvucW7vM22ofgRK60XDSKAKeSdUC16QueWSxAr1iL3d/+qvmA6vtSMoUbwtQpliNzpGYKqUDavyltWKAs6hZLplNOsHMoWm9CaIKUlYxVdaXMhTNgcSrmXt9yvXIZclDNTIe95RSgVs9hEKpJqWINCyEIKsZYNQZY/VOKU+QT4IELJvE6H9iL9k38HANj7d0IsX43CWz6g7len7ZFKKAf0O+tyKHXnV5fz5F0EGEPeZoVSJoWRwmuBIW9NBx+ZiEremNMKZQOEMmTIO5qxuSGJPpIPZXAOZWgfymQKSNiA92uWy+6CTFER62tNGKo7jE4te5ag9KJXzp5noIyoPpSAXqE09vLmQt4RcyiVPPSE+izxhryFMPsOe0gYey8bWqfK4Xo5/ScUFGNzr0LJE0Staiq7O8wqodQU5eiEmwiQC1WK1ewKOYeS65TTpCrvtO2SSh2hNLVdBHiFUm67CKgWSdFD3s+Bohw1jJYMDlNwqLMoB4D7UPSNKWLXhtoY1Pelrr7M//eVl4Z7b1iFst1vsyK3EfQhashb16XI1M7L+zBRqrwDFEpdWDdEnl94hVJPbJyunmlTYUOxlpJPJYemwlZ5G3IooymUEaq8C+a2hew4dYprgrlXy2Xe867OCuUw3ovaYq4jFKXjT679W5CFwrnqAnS2oE1DMZB45Xqs3otRbYPCeL16wSmUsrDgJZRBkS+vys6lZklk23ffKUUz0RcESg560RTyrtwn81GhlJwbaGgAKJXQ9v5Xoe0jZ6P1429G6+feVdexwyqUqaZ2yvH/nbYJrZpuN4C57SLAG5vzCmUc8g4GVw0nE7yZDHkD7sOuKIXtOARU93K5njQ+Gm4M9fYi1xRQcNCaAetC3ho/Q9/k34hCGdKHMlQlsvybKQplZUI35CI6Gzwt+xSV3HOOuBaEJfX6CbTqUCoy61UoDd5/MpQUE6bKVHmQaXwokykIOwHvNEflEkRID75QCNMdpk71c76i8JYPwurfD5oYQ/6tH4ZYumruBqM1NjcplNJ78lOuGhWxKMc433LRIC7KoxBKzz4BxZ4+EsbNc9K85FM0uXauUWFQKLXFdWEJ5Sx6moqFi915ovIbW+MjoNEhNyqYmwLlpiBMpvcGyNHisgAcIVgVUd63Wb280zah1dYTyqAe2Vy+JFeUE8XYXAgxa1Xe84pQcmoPV5QTuJZQfCijEMokAM+KT0coA0Pe/z977x5lWV1ei87f2q96d7363U3TDUU3NDQgQiugEBDkSIAYH0E9amICGiNyTIKoiV71JseAJo5wBkejOTkeiejxajReh7m+iULQg4kKikJBN9Dd9Lu7urte+7V+949ly5+3AAAgAElEQVRde9da3++xnvtV9c0xGPTee9Xav7Vr11pzze+b89P8XMhJPyohDvdrMl38tTCONzMQdtMFIGyvUNQeSgNp0qpU5LidagWNb4Bb1ZIfwK5QVk/3EsrwsUGyt9ffFxQzNsg/Kac5CmWo3i7TTYqu7KeUFKtaNScuQimUS6zk7W7Zhtm/uq9WDmxCEHEUGP9eLAoX/Zmeez+EuTs+qjiwfdARRGsPpeacpSl5K9cS73UiIObNX/JWS9jKja53e1qNiTPliLaeeM2QhhGqnVjyhpOBHF8DcXDv4lN7d/k2CTN2VwchBPKOP0Kn7Kr9hTlHKD2Uabm8gxRKm8MbMJW8NQqlMsvbvM8TJelTUvuyAkOWNSZBe0reYWe1mi5SAYjt8gYgsyqB1b5HYMlbc1K0Xdx9PxuzZG8qT+qQlkIZd/QivaCEzqHUPE/nhHuPTSl3FxYvzLaStzfKxkIolWOmJ+fQweaGzLhKxZcNKoVjJ2VRcih18ScUSlxJfV26v1U1dku5+DabUC6xkjeAmrLWZjIJQKvoy2wu0vfROXYIvR97t/19dOdcSw5lqMk6TsbaPqXM/abnmXm7yxv5Qu1vs76/cnnxHEurMTEIpa3krSqUfYvr8sIUG9RKQgl17CkllEFjd21Qxy/KxsScOgqaHso4Lu+qK0FbJfOOOnfbiyCFsi90sHl4hVLXP0lHOaaF9hBKqk4B0M5qzWpc3mECw5OWvH3vZyK/QbO8NSfFkISShouHnkVucwL6dmhuQDc2ppuISVhTTgCRUHMow5fXlJOth8wr8SQedc8Wv+PNQFRyKL2/e2ou6CFZifWSN+0vDVQoi/r9FwpWckHLac7RA7USow4hFErV5W3IodT9rVYr6oU9CaFcMWLN8AOgjQ1ipAOtchRQLqXDFgDAOXpQs+UitAQx6qQcXZWHlry9xJXeXPX0QXq2F5VyYxvl5jqXr/1N0vidBaJHFcpQ5jIKqynHQBBDlrxbbWRTCOWedBRKAMgpxhypkC3tpBzTOdICut+eTE0l1Tm16xjWhJR7oStva3MoI/RQHpn3s+VVvc2b294WQqmM3QPUuav1npdWm3Js5U0vbJMboCdm1pBp23uGNeWYpppQRC0fQUPM6girUAZNYwiaHIMFdU5HAslxO0EKZR0G16q7ci3gndJi6aFUyk0DJGet/ruMaspZWLdiKKLbEcix1T4FRMzOQBzcp9lQhpvgYVIoNf2XakmxqjfvxEVPH8qvuNm6yVIreXcUdH+TAepW+TdujK6A6VzeEastSo+4rodSWkw52axaCq4TMUoQF/7e6HHWiZvSQxln0pFtUo6ynoCSdxt7KAFArlrve0wJZZI+aFWhbN6knKLGPQ4AvRZCGaRQamd5a0ve4V3ec0RGtRHepGgPodQplKaLWytzKAHNPG/D+wUplDoiGrfkHVehNJFe29qjjl70vkeUHkoKRaHUEIOeXr06ZzPlKArl4snKVB5t5E/WYbvJoOoAzRWthCWUmpO/lOr6TdEtdTgOqpu3+p7K7H5C3a5a9bUdSMfR9+qaVG8dUdQY6IJc8FFR+u23YOaj96ufcx1LzJTTSdDOSQ8gi+7mrZj5+BejvVETFEp9sLm3h5LsP6P2RdZvHo0mG5Mxh/ZQxlAoJW3r8f79hS15129S2+jyBlSFMpNSDyWgd3qnOSnnu/vm8d8eO4WDs1WFxPUsEEpd2boOOuubgpayASCneU6Z5W0hxDTCyEZ4k6JNhFKjUBqmCdByb6gJNIopJ/xhKhExcWODdHfNYd1rMU05CrEql/XlTpuj0Th6MVihjOLyplBe10wHMpERU1kW0EUGeQiZwdziEkJm7aGcJxcXkrMWNocSjqMeX7mk9t0GKJSAun5n96/VjXQ9kBqYVA6FKObzhtgg8n1K4vKuv9eqdXDXbVKfz2STKaAMO3R/L2EU4b4BVCfODf8+unOQtYcyeWyQ0kOZySrKXYNQhlQo0dg+eQ9lpJJ3fd3ZnH/0ZbVSu7a005SD2t+vFQl6KJV8yapaDo47Ked/Pz2LV33rKN7/k5O47J8P4QQZoF1XR3XRP3UEKZQ66H4iSsl7lhycjfAmRXt6KDX5iPSk0OiLa3vJ20C+QgZa+xC65B1TodSREq1j0kLKTYqsyaHuPbFZJ+VEK3lrYboxoCVvn0KpGbtYXx8lfwuo0tnSthxKWvLuG9DPtKYKr+54ddNyDBmaNoRSKHXTPnQIm0OpHb1YUYlAJh3CJweH1Se53N1U6JSjsOpWlKgc3c26veStM+VozqG2Mb70nGgreVNBZEFxVAioqeQdp4dSGYFqDjZv/B0IoU1paGdsEKAqlBQ00zMKaMm7LCUI70PBMc/9NqHqSrz1B8cbj4/Mu/juPv+5OYxCGRRsrsP6fvX6HyXYnCqUS45QakveSslh4eKklKCDFcrYphbv+zbez0CwAtah7aEkyqlpXcr6IwWzG3revLCFBJsIu0FdFdXqIsmPMMubItBsAUAZndbYN51zW2kos7aw9cpFlysXyeoZZ8M9a4f/Z2w5lEQdQE+f+p2tVDQ5lDoDjDotR1U3gk/+LinZO88+qdyIqdEnhs9f15dr6r/UfE7GG8WE0BHKJenw7iQkIZRRVDndDW/UkrcuNsiWGKIxjxl7Ig0KpYmAqrFB0XsobbO8lZ5I7zo0LSvtLnkjX4A7PG5+PcHfMS0Pl6pSneWdEUoPZZBC+Z196vXvuWn/d6ZehraVlINK3gDw/hcsCh3Xbihg06BarVNGL0boobQpqEnRlhxKvSlH0xQN6MtoQUg0KSecq1wXh+L7Iw/jRjf1iujKNSEhc3l/ZlqlrOZ2Rp2Li4Byfblc+4ZbS94BRCLM9AiTQulkIB2nQdgFZO07kM3aFcp1mzD74b9H9hePAOUS5Mg4Khdeqr6P5aZGPTn36sPx42Q+lopqIkIIdUOOrYYcXNEI0hfFeTjPPwd3w+bFjXSzuHX70uVQGvovtROFdMpPCpCDK9QnuX+yudCatkL+PqMQSm3JO9o5SylhOwGTcnQmHnrztnDzaDLZqD2XCzebqSiUlhxKC0GUubx/2EC5pIxcbXXJG1goe08d0b+WYLQoFQDLrqo+FjQ5lEEu7//xa5WzUKJWVyhtppcwJe8/OX8QF63MYaoocf0m/TlNUSgthHimhT2U7Qk21ymUColaWFqMHErQjMMkPZRhg80NE1IWd6x+YY3lyySEWCmNqApl5JBgwJpniHIJKPTYp8EEKZBJSt5ArWTrJY+VEpDNGscuNh6v2YDymoDpI5boKqXc1NunL/2GcTtrws1VNSSEuiEEqpu3IfvojxtPObt/7SeUhrB3Bbrvk6HfWR8bRJXMEL/nEKAj3AB2eLcFYRMoIpAobcnb0mKk76EMERtky6HM5pTvk0mhbJS8jds3oYeyfsMqpZ0ghlIoW/93465ah8yTj+pfTNXlrSqUhYzaa2lTKJ89VcG396rXv+OExRVCuLzDBopfuc7+GUTpoVz6Lm9dD6WmKbr2f9L3Yprk4kXcHkQgfO6lkltG/igpoaSlUcCcJ5jEpR5m/GKMHkqbQtm4ANBtIri8E5W8AXOshuLyjkForC5vVR1QbkqK82SedUZrtFIigcrF2P1XtOyd/dnD/jXpciQ10BqeTGqr5uZPzZZNS6HkkndHIOTNuu1GSCm56s5PUasquioPPX9YXd5ZY8kbJoKoK3lXKz5jnRQiliJomoLmlEv+akEu7/8bo3+/paLay98mQmlCmD5xEyhRLFWh9FDmnGgu73/dX9RO5zMRSt20GwBYkRfIOOmQOUooo/RQLj2Xt4ZQaksOQDxTDt0mkimHltjDubzpxYwSZG2Z33QsCQhxqCzKZiiUbtV3zFIIH2kKJIwJFUr1uE3mkejlFDVpwJtDqQkVpkHo9PtuWoNmWo7yvQmpblTOvcj3OPMfD0Ic95SYwiqUOue5ZvRc7U3I97Sijl5MGhvU2A+bcjoDYQml5UZI6QvWGSGjTv3SJWUoNzwRcygDYoO0phydozpCxawBSrIWzscOaemhJFg5706f9N/c5gvhU0RShBwaMb+YYmxQ2RAbpLjBLQrlScpIF3C8REvptf9v1vQ8AsFjF6OA7ooeoxez1SVvygkONjfnUIYw5dDRi5FyKMkFL2zJm17MyElOZ0Qyqa1JRkeGyqK0KJRCumrsEmAcvQigRto0Qdc+BTaghzKUQmm7uzMolIFxPWFgVShpw72m5E1jPUwRPbTkremhDOuWdSfOQ3X96Yv7cl1kH/j64uOQPZTa75NJodTd/IUlrhGh66FMkl/HiAlb1cAL240QfU0XuWY15YQYvahxeftIp06hNLm2TZNvNLmVRgNPVOTy/vSIShmoVpCh52VKgqlCeeq473HLDTl12G4wkiiUGZVQKqaciC5vA5/ElEGhPH8sp71UxYkMMkFVKM3bzpaXOKHUxQaF7qGME2zejB5KqtIElbx1x9wEhVLpUYvaQ2lal63kXbaQDNNjihBEQwrL52A67jBmmCBYcyg1DfH0O0RVCmO/Ij2GonLzFfqCJAQqv3Gjf/cPfN0YtG4kubocSvr9WbgJ05tyDOkNCaFVKLnk3XqkolCScaW685Mth1JzTaA36zKT8Y1SBPyJFkoagUahFHOzCz2Lete2Ov97Vv37jWPIAWo359SsUirCITm1kox/VP5+T57w76NNqr71PJaoh9L/uOSq6mNB5/KWgDQYc0zlZFPJeyDnYOsK9TwXxuEdFjQA3ZpDufQVyjA9lAvkgV6AWl3yNrm86V0xvZjRkrfWiGQ4lgTrp3E02jv7IEKpO0HbSt6VcqASSCc9KAhDKMdWml8zxGo0W6HUlbwVRZwad4zkLYQpJ0KeX/mya32qnTN1ZDHkPG4OZblk/ky1sUGG8nhCsELZGdASe912th5KSrJ050WbQqk7n2lnedtK3qqgoah387NAcc4X/ybzhUaLi0KM52c1U3JijF1svJf/+y2K8zEUyin/PuMqpglhO4+lmkOpUSjzjoAjhKIimjiZiaxR97RXNbxgXD2fxsmgNEEZvWgreRNG3XZTjhDiOiHEE0KIp4QQ79G8fpoQ4vtCiJ8KIR4VQrzCur9QPZQGU06YSTmJFL6QJW+qUNKLGVlDsh7KCKpOqBzKgM9Qty4bCU2oUErhaH9H879/p+9x6dW3mNdgCv6l64phypFZcw+lOvasV81upOHnps9Co0CoakiEC0DfAKrbLvCvZeGCohK9sD2UZU0Z29KeYlAzE0OzXmtgPyMVlG56c+Pf0nFQvvqmcD9o+d7KFWP+J6IGm4cx5QTGBqnfU9WUM6eJDPIcl0JAA7aPCnqNKc6rPZR0/7SNhhDKdkQGAQGfQz5BDqViypFKObuu7oXto7SRNS+8hPIF4+p5briQHpGjoxfLLuAaFNa5autMOYFMRQiRAXAvgGsA7AXwiBDia1LKxz2b/TmAL0opPyGEOAfANwCcbtypNofS0EMZJ4cykUIZsmeTXryoKYeeoLRl/pAKZRKXt+7kbBu9CIQ7QXv3Vy5DBhJKC5Gg/ZYLqFx6DUpH9sOZ/AUqO6+Cu2nCvA/ThKBmlLw9ZWOfESmT0U6MUaKFjIRSY8pJWjJTvg+G2eJhXd4ahXLR5a2LS2oSodQh7GhTRmyUXvE7wOwpOM8/i/LLfhtyxWion7N9b93xNf4norq848YGebfRiRC9agnbNpdbiQ3S9VCmqVCWisjQkndPUMmbKJTtMrLZbjCSKJRKD6XaX1gPBc8JAa9/u+xK9EK9DpVCUA7vfgHgBTqFMsWStyNqxiIvCS5VgR4No1N7KNsbbH4JgKeklLsAQAjxBQA3AfASSgmgHu++AsDzth3qy78Gl3cMU446yztCydji6PWB9PQE9VBqy/x1Awzt7TGV/0MgnMs7aMpPVROGbvkZWxnU8NgHozqWRem332L+Ocv+xcLvR8mhTLPkraiTfTViHLvkTclbMXFTv2kWt9ZEpYPO7KREDtV+Vve3oyihTSSUVuMYIx309KH0n98Z+cds31s5vtr3WHvDa8uhDBFsrjXleOJ26HtKjUKZ/dVPkX3f7/q385byNTFDigE1VYVyTumhjFzybpdCabsxLvQAMYsNuhxK3SxvAJppOdF6KCm8ZejtI+p5rhpiXngUFBzhU1+LrkSPhhB3Wg/legB7PI/3LjznxQcB/GchxF7U1MnbbDvUNfYrTdEJTDmJXN6KGqW/M1YUSIVQ0pK3hkQD+vJyomDzEDmUMeaQW1sNbNmEdViIRCySR2EK/k0hNshEKJVS9sLJWTGnhC15KzmUJc2knIgKh6GFQ70BMPx+dC0UJZNCqflbbVbJW4NIaQiM1qK33+dS9kKGUCjts7yDY4OktofSMss7kw118+bdRok/0iiayUreagoE7aEMig3qlJI3Cr2KSaqOJC5vShJLrhqpU2gQSlXN1CFOybtHQ9pS5pOhjTmtnOWdVgDV6wB8Rkr510KIFwO4TwhxrpR0ZM0idv/iMVT6BxuPR/ftwybP66dmZ/Hs5CTWTE1href5Y4cP48DkpHUxZ8/Pw/uVfHbPHhRnAkjUAtadOgXv/fLRgwdxUPN+2+fm4P1TPXxqxseyp6eO4xnPz23Yvw86S8lTTz6hmDHOr1R89xlP734GbshxVBtnZ+Gdknr4+b04QtY/vv95bLTs45mnn0bpqN8NuKNUgulyfXDPc6geOYozPM/NuBJPe99XSlxo+PmyEJgM+J0GYXOxCK89YP+e53CifxynHz8Gb+LZ/qNHMRXxvQb2H4C32D43PY2nJifRe3APvPHhRSeLyclJnFEqYcjz/IkDz/t+9zOlMnZp1rDm1LTvu378wH6sIgrH5PP7IQ8fC732jTMz5PuwD0cmJ7HqwH7f9/X49AyeN3wuFwinEZ4spMTBZ3f7+llOzc/jmclJrDvp/9s5cuggciePY5X3/aemcHjhfZL+zte85Dex9oeLUUi7znkRZhPuMwmSHk8nIs1j2pHvQYaGagPYdWoO2z2Pq8V55X3Pmj4FExUrzkwr2686cMD3/Z46eRIzhw7CMysK0ydPNs7Rqw8egDdq+9jJUziy/wDODTimU65s7CMzN4MdntfkzDSmnt/r/5uYnddeT8JgS8WF14r2/O5d6COE8ujsnO/6uH56xvf35x4/4juPH58vYl+bvrfn5XuQpdUbALufPwAMj8X67s2cyAFYvGndf+gwSq6fVD+76yk4AhBuD7ya2uSu3ThZUEnZsRN5hKFKp44fxeTkwcbjN67P4b59i2u5KHMEk5OHwh9MADLSv/5fP70bU5r1z5R6AQ+j2P/sLpyKyfwmJixtZwhHKPcBPv6xYeE5L34fwHUAIKV8WAjRA2AcgPHT27J2FeTqxZF32X1P+F4fHBnFxMQEco+v8j0/NrwCgwEHlc/4b1M2bTkDcuVaw9bkZ3/up31jI8MY0rxfVvh/cePr/eP7Bnt7fB9+4Xv6j/rMzZuVMoggPPyMrVtDKzv5cf/6V40MY4SsP7frZ9Z9nH7aRt/vBgAc870B1oyNKupU7+p1ypdP5vLaEny2rz/wixqEwrA/KHfd+DhWTUygp+A/mazZuAkrI76XI/0n7b58DhMTE3Ck/+KYXzGMiYkJ9AwO+Z4fLvh/d33DI9rjzU36p0eM9uThkB7NM8/eru03NSFPnPGrRkcwMjGB3OP+yTkjK1eh3/S55POAp7S2dsivkg6MjGFiYgL5n477nh8fGYbj+lsOxtesw/DEBCYnJxP/zrH6D1A5fhCZZ55A+fLrsP6KayJ9NmkilePpMKR9TKJ/UJnSIgdXYNPZ5/iey0qpvG+PpcpUyGaU7XO//j++x8Pj4xhc5y+sDfb2Nn4u9wu/W3105UoMnL0dQRhYuXrxvUkVxykXMZr3/+2PbtykvZ6EQc+Iv191/fgoTj77a//+12/0XR/zP/e3E2TJDerw2nXoa9P31hlcobYDATh92zZMHjgc67u3+uRJYN+pxuPeFWMAFh9nBbD1rNp+e352wNcguWHT6ThdE0qee/YogOB2mvWrV2JiYvHc+H9trOK5B47jZ4fn8catg7jpwnUQKZ6f+sj61592OrYM+dcvpcTcQ/4OxHO3nqnkcKaFMITyEQATQojNqBHJmwG8nmzzHICrAXxGCHE2gB4Ah207FbMz/j49k7M5Vg5l82d5KyX6oJK3rm9Usx2AZKaiEDmUgS5vuiYprSUnUS4Bs6SEqosTyeX060ml5G0IdG9iDqV2So5me0HHbobMoXROECWytz86YaKjDssx4pSyfkKpGBPq5XL6XhWNKSel2CAAwNAw5u/4aHr7YzQVsq8fIF9pd3g8VLKGsOVQpjApRzv6N4RhxWeyyWR9N81CSogTR/0/EDeHEpokkeI8nCLpEQ8qeRMncNuCzWEp/ycKNvc/ni7rsyIBgE5INPVQ2qbQ+Pftfzzek8E/Xze+cGO2Qf9DCRBm/GKxCniXrwt1TxOBTEtKWQHwDgDfBPAr1NzcvxRCfFgIUU9O/hMAtwghfg7g8wB+V5pSQhdAm5XVpug6oWxxDqVyUTQQKSU2KGBSjqGHUiGsbtU/GkuIaKO6Qs3ytru8FSNSEIkvl9Rm7yHNrOWwgd5xYHB5p5JDSb8TdUKpiwyCxngS15TjHZUIe5afESm435V10b6whddpD6Nwq+aBBYzlBw2BkMNjmhs2Xd93tNgghSDqYoOkJYcymwOcTGA/HyVFShblscPW1yMhhRxKinblUAIwk+uQ7V3aHyVkiWZFeqOCQvdQhjXlZFpbHaE9lLp10sigZvZPAiF7KKWU30DNbON97gOefz8O4LIobywOPQ9s98wbNuRQhp2t7d8mQeyOcnIzZUUGmXLopBxNVJJu/0kMOVDNFboSc+RJOUGfeaWsxlHoFEpDeHYaphz1uNOLDTLOCddNyQGU75tCwAwnTDrfNvPUL/2vx1A3TIHvkT4X+tlStd0yJjUVQs9YEtBF5siRcb2yLaVfjU8aG5TNAnTSlncbw0Qn2dtrTw+gf5M9vcDJxfGGznFCKNNUKEvzcGgLAY06Cvp7a1dsEPQ3yDLfk6hthWZLTpPIHC/p003L0SFsbFBPiwklTSHSKakzhCU3m1C2Z/QigMxuf++HseRNVY8wLm/q8EuiUOrIlOuqTnJ69xhilndtX1X746iKTogcysCSN309SNHUKZSaSSahRw7GQTNzKCkBLNfKTMrYxd5kJe/qORdaS1Cx1ATTjPMocT50vfTmyOryNuTLMpYddN9fOTJeUwI9M8GFlMp50D7LO26wuSWHsn4d6LH/zSkKJY0OOkVGHcapMtShKJTRXd4UnVbyTjrtipZzKaHyvk63NZW850MqlFQdbTZUhVLdptUKZdsIpbPbb8JRSw71STlp5FAm6KEMEbIrs7lAImqMDQpSKKOoq4A6pUXbQxlVoQwg8ZWycuLUKZRG0pIGodSMCAQ0Je8Yk3LUCTYL+6Qzug09lGFL3ujpQ/mya83riKNuNKPkTad/RIoN4pL3soWGQLjDC1NydCql77Eth1JzPtMJFLYeSnpOryuUAYRLUdmCtk+1h3JOmZQTueTdTkKp+ywShJoDKqmbVsYjLv5bnZSTrIey5QoljQ3SKpR0Sk5zKV/7COXeXb7JFqY/6FimnFRL3iGmNmRz9p+TUj8pBwhWKCOXvEMolEGknJLhIAIasocybO9gHKRS2jXtm44vWziJmxRKSS6Opp5DHSpX3Wh8LU4PpbFcH8Uso4ySpKachePR5fwpYxq55L1coSMQcmQhhcB042N67HtNl+WrBpvT3EPhG72oFzSUaTkUfbSHMoiAJumh1ORQUlMOef/AG+iA9TYVOoUywdhFQGfKUed4N7ZNvYcy1GapgZa8w/RQNnOON9BGQilcF85zTy0+YSKBbTfl6Ail5uRjGs8HAKWi/+TlAW0eVwPekymUOld1EEFUTTkBk3VKRU3J2+Dy1iEVhTKcKSfWe9HA8VKx5nw39lASQkmnWVjW4G7YgupZ52lfi6VuhA42D69QKmHrC++hEOlKxXyjyFh20PbMGRRK33lR02Lkg0ah1A63sJa89T38wQolLXmbCZHMFxIFiSvGz+K8mutJSVq/P8JM2aeuNalF0I6hTFmhpAqdt0xMuZXR5R169GJ7S966ddJQ82bO8QbaSCgBIOMte4ee5d1qU07w1AaZzakXU+/P2Zq66VqTKpTkjlRb8rb1I+nWEEQoT035+gRlJqOd6GIiLa2clEND5MPtO+sj9sJ1a58J7Y2sXywCyrpBx1u50OBvi6NumG4woiiH1JRDeigXS94hZnmnGRvE6CroFcpadqnM0BtCzzknoN9XVKu1KpAXul50RUG3lLzr7xEwVUw5JgthLL/0FdESOyhIyVvMzyJDqx+eYSEAUD1zO9y1p2l3VznvEsjRVdrXWgGtWpuwh1IpedPYIM/rCiFLcVJOK6DEBmnW2copOUB6k3JiwdnlMeaY7hDDztauQ0olGBwi5RxK3VotRJTOk/YhqF8xG1WhDJFDqes58r1uV00pxOEDvsdyYIXeqdfEHkpJjruRW0c/+7jvle/xty0U5zWjFxcUhCAVLmAN7uat2udjlcsMrQDKjUYEU45a8jbc/LlV9btGiQNj+UDzvW+0xth60DVVBimJalmt+L/DSmqIZpa3zZSzcN2h6RXK+onqqlM0ZS6H+Xf9Fapnm2aFhYOkoxePHYLwpDnL/iH13JMvYPYD/x2ZX/4EYmbxRlAOj6J6zkVoK3Q3GAkyKAG1L1KJDfL1UIYbXWh6nqLlCqVDTTnLnFBmnllUKI2l3qg9lIrD24kWQ0DfL0wkRSZjVzZthDJlhTKMyzuIIKpGIfv2zmF/Er+23K1bWx0JcscW961RKKsVX6uBFE50k1P9Z/N5H5ES5ZsQyCAAACAASURBVJJqtjHM8lbXaieU1dPPghRCDSGOOscbahm68X2uRCh5U7Jucq1rY4OI8sMK5bKF0voBLJ7flJahxe+NTj0U1aoa++MllFqFkpa8vT2U+pnzwhMBpAUhRTrz5dwHPwV3w2bl+cggJW/nCLmRHzKUr/sGUL34yuTvnzKaolASUneKxgZ5FUrFlKPfZ2iFssUub9qzqSO+cy0mlG0teYv9zy2SFVMAsuLMCyCUKbukw5S8a6YcMxG1KpQpu7xVE0awy1shE3QNlOwTxZcSDK0hR/c+Ac9Hgq6pX9c/GTfjjN45F+fNPZQJS97o7Ydco5m2HkuhTGGCUJBTtN5DqasmUIWSY4OWLdyVa4yv6fpvG1DaM3Jq5YZOJoscG6S//lR37DSuGYDyfXY3nuF7LB0nHTIJjTkwRLJGJ0ObS5qyQqm87iGcYVzSUkptHI8OrTblKAqlhhBThba3ySpqewml1/0cuocymkIZWeEL4/LWjOlS+3o82+juzOvb0bw12kyeVKHUTsohx0TzzRSSS/Yx4O/ToTA1ejccnRTNCDY3Ecq4+6cn83JRLXkbcigVhAgTrmrK3rFMOYpZqW7KCbip8CKIBNpig+j3jwnlskX13Evgji6eA4o3/+HiizaXt+Y7RHsulZt83ShFZZKTt4eSbL9AcMvXvtrnDpcDiyaX8qVqxFflossbN1bScTB/x8eUbWIjQL3rOkLZBIUyaKyg1xmtlLw1hNKkWmr33eKSN40pCqNQ9tN5kymj7ZZLMTtT67nT9bwA4Qie7/WkhJKcdFIoeYtygpJ3VIVVKf1qXN50zGWhB2LmpHENCskdGFIDe72vG05s7qp1+h9oxizvcindKS20LF8sGkveQb8zmxO0DnfzNuDfvu3/uRgKpaL8mCYIWYheYPSIiVC6VbVcySXv5YtsFnMf+ASyP/wXyJVrUXnR1b7XfPCeP2l7RjYPkSkZt689Vs+jNDbIV/I2KJTuaWdg7s/+GzK/+Amq2y+Cu3ELcg98HchkUf6NG5RDlGOrMft//w9kf/IDVLfugLvtAmWbuAgcA9llhFIfG5Suy1t5PWMueetc0mHL3UD7Xd66APbZip8RN1uhbD+hnJuBhGb2amxTDg01j1gyjqFQakNzvessJil5R/sVKSHUuoggesdP7wrp8VFSEBhFYSh5GwhlS0vecUFP5uWiJYcygDSFiA7RK5RxZnkbSt5RXN4Bx2N0eVcqmpF2TCiXM+TIOMo3vlF9QXF5WxTKnGaQBL3x193026pdphxKAO6Z2+GeuX1xOde9lq7eB7n+dJTXn27dJhYCFcr2RQDFgT7YPGEOZUDN1ZdDGaLkHdaQA3SmQqmYcoI+oIRoa8kbAMTsgvPM2EMZTaHU5o9FQdweSqUHqNyIsrAqlCkHm4fJoVR6IilZCjDlyP5BSEsvYjsUSt0s7zQVSiWOaX5WNRkUwrm8wyiN7mlnqk/GybAzXHjVzybC6EXlPcyzvLX9bwwGgTV2LeogCUBvyqHXAhncQ9lJCFQoDb3rHQsNeYx8vSagqp3ylp7dUzWzrCFkYfsna/sLv20ayJOPSq9QLpNg8waMPZT6Wd6RTTkJS97ank1taG5GMas01mpVKKkaaCj9h4Xi8g4RG0TvfOlnrKwpayU3JrehHFuldUB3o0Ippo75Hsve/sWm/xRK3ij0oHLBixsP3dUbGpl9UWCeIBReoQxab/33R/t9RaWiVhQ68ELN6ABYBkMoN/A5Te4vOUdpU0MsJW+lDagTe30DQr+7ruStESWopyAqgkidt29ScUlr+iXDjl0sZAAR1/AZE4pCqVk/7aFc0sHmgGcusI60AIljgyIHySqzvEOMLqz/jMl5aFEo6QWX/kFFNeUoJW/tpBxysqX5ZjSHkiqU2Zx9IoTpxOZkIMc1Ts9mzPKulFRCGWeO9wIUU87xI/7XvYHCKZhyAKD4u3+C8pU34Ni5OzH3rv8az6Eedpa3rYcySFGt/yxVQ0mgv8zm4rvsGUsbVlOO2kMZS6FUbvi9sUFdcOPjZKyVhK4jlDqEGa1sQaApx0PCwphywo9dbP15jb6nTqGkLu8lHRsELOZ2mXooI5ty6IjDhLE7oXsovf8n22nz1+oICjZPqlBqXd5UoSQEJyA2CJmMXaG0nNjc1evVJ5sxyzvlkjc15TgWQmlTN2S+EPpiJUfGUfy9P8Gzv/UHkIZpF4HQXairFV/4v3Qc+5qCZogbZnkr3/tOVH0YnYEosUHZXPDs7zCxQb5gdPoeHUgoAcAy67rbeii1aDKh9CqYtOSt60EMTShbnEEJaGKPlnsOJQDA1EOZNZhygiTxxLFBIRRRUwO3KZzXNr4r0OUd8cSmy6GkY8moyUbpobSbcpDNWWfc2np5dH2U3VDyVhTKKZtCaf7OBc0GThuh4pSocYfuIyCuqNFfSo+bzhnu1Is0o+1QbsK8weY6U07QeVpzPVGvJV6FsvN7KAG1muR7bSkolAl7rGlfofq6xeWtLXmHe9+2KJROGJf3MiOUjckCppJD1JJ3UoUvzCxvkyNd6VdLQaGMSogdR+1TJIRQKePTk1TQyTmTXcxcJJDCASwucK3TO5WSt2ZSTqo9lLTkfdj/etiSd8hyd2rQXaijOLwRvuSttFvQOcMBxJWxjGE772om5Rh7gxs/rzmP0nOpx5SjtvV0JqG0Ob27UaEsvfw1vsflK65PtL8gwlSI6PIOX/IOtVmqCDMphxLKpR8bVO+hVGb+Gkw5AYRSDQaPyJl1bm0KU8mbZmjVCY11Ug6Nu0hoygFq5IqekL0Xe6WH0k9ylLB1TeivMBAjOTBk7Vt1V6kl76TZY7U1qbO8RSlFl3cuqOTtIdFJ+hHThuL6L2s+lwBVIChQvf65UtKtlLzbfrphdCpsrUa6G8OA2CBt2oet5N0l8VYmp7fs7U/nxrzFKL/iZjgH98LZ/1wtRH5sdaL99WYEChmzOzvnUyiDXd6dOsdb957zmmOmOZRLPtgcph7KbEyFMvUcygglb6rQlIq1jE0LoUzblNNYh2ccoiiX/ESGkndK6MIolIbSbVDZRRsd1AyFMm2XN1EGlLFn/Z4+Q9tNQItL3orJrFqJ/LlISw9lbT664YaKgiODGAbYXNv6UbcBlSRduoCSGOJatm+D5BQGBoWyG9VJAJDDY5h/10dS258QAsN5Bwfn9LVq76QcWh7XlbdpsPlwXmCqpJLMTiCUOoVVcXkv5dGLACDmFnoojSXvhJNyIudQxgw2h0YBayiULTTlaNfhOSFLGT2HUkegTcTIEBnUeK+Va9Un0zh565S4Zk7KIfAqlLpopMZrrS55a1ogaCB7YHC5TaH0fKZBSjOXvBlG2Np0NCVvVdEMMOXYYoOk1JDW9mstOhgVyqXQP5kSRgpmWpO3KZTakrf/8bBh3zTCpxWI4/LuX/rB5vYcytabcmL0UBoUyjqh1EX3LO4/ZVMOYA83r1ZrM9QXIIWjKkeBZXhLD2XQiS1fgDu6anH7nl7IoRH7z4SBbpY6JfIpmnKU10P2ULbalANAvTjSGeRBn0uh1xxk7+2/DVIoO/QizegA2ErY88TcVehRrwtUkNCdR02EklaFhBP9utEqGBVKJpR1DFvCKHsthFLXL0lL3iayOt7TeipFCaVu/ZRkNpv4tp9QzgX0UIYpQdteT5pDWa1qXNLhFMoGkbSZckLMoI0Kdfyil1D6P2c3mw0k0co8ZovLO8yJrfjm/wLZ1w/pOCi9+pZ0St5CqI36hDilacqh8BFKG3FqC6G0m2UCS9GOA4S5gXAy9kBojg1imGBzec+c8r0k+wbUHkdyXqM3/brRi0K62opNJ9/4mG5su25KThNhUhEBP/GjYl24krd+3zed3uLKE4AeGqpByKOUUlFY6c+kjfb/5SwolPQOs3EHqphyAkYvKnemET9BISAzGX9vY7XiP+GZjDNGhTLKLG9NflpU0NKiV6FUJkho4jTCkNwEpZfqBZdi5m//qfYgBUNOA9mcvzxWj6Sqr62JCmVYl7dJ2W0mZC4H732pSiiDPxfZO7BYTfA+T3/f+bxqcKhvy4SSYYDSluE5BymEcmAoxCxvTRKHEJDC8WWwwq12xdjFBgyzrru1h7IZGM6bVbgxD6GkYxp1Je8SufTpFMrxHgc3bGo9oVQVVlgft2KaTwcolKYcyvp84IijF9MwtQSVvZU72oW1mnooLaMXFUd10lnk2nV47vap2pjJBKvAEXIoQ5/Y8oV0ySSgKG0KcUryfkFzdH3B5h0UGwQEl7xD9Daa3On0922dN8yEkmFCFIWyfzC6Kad+HdCVvbtJoeSSdyBsPZTjHokuTrC5TqF840RfW0w5tHxN10rL3a1YY1sIpbcfSxTnaycD010iLVPoStBepOHWs8yVra3BkENpKnlHUSiT9oBCE2ZtUygdTck74G6/1kNpuFNuY+lFKXlTRS2RQhnghPYqlDlL+HCrY4MAteQ9H+NzMRhzVIXSQtqZUDJMsJghxcxJ30uyf1B1hYdtHVIIZdU8pa0TYSp5D4+3eCGdC1vJ269Q+l8rh5jl3Z8TSr/km7e24ZwOTQ8lWSslmK0wDrVHoaRlv7lZ/Xg/oOZSVWawWlTKFAgZJaGhT1amkrdFoWyGy1uda+11TBLncyZMD6XGhJSgh7JpCOgVTObyDlIoPS5vC6luhylHufgqCmUw0TMqlORYba0BXPJmGEFL3t5zzoy/dQX9QyFugsl51BRD57r60Y4dCpoZDNTO4dXtL2jDajoTI4Y+x6G88JEwpWQcIti84Ai8Y/tijNod5w/i9MH23IAEmXLaoVC25ZOg/Vhi5pS/rwXwE8FMBqiQzDDTXSSd5R1H4cv6e86Uk5XpBGRSKG2xQYEu7zg9lBaXNzkWN5sFskEEmpL9ZKacpoGaS+bIhahJPZQyk/GXsnN5yMEVSlYlgDaVvOnnEqOHsk+fRakqlBbizTmUDAOsoxcVhXLAfhPsuur1pC5K6Ere3ZJBCahTzQBULrkynaSMJQKTQjlOnldMOVqXt/9xPgP8lx2DuHZjDxwBbF3RPjWbTsopVmtGnHqfZKsd3kDbCKVf7RCnpvyvZ3OAt3k0k/GTOJvTuxkl7xAxOoCGdMQy5aRR8qbE1t5DKYJ6KHUmpKQ9lE1AUMm7WTmUsm/Q/30F4A6PI6MhlO2JDUrB/R5SoYStNaCDlR9Gm2Ey2Uip6aEcUr/T3vMa7aNfMOTUNlR78rXB6Z0KjYpWvurGNiykc2GO9vH/7lVTjvozVLWsq3znjLT/O+IIgZzjX3fJXSSay6aHkvZjiWly4aUkMIIxJ5VJMwHTeYzGmRimHHosdN+xRy/q1gFoXd5xTEjGHMqBNroNg0w5zYoNGhhUnpIj+p6m9pS87Z9L4OhF2Ew5tOTNphxGDNAYoDrJKxV9hE9mc0C+oJoVaSqHb9+L29JRvKKqurw7uYfSHVulPjdxXhtW0rkwRfuMkd7HAjXlhCh50zJ5u0GPwbteuvbeFgjv7THlKAolJZRZ++MoCmXUHErN+yl3sCEn5YhyCahW1BKyd5uAknfs0YteWHIotaYc2kNJf8YwelH2D7bXIUndyqmacgIUSvrc8Jh+4zbEBik3GHRSTqiSd3JTjtX9zljWkKSUKxbahHSGHAhhdYWbcoJr/9b1UHaPy7t63sWNfm0pHDz9O+9QqiPLHSMF/edBzTS05F3W0ApaBm+Hm9sGWx8lne29dHsoST+WMheZEBzpZPw5etUKjD7vNFzSyliveD2UKBWBkmVKDhBsyolxcqMxMF6Xt7f8DdRjgyKakAymnHZHVyhKHOmjalrJe2BIfa6DFEqq/ijKbShTjqmHksYG2VzePHqRYQBVtku1qo5QDDkLN2+2HErbNYAKDNLVDNXoYCW9pw+zH/kMsv/nAVQ3TeCk6MHqdq+pw2DsoSSEkpa8taYcUganzvB2Q+2jNCuUS9jlHaBQ0pNFlCxKasqJ1UNpL3lHcXlb+yeB4IieVBRK8927zObUEg8dY0YJdCYLZLNKqbTt4bpBpdskhNIyBUZnWHE7WKGM1VtqUihpi4O15N25yg+jvaD5iqK4MG5Rp1ACmolmnpgh2pKUtRDKalWtEmU7jDUQyBWjKF/z23DP4lK3DmFL3koOpTbYXHV5dxJUhXLx38umh1IpeSs9lAElb0rCvEjB1BJcAo6QQ2kbuwio5DgNlzclViXL6EVtsLk9NqhBDIja1m6FMlBpSzri0ZQBp1UoV+q37YAeSsTIodT1UOpaHGx5nRwbxDCC/m0V6wqlJtQcdle4esPv+Y7S64EmNkh2skLJCETWERjKqeSJmnLClLyVHspOL3m7XaBQCiGuE0I8IYR4SgjxHs3rHxdC/GzhvyeFEFO6/dRB+7ECeyiVk0CUHMrW9VBqTTmlAIUywPATq2Sfp/1InjXoTDmWUGHd4waB7jBCGaS0BY5PDNq/6edD9lBKx0lnbnlU0FYAUkY0Td/wbaNRKLW/b2tsEJe8GXrQfEVRrPdQahzegL2KZKvy6K4lypQ2VtK7HSsMIxK9oGRMq1AqLu8UFpci7D2UHZhDKYTIALgXwDUA9gJ4RAjxNSnl4/VtpJTv8mx/G4ALbfuk/ViBPZRKeaNq7KFMY3ShYh5QRhHqT0A6hVIEEEpl9ngaoxeVfqRFlVSJDXLUHsqwPaMKoWzjlBwAbVQoQ7q8e/ra00Bvi1gBgBCEEpoeSl2Lg72Hki/UDAPod7BkIpT1HkqbQmkx5VCXt86U08Eub0Y4jOQd7IH/WkoJZUYAAmhwiaoEqq5ExlPWVuZhd1rJO4LLu1MUyksAPCWl3CWlLAH4AoCbLNu/DsDnrXtUFEoiaAb1UFpc02kEm8fNoYynUJJ9KSXvGKYcpR/JU3ZXyjtZLWH3r9FgFCIh3W3voQwglIlMOTCTJa3LW0Ou2xVHElRq1k3fULYJrVDypBxGdChVFaNCuVDyjtBDaYsN6rrRi4xQ0BlzaA+lECJw/CJVKDuv5O1/bHd5N389YQjlegB7PI/3LjynQAixCcBmAN+z7TAo2DzVkncTgs2NJyCdKSdiyTsVU45FoVQIZTbM6EWVhALq77H9Je9mK5R6JU+nUOp+bw2jQasR9LmEmN6j7aHU/L7tCiUTSoYB9KamNA9dqHkol7eNIGp7KLnkvdQwnA/uoQSCxy8qoxc7jlCaTTntUCjT/su5GcCXpJQWxgfsOTaFszyPxay/p2uuXMbk5GTj8VmVMryXsz3PPIPZip5orT50EOs8j4+fOIHnPfsKg83z8/BeKg/s2YOpQc96Zqb969m/H7OZPvQfPOQ7rvmTJ3Ho2d3Y4nnOzebheHIhZ6dP4WnP+k6fmoJ3iNaBw4dxPOL6h44dwxmex7PHjmLXwj5W7t+PDd71ZLLY/dwenOt5rjI/7/v8z5mfg5cmPLN3H0qzZaxZsQprPc8/nelDKeJa08S4U8BGy+uTzzwbr6d2AWdWqtBQRzw7PY85zXHTvg9RKvo+1yiI+3MAsPbESayxvL7n0BHMBO1fusrxHCtXlL+t0eNT2GTYxYEjR33f5STH1IlYascDtPaYLnAyjRYg4bp46te/wqYDz/vOh/tPzeD45CSGDh7yn+NOTjXOo73PP4NtnteKnuvJ1nIZ3kadPc8+g94De3Ca57kTc/PY00W/y6X4vQOSHdfsTB6U3uzd/ZSynSN7AU8o4RNPPQ3vEJxTsz3w6m4H9j6HySljaKERzfodVeb8x7l77/OYXJAm9x3KAVg8mJkTxzA5eSjR+01MTFhfD0Mo9wG+6/SGhed0uBnAHwXtcP22c6yv9w4M+BbeQ8ptG9etg2s4sNzj/pmmI2Pj6A/4ECgKK/zKy9pVK7HSux5yB7vx9M1wN0/Ayfp5dG/WwboxYs7o6wdOLhLKvkLBf6z9/r7ENevWYzzi+jMlf09qfy7beI/c5L/7XpOZLDafeabvuazj/+LkSN/f6WecATm+Blj/VpRlCc6e3ShfdSM27bws0jpTx+qVkN/5f9QeQdSOc2Lr1kS77xkeAZ4j+83lseHFL9W2JshcTsn9DPqD1GFycjLWz9WRe9xGJ4ENZ07A3RR9/yMrVyt/W9ljewxbA6s3bmx8l5MeU6dhqR0P0IZj6unxDSM487SN6BH+i/fqM87C+MQEMhW/CNGfzzXW6gh/9m+hv7/xWoHEdm1cvx6Zoj+aaGh8Zdf8Lpfi9w5Ifly9e44CR/wJK7r99f77fpyoLNa5N2zagnX9HrHqsYMAFhXsic2bMDEcrdLSzN/R6L5jwLHFytfY6jWY2FL7jvdPnQD2LP6drFs5jokJnSSSHsIQykcATAghNqNGJG8G8Hq6kRBiG4ARAA8H7rHfflA0tkHpl4kwerGVs7z1PZQkNqi3Dzh5vPGwGaYc1THpKbXScpCTUUxIguZQKi7Ihd9P3wCKt7w38vqahqFhVC6+ArmHv6O+lobDWFPOdTdNmPtce/qAsjrPu+UIKOHJECVv7c9p9msdvchxLAwLZL7Hl5EqinMQs7SHsmYOU/pxveNlbUkZuvYp2pZk+w4zugLVkCIi7YmkPZPdVvKet7i8e7IdYMqRUlYAvAPANwH8CsAXpZS/FEJ8WAjhnUp/M4AvSCkDf5UygFAGmnIi5FDGGl1o68+Bpocygstb9pBetCaYctRMN4/LW5mUE6aHkvYkdVh2ggflq/R+saSGHEDfH1jdvE2z5cL2msDztiCodzGEKSf0fm09lCFmhjOWMRSndxFimhDKeuarcvO+eF6zmmwUU46r9rlbslQZ3YGwvI/2UJYJoaTB5p03y9v/uNTmHspQDWVSym9IKc+SUp4hpfzLhec+IKX8mmebD0oplYxKLbI5e/YdJSyJciiboFBSBc8yKYfe/Uo6KYXeTZfJqMY4oxcVl7c3h1I3ejGiItvB5gp34lzMrt6gPC9XrtVsHREa5cLdbC6jF1/v7/4ovuaW5GuIATqKU3k9JKEsX/Ibiz8jBCovukrdl83lzcoPwwL6/RDFeVWhXEhU0A6RqMMSG0Rd3sJ11XM0f0+7Hn+03X8zf/u5+pt7OlSHxgRRk06n51DaFMolOykHCFApgybl2GKDLJERYaGUgBWCZchlpCe5UgmClrzppBRCgH3kD+FCpxUoLm9LyTubC45lUmbddrALUgg8d+Nb4I4vTrh1B4dReu2tiXetUzmrFkJZ3bET5RddXfv3xLkov/T6xGuIhaCbkkK4wPfyjW+Eu2odZCaD0it/D3J0lbqRjVC2O1aK0dmg57r5OWCWzvJeIAaRJuVk9P+ub6solMkGIDDaj52r8njTWX0QAC4Yy+HWc/SEMpcJUij923debBAp2ftyKP3bakzuqaNtzED2DwHHDutfoyeLoNnaXjQjhzJo3ra1h9KvOAYqlCUSLRPjbjmKQulmMspnJFwXkHIxhJsqsh0eqzG3eiNmP/YFYPpELbV2YCiRu7sOceKY8pxcY/GVOxkU//D9KL7tz9sTaF6HRVGW+ULovxF34xbMfvR+6zZWhbLdwfeMjgb97jhTRyA8HVSyt99+rq0jQrC5ruSddKIWo/0QQuCey0Zwz2Uj1u2oQklL3EoPZaeVvDtMoWwfM+i39JcRAkn7IG2mnHRyKO0ElppWpLXkTU05JIOzFQplcb5BEJV+SCcLCAGZyfqV2GqlRkTcKoRcJOlSiHgkvdUQAkg5F9M5elDzZAii2k4yCdgJZdz+SRNMWZ2Oox1RyWA0QM2ERHCQnmsGzZz19YbbrgH03CWr6jmaS97LBqopZ/HfrpSoEEcInf/dbtC+yFI3zPJuBhozWXWgCmGAScYLZfRiHGXKVk4BzD2Fmazv/YR0IeZm/euhCiVV/4opnNyy/uk3QrqLx0DCtaVn7T7Uj5FDfxsoX+EvWZdf8p/atJJosAa+x3R4G9/LYGiQAytSUYkZSxfKtJxj/sw83zXDolAab/gBQJDvYLWq3sSzKWfZwGbKUcYuZmrKZyeBTvppt0LZHT2ULTbl2MZ6AbD3FNI+yhl/xpkycYQqlORuOZZCCah9cfVRZqQnqVInuFmDk95WPlpmqFx0Ody1tQhkd3gcpVf9fptXFBKWuJ7Y3y8TTAoll7sZQSDfRefIAd9j32QmajTzDIuwXgNo9cl1gTLHBi1XKCVvi8LXaeVuQKNQLrFJOaFhI5RKvl2SHsomlLyNLm+gRii9MT10dBg15dB9KwplvH4eme/1Z7qV5iExpKynWo8xUhTKhXUphLJzHd5Nx8AKzH7oU3AO7IG7ZqNqIuhU2BTKtEvehnimdo/lZHQ+lN7vI/4WE5+pK5OBFE6jHUe4bu1clclG6qEUrqtRKLmHcrkgR0cvei7HnT7HG+i8HsruKHlHIZS2UNuwsLnKXdfXU0jfQynbEAKnlLy9d9OVik8NlcKJH8hNyU5doSSKaXVhPSZVVum5XMYlbwBAoacWZt4tZBIak5v3tZRL3nAcrRueCSUjEPkICqUQ6o1Sva0nQmyQXqFkQrlcQEliucsUSrvLmyqUzV9PGwmlzZTjJy2JTDlp91CSk5WbyfpNF7TkfWrK95gGm/vK6bQ5vFCIbeiQpOTdcDLOkJK3UaGs91B2UWQQQw9bbmgziLGmZMiRQYwgKAolac9R2iYMfZT0JthqynGrapsRE8plA5vLmxIy2q/YCaAk16dQkj+DJa1QIpJC2eIcSvIzPqOP4pImjnSFUPpH78nRlf438+xbia9IcrHPE+WpOAdIqVEo64TSkEWpGJCYUHYdWunyht7UwAolIxAB5zv6HaLKe8PpTYc3eM/J2tGLZJgEE8plA1WhXPz3DLF493eaxRtq0HrRUvLu7YTRi81Cs3ooaTk61uhFG4FVxnqR/QeUqKUncBuAX1EtJs+gbLwPVSiLRaA45yPHMl+wuLwXtlPu9plQdhusbQppl7wBnXTLPAAAIABJREFUvULJphxGAIKUQUXlNjm96bQx7361OZTp9K0zug/U5e3tm5ylhLIFhCwqqOpY9NCfdswh70hCGahQ2kreKSiUarC5ZU4sJawWQil7+9X5zl6FMo0Myjo0PZRKP6cnF1DpoVwgkurc8mVsyulW2L6TTVEo1QsyK5SMQAR8F5XvkKGHUqn0+BRKSiirgGLK6Z7+aEYyUNHRS8Jmyl1IKC0K5RLPoYxCKA2RNjqkMcubKjpekhqgUOoMCY3XhsfsEUgpBuwqc3FL8xDTJMJowPM7CJtDGYegM9oLm6rcBEKpVXi4h5IRgKAbaKpyG+d5U4XSWvLWmXI4h3K5QM2hXPy3WvLuHkJZcf2h7I4AWsGHO5RQJpiUo7i8ox+iNYcyoIfSpga5I+M1F6zHaCOkbJBKUUwpgxLQK5R0Lq53cgnNoTT2ULJC2W2wBZun7vKG/nvLCiUjEIElb/IdolmUIQgldXmL4rx/vGMmy209ywh0lre35D1T9rfP9XWBQllXJXUZlK0IZW9fl2lvv49YeaHO8o5gykll9GJzeijl8FjtH5SE1klwShmUgF6hRCSFcoHkssu7+0EvvB6kHmwOaP8GuIeSEQRb+4XMZADaLmRQKAUhlDZTjpgnfet0IARjSaNAGFDZQx+oQjnQiaYcxaVe+7/aP9ma9bTvE7LN9k2QQ6mol2mYcjyqZFAPpbXkPTKu339doVSm5CRQj5L2UDYUSjLGjF3e3Qfb76wZJW/NTYccsKQ6MBiA9QZaDqxQItQU4aF+82sredNryTwZjZtjQrmcoM7y7u4eyrpCOU9oUCv6J4F2EkoQhcwL+kcfZfQiJUBxFEqlh9KrUNL9k22tCmWdULZCoVRzKBVC6b3Icw7l0kUrg80BtScNiHdjx1hWsKnl2pYJUw6lVaEkJe+5Gd9jHru4vKBOylkkkdNEoeyGknedELfD4Q20m1CaFMpEoxebPMubZpzRfk8LCXRHDCXvhkKZpstbzaFUFUpPCYlzKJcuhDArhE0oeStlRAYjDGyEUtcykTPkUNoUSnqjPU1ygtmQs6xAg829bZOzFX8PZSeacqjyuKhQtt7hDbSbUBoUSknmRVuDxinSGL1oVSgTxAaN1ELNleOpl9RpDmWCi72aQ6kpedsUykq9h5L2jLIppxvhrlqvfb4ZsUGK0s5ghIBdoVRTApT2ojCmnF5/H6aYOubflhXKZYUoJe+BbOf1UNLpPSWDKWeZK5TkU4qSQ+mSOduxTDnmmCJKZqOVvAMUSuryTnJyoz9bKgKEUCJUDyUrlEsB7qp1+heaUPIW9MaIwQgDy/lOW/I29FDaSt6yj4y+nTrq3webcpYVbMHm1JTT14EKpTp6EZBSYo5OyVkWhNJUhmt3DiVV4SLEBllNOStGa/9QInoW1kxK3skUSuLyLs4pYxd9CrFJleVJOUsC0kAom+Ly5u8IIw5yeXPyh4ZQhs6hzHsVSkIoT/gVSjblLC8oJW+vy7sLTDkZRyj5kmV3uSqU42v0L9ALUgRTjqIgxsmhzFp6KKv2HkqTQikHVyy+ZlQo/cpOujmURYgZfw6lTyEO20PJZKErYVQom1DyLr76D3yP59/8rtTfg7EEIYTRiBjFlGPtoaQKJT2/NeMGi9GxsOZQKrFBnUcoAX0fpdpD2Zq1tJVQVnZeBSnUJaizvC0EjyKVHEqqiFb1/0Z4hdKtRwbp9t9weaeoUNIcyuK8XaEMmUPJsUHdCWMPZRNK3tXzX4Ty5ddB9g+i8sKXonLpNam/B2NpwtTTqzflRHd50x5K5X0sFSbG0oNS8q6ag837O7CHEtD3gRYJDWqVQtlWdiDHVqF64YuR/Y+H/C8QcqOogFaXN+mhjGXKoSVvyyzvsArl8CKhVCb/VKuQ0ORQJumhpGS0NA8xS0w5/YPAyQVV1BQbpMxGZ0LZjZCr9YSyKSaEbA7FW94DTXgQg2FHBIWS5lA2bn5LFlMOUSjV92eFcjmBlrxLPpd358cGAar6OF/RKZTLoOQNAOWrblKfVHooI5hyFALU5Ek5IV3eDUOObk2uIYcykUJJXN5zsxCzJHPNExtkNuWQHEoevdiVaPTvUsRoCWEwmgVTm09aCiV67YTSFvvGWHqwubxpDmUnxgYB6jEUq8u0hxIAqttf6MtDlMJZnChThzKq0FLypq/FyqGksT7ekrddoTSWvFeuXXxgKi+nGGxOe+PE1BHfY9nX7/9sTMYnxZTDAdVdCSG00SsMRkfBoBD6bsjroOfaEJNyqClHfX8mlMsJtORdtsUGdSihXEFk1r0zFcxXlqlCCcfB3Lv+a4OIlV/+alVNiTJ60XZ3GhaRFMpwsUGVF7508YHJZJTi6EUlh5J+Lv3EYW8iufR4WaHsWrhDI+1eAoNhhU6hrGy/SJ3jDUDSYPNSCZAyMNjctbTtNCX1gNGxoOO5Sx5qQYPNO7Xkfe6o/+/gP46U26ZQdkRDnHvWDsx84usQ0ydVdRJQCKU12JyOCszFIEBJeig1d7iVbRdArtu0+IRBDUxVoQzoBVIyQI2xQTx6calArhgF9j3T7mUwGEYITTuTti0K0CuU1SqEXCQC0nGUc1a1pxcOzeQ17ZOxpGEqeVdc6ZuHLdC6LMeouHAsh89NLj7+6ZESziMkc/kolHXk8noyiQimHN3daRxFzebyDiCUOgWvQk6IiinH1edQJrpbtmS6AeqUInMPJfms2eXdtTD2UTIYHQJxcJ/yXPXCS/Ub03NtuWRXJ+v7s1R+WKFcXlBMOQvKni4ySFiup+3EC8b93/GaQunfprAcYoNCQynHlvXbVasQcvGLoLs7DQVK+KS76B4PCjbXNI9XLrrc/4SBICsTRpKc3ISwz8alCqUphzINgs7oCFQvvMz/ePO2Nq2EwdCjcvEVvsflK37TeA5Xgs0ryQklONh8WUFVKGv/7xaHNwBsH835Svd7Z6rYM+PnKctPobTBFGBLEeJkEgpCqCMVDUHfCqFcvaHW87OA+be9XyVhJtd6mgol7LFDCvE19VDSNXHTeteicvFLUd14BoDazVbpxje2eUUMhh+Vy69rnGPctRtRfO2t5o2z6nVB6RXXnK/cQp95nzx6cVnBZMpRMyg7l1AWMgLbR/wc40cH/X8HPS1af1fUL5UIHDqisI4KVdMS9MNks+rIxVxe00OpfoTzf3o3Mo/9BHJ0JdyNW9R9K671KuC66nElvVu2EVLq+DUR6BSjjBhthpPB3Af+OzK/+AnkqrVwN2i+mwxGG+Fu3orZu+6Ds2cXqmecA5jG8wK+kYoAgHI5nEJpCfPn0YvLC2oOZY1QTtOxi9S902F4wXgePzu6WLl9dtpf815WppxA0D9yGly7gFQc3nWYCFZAbBAAwMmgev5Oy7415eWyRglMmBFoUxNpULDSQ1k3CqUZts5oP/IFVF9wWfB2DEabIEdXoTq6Kng7GmyuUyijlrxZoVxWoKMX67O8aQ9lJyuUAHDBeA54wvw6l7w9kOROlJ40Giin4PCuv6fRpBIQbB5m3xpTTqoO7zpsd+J08oSph5IVSgaD0YnQubyTmnL4hnlZoeCoc7CllEoPZaeGmtdBjTkUHRVsLoS4TgjxhBDiKSHEewzbvFYI8bgQ4pdCiPtTXaXSQ6kveStEsxkKZVBsUKh9a0rexfQyKBv7GDTnDio9lNS9bVIomVAyGIxOgEahTGzK4R7xZYV8RvhGF1ZkzZBDQ807XaE8bcDOQ0YKrdEOA0veQogMgHsBXANgL4BHhBBfk1I+7tlmAsB7AVwmpTwuhAiuV0SBrodSypqT2QuSmZgohNtAsGiMjq6HMhAaU04zFEo5opkuUX8tbg8l38EzGIwOgFLOLpdVE2HUHkomlMsOw3kHB+YWTTjHiy6muyTUvI7BnEDe8c8i92K8pzWEMsy7XALgKSnlLillCcAXANCk2VsA3CulPA4AUspD6a4yoxI3Xdm7BQqloKQ1Rslbq1Cm7PAGAHdYn+sJhOihrB9vka6LT7gMBqMDQFuaWKFkxABV76ZKErPK2MXO7g4UQlhJYycRyvUA9nge7114zouzAJwlhHhICPEjIcR1aS2wAfqHriGUlOx1ag+lbja5kkGZghKonX9bf426J03h8SWajZm8FM9gMBhJocuhDNP2ZO+hZEK53DBMCOXxott1phwAGOsxc5HRTil5R9jPBIArAWwA8AMhxHlSyindxpOTk7qnrTjXceClh7uf+DUqRGUbemY3zvA8nilV8HSM9wKArdUKvGllz+3ejbm5KjYdPw7vvBGZyUQ+nvUzs/D2BBx5/nkUi1X/2qtu7LXXMTRX8u2zjkpvPyZ37W48npycxNDBQ/73P3kCuyYnsWPOTyif2rMX7uFjidbVCsT5jnUyltrxAEvvmJba8QCdfUxOcR7nex67xSIO7n0OniG3ODlXxLPkGAYthPLp5/bCzR9Od6FNRif/jpKgVceVK+fhpUK/emYf9sw4gIdxzJ08hsnJ+IXXVhxLn1sAoJLKFVmJ3U8/lcp7TExMWF8PQyj3Adjoebxh4Tkv9gL4sZSyDGC3EOJJ1AjmI3EWpUOmtw/wzF/dsmE95Kp1/m1OHvA97lsxHOu9AKDQN+B7fNq6tXDPmEChzx+KKzOZyO+R/6m/xXTlikG4Y/6xeH0jo7HXXodT0N9VOcNjjX1PTk5iYmICmXk/9+/vKWDizDPhkDv+M87e3vHjF+vHtFSw1I4HWHrHtNSOB+iCYyIRbo5bwepR/3l0cGxMOYZ9z++GCWecfU7iuLZWouN/RzHRyuNaf+A4cGy28bhnbDUKThnATOO501aPY2JiUPPTwWjVsZz2/DH8eGpOeX5Vfw4TExua/v5AuJL3IwAmhBCbhRB5ADcD+BrZ5quoqZMQQoyjVgLfleI6lSxKXbh5K3IoRTV5DyWNphClYlPyHk09lEpkEKCQRFGtAJVybexk/ecy2Y4nkwwGY5kgk4H0GDNFVTU36krYppK3zOW7ikwy0sEIEV5OaErend5DCQBjhj7JVvVPAiEIpZSyAuAdAL4J4FcAviil/KUQ4sNCiBsXNvsmgKNCiMcBfB/AHVLKo2kuVDkx6Ew5tIcykcubZEXWewoVl3eMHkp6LKWiJu8xhV6ewRVaF7pu3rhyHBU1yogzKBkMRsdACKVHUsxN+7fR9lAaRi9y/+SyxDAZl3O85HZdbBAArDT0UI61qH8SCNlDKaX8BoBvkOc+4Pm3BPDHC/81B3Raji6LMkWXt0LEKoZJOU4MxU4Tg6TcWadhfhECcmQM4shB/75pZBCgVWR5Sg6DwehoZHP+hIzZEITSEBvkjq9Jc2WMLgF1eetMOZ0eGwSYlciOUig7Bcq0HM34RUEm5cgELm9F3ayXulMINleIWWkeYr45bmqpKXtrS966Ej8rlAwGo4OhOL1nZ6yvA7V8YqkpbVcuvTbdxTG6AlShnCpKzJT9gY4DHT4pB7CVvGNUUWOiawilcqep6aFMN4dSUwLG4ozrOmLFBhFyjGIRILFB0hK+GwW66KCwhFIJCeYMSgaD0UkgooEIoVACgHDVBOjy5S9PbVmM7oGiUJY0sUFd0ENpUiJNRLMZ6B6HBS0TN7uHMmwOZQoKpShrCGVKCqU7slJ9fw2hpMchqlVlTchzBiWDweggUMI4F6xQ6lA9cztAs3kZywI0h3Kq6GKOS96x0Pm0ewEyRA9lmi5vZWxjnUjS94gzelFnylFK3umUl3XjF+VQyB5KnpLDYDA6GDJLS97hFMrKBZf6Hhdf/45U18XoHoxQU07RxQkyw3CwC0reptI2E0od2l7yro8i9PcVVmMYVahjXWvKSa3kHbKHksYBcQ8lg8HodCg9lOEIZemGN8AdGYd0HJRuehPcM85u1goZHY5hEht0vOTiaNFPKFvZhxgXK/ICOiGVS94aqCSsPbO8aRnYjRM1oSiU82p5OS1Tzkh8Uw4dB8kubwaD0VEglSTn8H7fY1OVyj1zO2bv/pw2eoixvLCCKJQnS2pkUG8XlLyFEBjrcXBwrn1kuHsUSmpkCTHLO81g83oPJXVjxyGUOnJM9yvTKnkPjajPaWKDlB7KSlVVgVmhZDAYHYTAc7zt9XyBySQDWUdgyFLSbqXClxS6md2tXH/XfFK0h1KEyaFMYMqRuhKw6yrZjG6cExIlZqV5tbycUsnbHVulPqn7XLQKJedQMhiMDkbQ+ZfDyhkhQI05XrSyBzEpMo5KjAuZ1qmr3fNJUYVS20NJXN5plrwrlRrx80DmewAR/SNUyHGpqJaXUyp5o7cfpWte1XhY/J236bfTlfhL3EPJYDA6GAFZw4mqVIxlA5pF6UU3Ecp2o2t6KJVJOaFmeacXG4RqRS1Lx1URqVu6VFSJaYrkrfSGd6By6TVANgf3tDP0G4VSKPlun8FgdA50AeU+MKFkhADNovRirAsMOZ2CriGUSt+hLoeyiaYcoXU9xySUGoWSIi2Xd+0NBNwt2+zb0B5K103veBkMBqMJcPbstr7OCiUjDGyEkhXK8OieT4qeGEKYclLtoaxoXM9xVUTHUdRThVS2ul9RCNWYM+eP4OAcSgaD0Umo7rjEvgETSkYIDOfNfYbdRChftt5/jT53NEGVNga65pPSZTcqSDHYXNtTSMPHk6iItITvgcz3AEGlnGaAqrI0041NOQwGo4NQueRKSFsfOxNKRgjYS95dQ5Pw9u0D6F+IOBIA/vJizRCTJqJrSt6hgs0rzc2hTNM4I/M9KmGrv5ZmuTsKMlkAns91lowxY1MOg8HoILhnnIO5D38KmcceQeGLf6e8ziVvRhgsFZf3qt4MHrxpFf5lzzwuGs9h5+rWVhW7h1AqPZTNHb2oTMqpVtOdHGMrH7erV5GWvCnhZULJYDA6DO5pZ8I97UzkvvUlOFNH/S8yoWSEgL2HsrtMOZuHsnj79oG2vHfXUG/FYaw15aTZQ0l6HCvl9Fze0Mwm977WJuJG55KLOaJQcsmbwWB0KOTKteqTCa4BjOUDOi3Hi25SKNuN7vmklJJ3G0Yvpjke0aZQtrXkvQhWKBkMRrfAHdUMcWhHLzqj67BlyFys7aYeynajaz4pWr7WmXLU0YtJcijVkreSy5iAYNkVys4glEoPJedQMhiMDoUcGW/3Ehhdim3DWegq24UMMNAFc7w7BV1DKJURWmFGLyZRKHWxQWm6vG1ktF1KYJb0UEr/kHnOoWQwGJ0KJpSMuMg5AjtGVb4wXshACCaUYdG1hFIJNpcy3R7KDOmhrJaVknciJdFCdtvl8qY9lMrrnEPJYDA6FO64poeSwQiJC8ZVvsDl7mjomk9LKRHTkne16lPUpOOoJdwoyOpK3unGBhnRKSVvCjblMBiMDkX1vIsh+4cajysXvaSNq2F0G14wrlEomVBGQvd8WjpTjpSLj2kGZTZhXAQlV5WUg80t/Yhty3u0EEopBEdwMBiMzkWhB/Nv+zNUN29F5bxLUHzd29u9IkYX4QWsUCZG9+RQZrOQjlObMY2F/r5qZbGsnWb/JNCCYPNOdHlb8rYKPQD3kjAYjA5GdcdOzO3Y2e5lMLoQZ65Q6dB0WWq2ZJjQXfTbkkUpyik6vKHO8hZpK5QWFbJdLm9bDyVnUDIYDAZjqcJhwSQxuopQ0j5KX3RQSxTKNGODLKacdvVQ9vabX+MMSgaDwWAsYdx5waDv8Rsm+tq0ku5EVxFKRaH0EspKeg5vAC0INrcQtDaVvF3dpIkFcAYlg8FgMJYy3nbOAC5ZWRN7btjUg2s3sJASBd3TQwmoqqOv5J3iHG8gnELZ0wsU/eHfYdGJweZy1Trzi5xByWAwGIwljJGCg29ePw5XAhmHS+BR0VUKpcyTaTleEkkVymb0UBJCmagMbMt0bFN52V213vgaK5QMBoPBWOoQQjCZjImuIpSwZFEqQeetcHknKU3bFMp2lbxXWxTKPkt/JYPBYDAYjGWNriKUVCWzmXJk2jmU5ZLv/Wq5jPFVO+vUmXaVvMfXQAr9V8LdeGaLV8NgMBgMBqNb0FWEUu2hbKLLm5a8Z6f9r+cLgJPg47PE8LQt2DybgxxbqX2pumVrixfDYDAYDAajW9BdhFJxeXtMOaSHUiZ0edNMRsX0k7As3ZHB5jD3UbqnM6FkMBgMBoOhR1cRSurc9pG8ZvdQUiQtS9tGL7aRUMqVah+lO7oScnisDathMBgMBoPRDQhFKIUQ1wkhnhBCPCWEeI/m9d8VQhwWQvxs4b8/SH+psOdQltN1eVvHECJ5tI9VoUzQm5kUOmOOu3lbG1bCYDAYDAajWxCYQymEyAC4F8A1APYCeEQI8TUp5eNk0/8tpXxHE9bYgKpQml3eiXMos+1RKGWhJ1lvZkK4mizKKhNKBoPBYDAYFoRhLpcAeEpKuUtKWQLwBQA3NXdZBkSZlJOUUDoZo+MZaF4PZTvL3QAgNT2U7mbun2QwGAwGg2FGGEK5HsAez+O9C89RvEoI8agQ4ktCiI2prI5CmeVt6aFMOnoRsKuUSYmfyeXd5ok0eoWSCSWDwWAwGAwz0hq9+P8C+LyUsiiEeCuA/wXgKtPGk5OTsd5k1fSMj8lO7d+HfQv7WnvwANZ4Xjty8hQOxnyfOs7pH0Jh6oj2tZPFEp5d2H+s45ESF2qePjG+Hs8kXHdU0PWfefo2DD7zawDAyS3b8fTzBwAcaOmakiLud6xTsdSOB1h6x7TUjgdYmscELK3jWkrH4sVSOq6lciwTExPW18MQyn0AvIrjhoXnGpBSHvU8/HsAdydZlAnZfU/4Ho8Ucuhb2Ff+JwO+18bWrMVQzPepI7N+E2AglIMrV2NiYgKTk5Oxj0eHnhtfn+r+gqBd/x13o/T/fREQAs7LX42JgRUtW08aSPt30m4steMBlt4xLbXjAZbmMQFL67iW0rF4sZSOaykdSxDCEMpHAEwIITajRiRvBvB67wZCiLVSyv0LD28E8KtUV1lHr3/8n5ibWXyQdg8lALlqHfDLf9e/1oReRzkwhOq2C1Lfb2QMDKH06uYY9RkMBoPBYCw9BBJKKWVFCPEOAN8EkAHwD1LKXwohPgzgJ1LKrwF4pxDiRgAVAMcA/G4zFivpPGnP9BrF5Z1CD6Up5BsApGXSTVhI4UBIt/G4/Bs3AoKH0jMYDAaDweguhOqhlFJ+A8A3yHMf8Pz7vQDem+7SNOuwKZTzc/6NUxhfqDOoNNYyqh9RGAWVF12F3MPfqe1vYAil//Q7iffJYDAYDAaD0WqkZcppCWSfv09SzC4SSjE/69+2py/5+1kIZRpROqXXvhUQAmJuFqUb3gD0DybeJ4PBYDAYDEar0VWEEoRQYs5LKIlC2ZucULqaMYRALUPSXX964v3L0ZUovvXPEu+HwWAwGAwGo53orlneSsl7sYcSikKZgmmmtw/u0IjytHvaRPCsbwaDwWAwGIxlgq4ilMgXID0ztkW53Ag0b0bJG9CXvTnom8FgMBgMBmMR3UUohTBHBxFCiZQIpc6Yw6MIGQwGg8FgMBbRXYQSgOwlfZQLxhwxN0e2S0mh1PRRVrdsS2XfDAaDwWAwGEsB3Uco+zR9lNUKRGl+cRshUpuJLTXxQ3L1hlT2zWAwGAwGg7EU0HXOEsWYMzujyaDsTS0gvHrexcAX/67xuHLuxYDTdTycwWAwGIyugpQS09PTcF03eOMORU9PD06cONHuZUSG4zgYGBiAiMCluo5Qgk7LmZtRIoPSMuQAgHvamSi/+GXIPfwdyL4BlG56U2r7ZjAYDAaDocf09DQKhQLy+eSjlNuFQqGAnp7kg1ZajVKphOnpaQwOhs/H7jpCSXsoawolMeT0pjtnu/jWP0PpVb8P2T+oZmEyGAwGg8FIHa7rdjWZ7Gbk83nMEW9KELqPUGp6KJsVGbT4JgJy5dp098lgMBgMBoOxRNB1hJLGBmF2RiWUdBsGg8FgMBiMCDh27BhuvPFGAMChQ4eQyWQwNjYGAPje974XWj297777cO2112L16tWJ1vOzn/0MR44cwcte9rJE+2kWuo5QqtNyZgAqy6YxJYfBYDAYDMayxejoKB588EEAwEc+8hEMDAzgtttui7yfz33uczj//PMTE8pHH30Ujz/+OBPKtCBJD6OYm4GYn/Fvk3bJm8FgMBgMRlsx/D/3pbq/qd9bH/tn77//fvz93/89SqUSdu7ciY9+9KNwXRdvf/vb8Ytf/AJSSrz5zW/G8PAwHnvsMbzlLW9BT0+Pomzee++9+OxnP4tMJoNzzz0Xn/rUpzA9PY077rgDTzzxBMrlMt73vvfhyiuvxN133425uTk8+OCDuOOOO3DTTTel8TGkhq4jlMqknNlpiLnmTMlhMBgMBoPB8OLxxx/H17/+dXzrW99CNpvF7bffji9/+cvYvHkzjh07hn/7t38DAExNTaGnpwef+cxncPfdd2PHjh3Kvu655x489thjyOfzmJqaAgDcfffdeNnLXoZPfOITmJqawtVXX42HHnoI7373u/H444/jr/7qr1p6vGHRdYSSmnIwO63kULJCyWAwGAwGoxl44IEH8NOf/hRXXnklAGB+fh7r16/H1VdfjcnJSbz73e/Gy1/+clx11VUoFovWfW3btg233norXvGKV+D6668HUOvP/M53voOPf/zjAIBisYi9e/c29ZjSQPcRSk0Ppery5h5KBoPBYDAY6UNKiTe84Q348z//c+W1hx56CN/5znfw6U9/Gl/72tdw1113Wff1T//0T3jwwQfxL//yL/ibv/kbPPTQQ5BS4nOf+xw2b97s27aufHYquo9Q0h5KbQ4lK5QMBoPBYCwlJOl5TBNXXnkl3vzmN+MP//APMTY2hmPHjmFmZga9vb0oFAr4rd/6LWzZsgXvfOc7AQADAwOYnp5W9lOtVrFv3z5cccUVePGLX4zt27djdnYWV199Nf7u7/6uUdr++c9/jvPPP9+4n05B1xEePa9LAAAUO0lEQVRKJTZIq1BybBCDwWAwGIz0sX37dtx555246aab4LoucrkcPv7xj8NxHNx2222QUkIIgQ996EMAgDe84Q145zvfqZhyKpUKbrnlFpw6dQpSStx2220YHBzEnXfeife+97249NJL4bouNm/ejM9//vN46UtfinvuuQcveclL8Kd/+qdsykkKfbA56aFMeVIOg8FgMBiM5Yv3vve9vsevec1r8JrXvEbZ7oc//KHv8fz8PF75ylfila98pbJtoVDAN7/5TeX5/v5+3HPPPcrz4+PjeOCBByKuvHVw2r2AyMj3QDqLyxblMsTJKf82bMphMBgMBoPBaBm6j1AKAdB53seP+B6zy5vBYDAYDAajdeg+QglN2fv4Yf8GTCgZDAaDwWAwWobuJJQ0OqhS9r/OsUEMBoPBYDAYLUN3EspV6+yvUyc4g8FgMBgMBqNp6EpCWb70GvsGXPJmMBgMBoPBaBm6klBWL3gx3NGV2tdkLgdkuy4NicFgMBgMRgfh2LFjuPzyy3H55ZfjrLPOwtlnn914XCqVQu3j9ttvx+TkpHWbT3/60/jiF7+YxpIj4V//9V/xyCOPpLa/7mRemSzKV/wmCl/5n+prrE4yGAwGg8FIiNHRUTz44IMAgI985CMYGBjAbbfd5ttGSgkpJRxHr8/97d/+LXp6eqzvc8stt6Sz4Ij44Q9/iNHRUVx88cWp7K87CSWAyhXXI/+1z0JUq77nOTKIwWAwGIylh4E3X5nq/qb/1wOxfm7Xrl143etehx07duDRRx/FV77yFdx11134+c9/3ggyv/POOwEAN954Iz72sY/hnHPOwZYtW/CWt7wF3/72t9HX14f7778fK1euxF/8xV9gdHQUb3/723HdddfhRS96EX7wgx/g5MmTuPfee7Fz507MzMzgbW97G5588kls3boVzz33HO655x7s2LHDt7b3v//9+Na3voVMJoNrrrkGH/rQh3Do0CH88R//Mfbu3QvHcXDXXXdhfHwcn/3sZ5HJZHD//ffjr//6r7Fz585En2fXEko5Mo7qCy5H9pF/9T/PhJLBYDAYDEYT8eSTT+KTn/wkLrzwQgDABz/4QYyMjKBSqeCGG27ATTfdhG3btvl+5uTJk7jsssvwwQ9+EO973/vwj//4j3jXu96l7FtKie9973v4xje+gbvvvhtf/vKX8alPfQqrV6/Gfffdh8ceewxXXHGF8nOHDh3Ct7/9bfzoRz+CEAJTU7WhL3feeSduv/12XHzxxXj22Wdx88034+GHH8ab3vSmBpFNA11LKAGgfNVNCqEUpfk2rYbBYDAYDMZywObNmxtkEgC+9KUv4b777kOlUsGBAwfwxBNPKISyt7cX11xTMxVfcMEFePjhh7X7vuGGGxrbPPfccwCAH/3oR7j99tsBAOedd56ybwAYGRmB4zh45zvfiWuvvRbXXXcdAOCBBx7w9XFOTU1hbm5O+fmk6GpCWT37QuU5ceywZksGg8FgMBiMdNDXt1gNffrpp/HJT34S3/3udzE8PIxbb70V8/OquJXL5Rr/zmQyqFQq2n3n8/nAbXTI5XL4/ve/j+9///v46le/in/4h3/AV77ylYbiWd9vs9DVhBJCoHTTm5D/5882nqq8+GVtXBCDwWAwGIxmIG7PY7Nx6tQpDAwMYGhoCAcOHMB3v/tdXH311am+x86dO/GVr3wFl156KX75y1/iiSee0K6jWCziuuuuw86dO/HCF74QAHDllVfi05/+NP7oj/4IAPDoo49ix44dGBgYwPT0dGprDBUbJIS4TgjxhBDiKSHEeyzbvUoIIYUQL0xthQEoXf86VDfXpF9Z6EH5yhta9dYMBoPBYDCWOc4//3xs3boVF198Md72trclNrfocOutt2L//v3YuXMn7rrrLmzduhVDQ0O+bU6ePInXvva1uOyyy3D99dfjL//yLwEAH/vYx/DjH/8Yl156KXbu3InPfrYmwr3iFa/AV7/6VbzkJS/Bj3/848RrFFJK+wZCZAA8CeAaAHv///buPkruqr7j+PuziC6wyaaEoDwsibRBGqJEIqH0iEBrW5G0ITQK0QopSkEFoZUeW/VYqUcUSxQQ2qACpVrCw0FqKhxCGpIAxWIeCAlJlAgEQ7FNaGDDAknc8O0f9y6ZTHb2aR538nmdkzMzv4fZ753J3PnOvb97L7AUmBkRa4uOGwHcA7wZuCgilhXu7+zs7PsPlWP7a7Q8+wvi4EOJUaOr9md6s379esaPH1/Tv1lJwz3+3jRbmZqtPNB8ZWq28kBzlgmaq1zNVJZCPeXq7Oykvb293uGUZdu2bf1OGzQQ3d3ddHd309raylNPPcX06dNZsWIFb6rivNt9vf7t7e0q3jaQSKYAv4iIpwEk3QZMA9YWHfcV4ErgrwcTcEW8ZT9eP+qdNf+zZmZmZtXW1dXFtGnT6O7uJiK4+uqrq5pMDsVAojkM2Fjw+Dlgt/ZcSccBHRFxj6TaJ5RmZmZmTWrUqFEsWbKk/wPraCBd3jOAD0TEJ/LjjwEnRMRF+XEL8AAwKyI2SFoMXNZXl3d/yxCZmZnZ3q21tZUxY3pfZtmqb/PmzbuNVi+8vGKoXd7/DXQUPD48b+sxApgILJYE8DZgnqQ/KU4qewtquBvu17AM9/h702xlarbyQPOVqdnKA81ZJmiucjVTWQoVXkNZiesP66lS11DWw8iRI+no6Oj/wGwgo7yXAuMlvV3Sm4GzgXk9OyOiMyIOiohxETEO+C+gZDJpZmZm1p+WlhZ27NhR7zD2Sjt27Ci5Pnkp/bZQRkS3pIuA+cA+wE0RsUbS3wPLImJe389gZmZmNjg98yRWY1WXWtm6dese0/sMBy0tLbS1tQ3qnAENEYqIe4F7i7Z9qcSxpwwqAjMzM7MikhgxYkS9wyjLpk2bBtVtPJwNrj3TzMzMzKyIE0ozMzMzK0u/0wZVSlVXyjEzMzOzmuht2iC3UJqZmZlZWZxQmpmZmVlZatblbWZmZmbNyS2UZmZmZlaWiieUkroq/Zz1JGmnpJUF/8b1cewpkn5cu+j6Jykk/aDg8ZskbW60OIdC0hm5fEfXO5ahaub3B5qvPoD+yyRpsaT31CqecjTDZ6iYpC9IWiNpVa6zT6h3TOWQdLikH0laL+kpSdfkVetKHX+ppP1rGeNg5P9vswseXybpy3UMqSwFOcIaSY9L+qykvbKxbq8s9CC9FhGTCv5tqHdAg/QKMFHSfvnxH7D7Wuz9kjSgCfDrYCbwcL4dMEn7VCecISn7/TErw5A+Q41K0onAVOC4iHgX8H5gY32jGjpJAn4I/FtEjAeOAtqAr/Zx2qVAwyaUwHbgTEkH1TuQCunJEY4h1d+nAX9X55jqoioJpaQ2SQslrZC0WtK0vH2cpHWSvpuz+fsLvkiHDUn7SPoHSUvzr+ALCnaPlHSPpJ9LmtMgv1TuBU7P92cCc3t2SJoi6SeSHpP0iKR35O2zJM2T9ACwsPYh901SG/Be4OOk9eV7Wogf7O31l9Qlabakx4ET6xd5r4by/jwoaVLBcQ9LOramUQ9Qccu9pOskzcr3N0i6vKCuGBYtZX2Vabjo4zNU6r36oKSfSVou6doGbUU/BHghIrYDRMQLEfG8pMmSluTY50s6BN5oTb4mtzA9IWlKXaPf0+8B2yLiZoCI2An8JXCepAMkXZXjXiXpYkmfAQ4FFklaVMe4+9INfIdUjt3kHOGBXJ6Fko6Q1C7p2YK6/ABJGyXtW+vA+xMRm4C/AC5SUjJXkPS5XOc9Lunr9Yu6cqqV7GwDpkfEccCpwOz8SwtgPHB9zuZfAv60SjFUyn7a1d19d972caAzIo4HjgfOl/T2vG8KcDEwAfhN4MyaR7yn24CzJbUC7wIeLdj3M+CkiHg38CXgioJ9xwEzIuLkmkU6cNOA+yLiSeD/JE3O20u9/gcAj0bEsRHxcM2j7dtQ3p8bgVkAko4CWiPi8ZpFXFkv5Lrin4DL6h3MXqTUZ2gP+f/mDcBpETEZGFOjGAfrfqBD0pOS/lHSyTnx+DapLpsM3MTuLXz7R8Qk4FN5XyM5BlheuCEitgK/BD4BjAMm5dbYf42Ia4HngVMj4tQaxzoY1wMfldRetP3bwC095QGujYhOYCXQ8z00FZgfEb+uWbSDEBFPA/sAB1MiV5B0Gunzd0JEHAt8o24BV1C1EkoBV0haBfwHcBjw1rzvmYhYme8vJ30gGllhl/f0vO0PgXMkrSR9+Y8mJcoAP42Ip/MvybmkFoC6iohVpNd5JkVrsgPtwJ2SngC+RarAeiyIiC01CXLwZpISMfJtT5ddqdd/J3BXbUMcmCG+P3cCU/OX5XnAP9ck2Or4Yb4dDvVBMyn1GerN0cDTEfFMfjy3j2PrJiK6gMmkVqLNwO3ABcBEYEGus78IHF5w2tx87oOkHqZRNQ166E4BboiIboAGrqv3kJPifwE+U7TrRODWfP/77Kq/bwfOyvfPzo+Hg1K5wvuBmyPiVRhe711fqnVt3EdJv2AnR8SvJW0AWvO+7QXH7QSGXZc3KWG+OCLm77ZROgUonoepUeZlmgdcRaqERhds/wqwKCKmKw04Wlyw75UaxTYokg4kdQW9U1KQfg0GcA+lX/9tOclsVIN6fyLiVUkLSL9yP0z6Em1U3ez+47W1aH9PnbCT6tVJldZfmRpaH5+hHzGMywVvdAsvBhZLWg18GlgTEaUudWnUOhtgLTCjcIOkkcARwIZ6BFRBVwMrgJsHcOw8UiPVgaS67oFqBlYOSUeS6rJNlM4V/qgesVVbtVoo24FNOZk8FRhbpb9TL/OBT/ZcwyHpKEkH5H1TcpN2C+kXVaN0r94EXB4Rq4u2t7NrEMismkY0dDOA70fE2IgYFxEdwDPASTTu69+fobw/3wOuBZZGxIvVDa8szwITJL0lt/78fr0DqoDhXqZSn6EWei/Xz4EjtWuWi7OKn7ARSHqHpPEFmyYB64AxSgN2kLSvpMKemLPy9veSuic7axZw/xYC+0s6B94YUDib1CMxH7hAedBkTrYAXgZG1D7UwcmtcneQuoV7PEK+npfUMPVQPrYLWApcA/y4URsHJI0B5gDXRZrku1SusAD4c+XR+AXv3bBW0YQy/8feTrr24T351+E5pOvAmsn3SL8cV+SuyBvY1bKyFLiOVIk9A9zd6zPUWEQ8l6+vKfYN4GuSHmP4tA7NZM/X9a68vSFf//4M5f2JiOXAVgb2C7/meuqDiNhI+uJ4It8+VtfAytBEZSr1GTqbXsoVEa+RrjG8T9JyUtLSSIlXjzbgFklr8yVXE0jXHs8ArlQalLcS+N2Cc7blz9ccdk9u6i4nJdOBD0laDzxJGqPwedL30C+BVblcH8mnfYf0PjXqoJxCs4HC0d4XkxKtVcDHgEsK9t0O/BmN193dM85iDekSv/uBy/O+XnOFiLiP1Oq6LHeHN8W14xVdKUdplOl3I6LRRsrZXiBfcnBZREytdyy1IOlQUtfe0RHxep3D2UMz1gfNWKaBktQWEV15gOX1wPqI+Fa94yqHpMWkOmNZvWMxG+4q1kIp6ULSxc1frNRzmlnvchfYo8AXGjSZbLr6oBnLNEjn59aUNaRLMW6oczxm1kC8lreZmZmZlaWsFkpJHZIW5etV1ki6JG8/UNICpaWiFkj6jbz9aKVJmrdLuqzouS5RmqB1jaRLy4nLzMzMzGqn3C7vbuCzETEB+B3g05ImAH8DLMxLRS3MjwG2kOaduqrwSSRNBM4nTUp9LGl+vd8qMzYzMzMzq4GyEsqI+FVErMj3XyaNrD2MNDfeLfmwW4Az8jGbImIpUDzD/W+TVjF5NU/SuoTGWGHGzMzMzPpRyUE544B3kwYKvDUifpV3/Q+7Vskp5QngJEmj87xMHwQ6KhWbmZmZmVVPReYdlNRGmsPs0ojYqjeW7U7zaOWVGEqKiHWSriTN3/QKaZ6whpy41MzMzMx2V3YLZZ4B/i7SwvQ9a/L+r6RD8v5DSEsQ9SkiboyIyRHxPuBF0gSuZmZmZtbgyh3lLeBGYF1EfLNg1zzg3Hz/XNL6sP0918H59gjS9ZO39n2GmZmZmTWCsuahzGufPgSsBnomV/486TrKO0gL2D8LfDgitkh6G7AMGJmP7wIm5G7yh4DRpAE7fxURC4ccmJmZmZnVjCc2NzMzM7OyVGyUt5mZmZntnZxQmpmZmVlZnFCamZmZWVmcUJqZmZlZWZxQmpmZmVlZnFCamZmZWVmcUJqZFZG0QdJrkl6W9JKkRyRdKKnfOlPSOEkhqSJL25qZDQdOKM3MevfHETECGAt8HfgcaWUwMzMr4oTSzKwPEdEZEfOAs4BzJU2UdLqkxyRtlbRR0pcLTnkw374kqUvSiQCSzpO0TtKLkuZLGlvjopiZVY0TSjOzAYiInwLPAScBrwDnAKOA04FPSjojH/q+fDsqItoi4ieSppGWpT0TGENasnZuLeM3M6smJ5RmZgP3PHBgRCyOiNUR8XpErCIlhyf3cd6FwNciYl1EdANXAJPcSmlmzcIJpZnZwB0GbJF0gqRFkjZL6iQljAf1cd5Y4Jo8wOclYAug/HxmZsOeE0ozswGQdDwpAXwYuBWYB3RERDswh5QgAkQvp28ELoiIUQX/9ouIR2oRu5lZtTmhNDPrg6SRkqYCtwE/iIjVwAhgS0RskzQF+EjBKZuB14EjC7bNAf5W0jH5Odslfag2JTAzqz7Pk2Zm1rt/l9RNSg7XAt8kJYYAnwJmS7oOWALcQRqgQ0S8KumrwH9K2hf4QETcLakNuC1fN9kJLADurGmJzMyqRBG99c6YmZmZmQ2Mu7zNzMzMrCxOKM3MzMysLE4ozczMzKwsTijNzMzMrCxOKM3MzMysLE4ozczMzKwsTijNzMzMrCxOKM3MzMysLE4ozczMzKws/w9/o2MOr4cbRQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "test \\\n", + ".rename(columns={'occ_rate': 'Test set'}) \\\n", + ".join(train.rename(columns={'occ_rate': 'Training set'}),\n", + " how='outer') \\\n", + ".plot(figsize=(10,5), title='Occupancy rate')\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Simple model\n", + "\n", + "Let's start with a simple model" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:fbprophet:Disabling yearly seasonality. Run prophet with yearly_seasonality=True to override this.\n", + "INFO:fbprophet:Disabling daily seasonality. Run prophet with daily_seasonality=True to override this.\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model_simple = Prophet(interval_width=0.95)\n", + "model_simple.fit(train.reset_index() \\\n", + " .rename(columns={'Date':'ds',\n", + " 'occ_rate':'y'}))" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAFkCAYAAACzThFuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9eZhkVX3//z63qrqqt+ltZrpnowcRRQRUxCEmRjCijIEgEBHRn0QCMYmJiQGDXyJ+841OgtuMUVTkK4R8fZ6IiEbBGMcw4sKm7YYCg4AswyzdPdNdvdd67z2/P6qr+t5bd6/tVvf79Tw+Urfq1FnuqdvzPp9NSClBCCGEEEIIIYSQ1qK0egCEEEIIIYQQQgihQCeEEEIIIYQQQiIBBTohhBBCCCGEEBIBKNAJIYQQQgghhJAIQIFOCCGEEEIIIYREAAp0QgghhBBCCCEkAlCgE0IIIYQQQgghEYACnRBCCAmAEOJdQohHhBAZIcSEEOImIUR/q8fVSoQQbxdCjAshnhNCvM5w/QQhxINCiFgrx0cIIYS0C/FWDyAIc3NzstVjIIQQsna58cYbsWHDBtx0000466yzcOTIkc73v//9fzE1NfUXx44dQ0dHR6uH2HRUVcXWrVuxb98+PPzww/inf/qne+fm5gAAb3zjG3HttdfijDPOUMvXCCGEELJCX1+fML6mBZ0QQgjxwfz8PD760Y/i4x//OM455xwkEgmMjo7itttuw/PPP4877rgDAKBpGnbv3o2Xv/zl2Lp1K8466ywcOnQIAPD444/jwgsvxPbt23HiiSdi9+7dAIC//Mu/xK5duyp93XfffTj55JMrr0899VTs2bMHZ555JkZHR/Ge97wHuVwOADA7O4tLL70UJ5xwAkZHR3HppZfi8OHDlbbnnXcedu3ahXPPPRdbt27FRRddhOnp6cr7Dz30EN74xjfiuOOOw0tf+lL8x3/8B37xi1/gxBNPhKZplc/dfffd+L3f+72qdUmn09i0aRNGRkZw9tln47nnngMA3HXXXdi0aRPOOOOMWpeeEEIIWTNQoBNCCCE+GBsbQy6Xwx/90R+Zrvf09OANb3gDfvCDHwAAPve5z+HrX/867rzzThw8eBCf/exn0dXVhYWFBVx44YV4/etfj9/85jf4xS9+gbPOOst3/3feeSe+/vWv4+GHH8bTTz+NT37ykwAAXdfx9re/HY888ggeffRRpFIp/P3f/72p7de+9jV87nOfw1NPPYVCoYAbb7wRAPD888/jkksuwbvf/W48/fTTuO+++3Dqqafi9NNPx+DgIO69997Kd9xxxx1429veVjWu9evXI51O4/Dhw/j+97+Pk046CQsLC/jEJz6Bf/zHf/Q9P0IIIYRQoJMWMTk52eohkIjCvUGC0Mz9Mj09jaGhIcTj1dFhIyMjFav0l770JXzwgx/EiSeeCCEETj31VAwODuK73/0uNm7ciPe+971IpVLo7e0NZF3+sz/7M2zduhUDAwO45ppr8LWvfQ0AMDg4iDe/+c3o6upCb28vrrnmGjzwwAOmtu94xzvwwhe+EJ2dnbjooovwyCOPACgJ97POOgtvectbkEgkMDg4iNNOOw0AcNlll+GrX/0qAGBmZgb33nsvLrnkkqpxKYqCPXv24E/+5E9w44034tOf/jRuuOEGvPvd78ajjz6K888/HxdffDH279/ve66Ngs8XEgTuFxIE7hdSL9oqBp0QQghpFUNDQ5ienoaqqlUifWJiAkNDQwCAw4cP4/jjj69q73TdL1u2bKn897Zt2zAxMQEAyGQy+Id/+Afs27cP5TjvhYUFaJqGWKyUm214eLjStrOzE0tLS55jeutb34ozzzwTS0tL+MY3voFXv/rVGBkZsf3sWWedVfEGeOSRR/DLX/4SH/nIR3DaaafhO9/5Dg4fPoy/+Zu/wb59+0LPnxBCCFkL0IJOCCGE+OBVr3oVkskkvvWtb5muLy4uYt++fRWBumXLFjz77LNV7bds2VKJz7bS3d2NTCZTeX306NGqzxjjyg8dOlQRy5/97Gfx1FNP4Xvf+x4OHjyIb3/72wAAKb3zqjqNFQA2b96MV73qVfjWt76FO+64A5deeqnn90kpce211+JjH/sYpqenoWkajjvuOJx++ul47LHHPNsTQgghax0KdEIIIcQHfX19+MAHPoBrr70W+/btQ7FYxIEDB3DFFVdg8+bNFQF7+eWX45//+Z/x9NNPQ0qJRx99FOl0Gueeey4mJyfx+c9/Hvl8HgsLC/jZz34GoJQE7p577sHMzAwmJydx0003VfV/yy234PDhw5iZmcHu3btx8cUXAygdEHR2dqKvrw8zMzP42Mc+5ntOl1xyCX74wx/iG9/4BlRVRTqdxq9//evK+29729vwmc98Bvv376+KvbfjS1/6Ek477TScdtppGBwcRDabxW9+8xvcd9992L59u+9xEUIIIWsVCnRCCCHEJ3/7t3+LD33oQ/jQhz6Ebdu24ZxzzsGWLVtw9913I5lMAgD+6q/+ChdddBEuuugibNu2De9973uRzWbR29uLb3zjG9i7dy9e9KIX4ZWvfCXuu+8+AMCll16KU045BaeddlqlrZW3vOUtuPjii/Gyl70M27dvx/vf/34ApQzw2WwWJ5xwAs455xycc845vuezbds2fPWrX8VnP/tZHH/88fj93/99PProo5X3zz//fBw8eBDnnXceurq6XL9renoaX/jCF/DBD34QABCPx/GJT3wCF1xwAf7u7/4u0MEBIYQQslYRflzgogLroK8eJicnTTGRhJTh3iBBWCv75dRTT8WNN96Is88+u+l9v/zlL8e//uu/tqTverNW9gupD9wvJAjcLyQsrINOCCGEEF/cddddEELgta99bauHQgghhKwJmMWdEEIIIVWcd955eOKJJ3DzzTdDUXieTwghhDQDCnRCCCEk4pTrljeTcjZ4QgghhDQPHokTQgghhBBCCCERgAKdEEIIIYQQQgiJAE0R6EKIfxNCHBVCPOrw/juEEL8WQjwihHhQCPGyZoyLEEIIIYQQQgiJCs2yoP87gJ0u7z8L4Cwp5akAPgLg/zZjUIQQQgghhJBw6FKinUo2k/qTV/VWD2HV0RSBLqX8EYC0y/sPSilnll/+GMDWZoyLEEIIIYQQEo6JhQIyRQq0tYqqSzydzrZ6GKuOKMagXwngO60eBCGEEEIIIcSZ6UwRRZ0Cfa1ybKmAbFFr9TBWHZEqsyaEeB1KAv01Xp+dnJxs/IBIw0inHR0qyBqHe4MEgfuFBIH7hQSB+8WbQxMZKJkO5LsjJSlaQrvul2xRR2cinM32yekcNF1iMk4relCGh4cd34vMr0kIcRqAWwC8SUo57fV5t0mR9oD3kDjBvUGCwP1CgsD9QoLA/eKMlBK92TmsG0hhuC/V6uFEgnbbLzlVx3Q6g+0bewK31aXEs/k5xBUFw8PrGjC6tUskXNyFEMcB+E8A75RSPtnq8RBCCCGEEEKcyao6hAAKWvgkcdmihoLWOhd5KSX0GpLczWaLmMkW6zii5jK5mEcx5P2bzaqQQE3rR+xpigVdCHE7gLMBrBdCHALwjwASACCl/AKA/w1gCMDnhRAAoEopz2jG2AghhBBCCCHBmM2q6FAEtBoE+nMzOQz3dGCwK5zNcD6vAgDWJcNJmtmsirymY6Q3Gbjt+Hwez85kMdybxEBnIlT/rWYmqwIhb9/kYh6d8RhyzOJed5oi0KWUl3m8fxWAq5oxFkIIIYQQQkhtLORVJGIKtJAWVCkl0pki+lLh5cjzMzn0dyZCC/TJxTw6O2KB201ninh2JouuRKymA4pWUtR0ZAoaOmLBD0eklFjIl9rqKFnRlZKRldSBSLi4E0IIIYQQQtqH7HJ5tbACfaGgASJ8HW1Nl1gsqMjUkEV8vqAjrwYf/3xORSpeklFh5w8AmYKKI/P50O0BhK5DP5UpIq4IaHrw9jlVh1puJ2Wo7yDOUKATQgghhBBCfCOlrLg2hxVn4/MFdMWV0DHQR5cKEAgnMIFS/Luq6aEEbkFbsRirNYjTZ2ZyWMiHP2CYyRbx2+lwGdSnloolC7iUgddA1aXJNb5NnQgiCwU6IYQQQgghxDc5Va8kBwsjkKWUmMsVIYQIbYE+ulhAMq6ETjJ3dKmAjpgSSmAbxxz2gCBTUDGf00LPX9MlnprKIh9i/rqUWCqU4vclgh8yFDWJmCKW24c/JCH2UKATQgghhBBCfDOXUxFXwluQ5/Mqyp7tYdrnVB1LBT10e6CUIC6uiFDW36JBFIft/5mZHDrjInT7p9NZKAIohAgRyBR107yDrkFO1bF8+6FAQtWZKK6eUKATQgghhBBCfDOXW0kuFsYAPLlQRGe8pPDCWF/H5/NIxpYPCEIobE2XyBTDu+gb24RpnymomMtqJQ+CkO2PLZZiyMOECORVHXFDUreghwQFTa9Y0BURbgzEGQp0QgghhBBCiG+kIQBZQ/Ba2EVdh6ghhtsoENUQScpmssWKCArTv7FNmBju2ZyGcvL4MP0vFjQs56gLNf+curJ+MSECW+GNMfgxRSAXItEecYYCnRBCCCGEEBKOEAJRrdECXTS0EUDgOPS5vIaOZQu8XmMMukRwF/GsqldCBML0nzcIbACB49Bzqo5Y2UVdIHAtc+OBjCLMLv+kdijQCSGEEEIIIaEJKlALWm0WaKuoDyrQVU1WLPhB+1d1aXbrF8Gt4Kq24kEQxgMhr8mKwI4JgVwx/Pxjighc6s64/ooQpgMTUjsU6IQQQgghhJBQhMkCbhR4YbOIl0koopIwzi/GpGZBLeDWsUoZYvzG+evh1q8ssEvzV4O1lxaBHfCEpXoNKNDrCQU6IYQQQgghJBQKShZhv6i6NFmMaxX4cUUgG9ACbO0vSP/Wz4aJ4TYltgtjgTd8PqYIZIq1Ceygpd6sw2WOuPpCgU4IIYQQQggJRSlJmH+Bao1XFjJYDLMuJTRjeyECx0CbLfjBMqnnihpihgzosRAx3EYLugIZ3EXfMt5iwDJn1vnWckBg932kNijQCSGEEEIIIaFQAgpkqxiNKcIUk+5FUZOA5eNB2gNmgalABhp/TpWmBG21xnDHlOAx5FUx+DV6EAQV2NbEdkFj6Ik7FOiEEEIIIYSQUMREKWmZX7LFlQzmQEmgBnFRV3Vp1eeBXOwBs4u2IkQgC3ZO1SoJ2srtg8RwW138Y0IEzsJeZUEPeEBhFdhBLOhSyipBHqZUHHGGAp0QQgghhBASCiEEgujLjFWgCwSyQOcNJcLKBBGoupQmgR7UAm5M0Fb5zqojA2es1vpS/7XHgPu1gltDBIBgFnQbBwa6uNcZCnRCCCGEEEJIaIIkGStqOhSDwC0J/AAx4DYCPUipMquYjwkgSBJ4O2txEAuynbU+iIu49YABAGSAOHZVr1bYQUrN2c2VHu71hQKdEEIIIYQQEpogAtuuZnYQgZtVzRZ4AICUvq3oVhd5IYQ5q7qP9laCzN/q4u/0nUH6jwmBrM849tL8LWXS4D8Tu12IQZha9sQZCnRCCCGEEEJIaIIIVDsxHEigatUu5gCQV62O2/YUNR2KRWIG8QCo1YJuJ9ADrZ+NQI4HqIVe1HRYVy9ILXdV06sEZNBa8sQdCnRCCCGEEEJIaAK5uNdogVZtSorFFYGMTwtyTtVNWdiD9m/32SDtC5o0ufgDwQS+3QFDPEAt9FIMv0WiB6jFbrd+CFiqjrhDgU4IIYQQQggJTa0Cu1YX77ji38U7r1ULVL/jl1LafjZIDLnt/AOYn/O2Atl/LXS79jEhfJdqK9qsn4QMdEhD3KFAJ4QQQgghhITGr75WdWmbUCyI8dVOoJdKpfm1IMtqC3qABGl2n9SDuIg7CHy/Mdy2FnD4z2Sf12SVi31MlCzjfttb108geKk74gwFOiGEEEIIISQ0uvRnRS5o9gXJ9ABlwpyszX5Ftt04ffftINCdvtcOOyEdJIbbTiCXx+YHu7kGKTVn214I+HRgID6gQCeEEEIIIYTUhB+BWFCrE4wFaS+ldBTCQUS2Fb8W/IJNgrUSAn5LqTuNsxaBDQB6DfNXhPBtgbf7mBKwlj1xhwKdEEIIIYQQEhoJ+9hsKxmbDOal9v4EalGXkA4S2a8F2z6G3J/Ad3IvF5C+YsB1KR0t5cUgdcwdvtuPm7xT+yBu/lYUIXzHwBNvKNAJIYQQQgghoRE+Y7Bta5gDUCB9CVS7Gt5larGgA/4Eat5h/CUXce++i5r9+GPCv4u50/j9usnXasG3s9THFP8WeOINBTohhBBCCCEkNIpPgVbUdNsa5jFF+EpS5uYi79dN3U6gSkifBwz28d8xIVDwccBgV2IOKM+/Nhd3v6XOHA8oaj3goAG9blCgE0IIIYQQQkLjNwu4k4iPCYG8D4WXc7BgA/5c3J1i2IX0l4XcqY+YIhzFt5FcUUPc7oBCwNf8AXcLup9DBqeP+LagO6xBkFJzxJ2mCHQhxL8JIY4KIR51eP8kIcRDQoi8EOL9zRgTIYQQQgghpHb8xiA7icCSi7gPC3bRvgY44M+Crkn7z8UUf2Xa3LwE/HioZ4ua7fiFEL5roTvNU0Da1lg3ojmUuSt9r98kcbXFsBNvmmVB/3cAO13eTwP4GwCfbMpoCCGEEEIIIXXBr8B2izP3IxCLmoRiY4EGAN3Hd7gdEPgR6G5WZj8CNatW1yAP0l7TpaNAj/nIxF7r+EsC32H8QYrZE1eaItCllD9CSYQ7vX9USvlTAMVmjIcQQgghhBBSP7zEsZTumd59xU+79eHx/YBzHXO/ZcLcDhj8eKi7jc+Pi7nbZ/zEsbvVcZfSO4bdVeBToNcNxqATQgghhBBCasJLYLqVSAP8ZSD3yvTu9R0FhzJpfuqAu9VgB/wJVLdEcn5i4N0EtiK816eo6XAw4Fe+3w1NOvfPJO71I97qAYRlcnKy1UMgNZBOOzpUkDUO9wYJAvcLCQL3CwkC94szU+k88hZFJiAxiSXHNpmijvRMDtm4g31QSkwK5/YAcGwqa5sFHiiVcBuPZdGVcLY/Ti4VMbuoImGjUhdjAn160rFtUZOYSmfR6TD+9Ny8pz4ZP5pBImbfvqjpmIxnXdvP5VXMzhSQcxhDYVGgq+g8h6NLKmYXi7bzzxZ1jMcy6HRZv4W8ihmH/guajsmE+/jJCsPDw47vta1Ad5sUaQ94D4kT3BskCNwvJAjcLyQI3C/2zChLyBXN1lpVlxgeXufYZmqpgA16FkkHcenVHgCey885ts8UNQyu70ZfKuHYPpPOYmOyaBvHHo8JDA/3OLZdKmgYKC6i20HAZosaNmzc6BwjLyXW5efR5TD+nKpjeLjPsX8AkAt5bBA5dDiI/FRCwfCGbsf2udksig7zzxQ1DHisn1jMYwNytvcgo+rYsHGd4/yJf+jiTgghhBBCCKkJLxdvpwzmftvrUkJzeT8mhGcmdbckc15Z1POqjpib9hTC1UU8r+pwTKGOUnZ2rzXIa/Yu+mW82ueKzvP3k2SuoMHxHkrdf6k24k5TLOhCiNsBnA1gvRDiEIB/BJAAACnlF4QQIwB+BmAdAF0I8T4AJ0sp55sxPkIIIYQQQkh4dCkhpXR2QS86ZzAHAOfo5hJFTcLtI35isN0ylXvVMc8UnWuwG8fYEbN/L1vUPazLEqouXQ8x8qr7+14COac6H3H4STKXUzXnQwrhPn/in6YIdCnlZR7vTwDY2oyxEEIIIYQQQuqLREkgJhwUnGsGdqxYkJ0EaCnJnPN3lBK9uQt0NwGr+/AAcBPoCsoHBPYKdaFgH/teRqI0R+cIcu8DCC8Ddl7VHd3j/RxwZIu64wFMbDkTfjcVes3QxZ0QQgghhBBSM24C2Ev8Ae4u4rmihriLBVoRQMHTxd2lTJqHi7mXdVpRBDJF5+/PFXVX63dMCBQ8fPTdvh9wH39R0129BPxkss+5jC+uCNf3iX8o0AkhhBBCCCG1Id0FsJf406V0dUH3imEXQkDz6MN9DNJVwHq5wMeFu4C1Zr23EvNoX9R0bxd+lzFmippLkbsSuouHgqZL1/WLiVImfVI7FOiEEEIIIYSQmogpAgUXAedpgfZwsc6q7jHsgLvAVHX3A4Cyi75jew9xLDws0F7WcS8L9EJe88yQ7hYCMJdTHd3by7jNP1PUXL9fCOGrljvxhgKdEEIIIYQQUhNuScZUXUL3iEH3yiLulaHc6zN5VYd0sSHHhUCu6JxEzU+GclW3F6hSSsf3yngJ/OlsEUnXNPLumeD9JLlzW7/ZnIpkDQKf+IcCnRBCCCGEEFITJRdte4Fb1Nxs28vtPbKIe7mYA6U4cieyRQ1xF30aUwSyDgJdlxIeCc4BOAvUgiahS+/64G4W/kxBc0zQtoJzHL+1br1t/y5rvFRwT5IHUKDXCwp0QgghhBBCSE0IIRwFXl7VPUWHl4u7H/dpt0zsC3nNMcM8UHIxd4oT9yrxVhmjkzhWNfj5Aqf2UkpfAlvC3o1fSlmqw+6B2wGHn/698gwQf1CgE0IIIYQQQmrGSWD6ca/2yiLuxzrrZoHOa151yM19zOaKmMkUAXiXeKu0dxj/Qt65vJm5vb0Izqm669zKCNgfchQ06Sq+yzgdcPgW+LSg1wUKdEIIIYQQQkjNOAt0b/dowDnJm5Sy5hh0twR2ZYwHBDMZFeOLeQDeJd7K6FJC2gjpjA/3cMB5/Way7jXUyzjF8S8VNPho7jh+vwJfW/4OUhsU6IQQQgghhJCacRLIqi59xE87ty/q/mK43bShVxZ1wCyQc6qOhbwGKSWWfB4wSAjbWPmCR4K4Mk7nC/N5FQkfFnhF2B9EzOZUdHgkmAOcM9kv5FX4aL5cao8CvVYo0AkhhBBCCCE145YkrZb2RU0Cwvs7JOwtwH6yqFv7z6s6NAksFjTki9K1Bruxf7s5+DkcAJyzsGcKztnljcQUYeuKni16l2grY3er/Ap8gIni6gEFOiGEEEIIIaRmnOKk/dbHdtJ2OVX36WIubL/DrwVeswj0VExgYrEA1afbtoJqMZ4taq71zc1UC3xVl77bK6Lagr+QVzGf9yfwnSzoOVX35QGhCPiKVSfuUKATQgghhBBCakY6WID9uj07xrAXVF8WbMD+kKBU39x7DPpyrLuqS6hSQhECcznVNbu8kbgikLUI1CenMuiM+5NcEtXl5NKZAmI+rd8ATB4ExxYLeGRiyXf/CqoPU6SUWPIp8OOKQMZHtnfiDgU6IYQQQgghpC5YBaYuJfzJO+cs4llV+ooBB+yTyS0WdF9J1oDS+I310AuqRNan6IwpwlSO7Mh8HtmiP+szUEryZrXAp7Mqkj4FNrByyJEtanhiKoOuhP+2pVr05v4XC5qvGvAAEBOlbPmkNijQCSGEEEIIITVj5yKdKWju2dsMOGUR91u+S2IlhjqvapWx+M0iD5TKlC3kNXQsf74jJpD3qVAVISrx9kVNx/OzOaQCiOuYQJVAXvBpvS5Tnv/h+XwgcQ6US92Z+59YLKAz7m/thBC+wxmIMxTohBBCCCGEkJqxswA/nc4GcvG284a3y4xuh9FF+8h8AU9OLQEoJanzY8WOCYFsUcNiXqtkTY8rAn2pmK/+gRUX+2fTOd9W+zJxiwU7r+oo+DVfl/tfXqvZnOo7MVyZkgXc3N98wO8x3iu/oQHEDAU6IYQQQgghpGasFuDpTBGZAC7egLC1lvu1ypYs2KXPZooa5nIqZrJF31nU48tZ0Gtx0y5qOgqajqlM0XfcfBlhqWM+nSmiw//ZAICSQM8WNd9ztvZvnHpB0wMkuFvpHwDmckUcnMsFHgOhQCeEEEIIIYTUAWOZLyklnkn7T5AGOGcR91u6K6YIlCuSZYo6OuMxPDWV8S24Y4pAVpU1ZSJXdYln0zmkfLqFWzEmuUtnir7qnxvRpcSR+TySAdvZ9X9ssVhx9fdL+YDh4FweNKCHgwKdEEIIIYQQUjOKwQJ8YDbnWDbNCYHqeuVS2id+s+8fUHW9YsUufaf/GHagZK3361JvR1GTmM4UAruXV/o39J0pBos/B0oCeybnP+t9VXtD/+ls8AMCTZcoaDrmc2qo/gkQb/UACCGEEEIIIasDVUocXSzgyEIeXfFg/tkxsWKBn1jI4/llkR9TfJYJWz4gWCpoFStkIqYgEWAYmaJum6jOL1IiUGI4K2V3/ulM0TYe3wtdlmqxx4NM2kBZoOtSYqmgIhXwHmoSeG4mG9qCTyjQCSGEEEIIIXViqaBiNltEVwiBaHRRP7pYREcIkadLYDpgaTIjWVUP7NZtpDNg5nQrqi6RK2p4cmoJnQHFMQDEhUAiFn78ZRf3iYUCBMJ9TzpTDCzsyQo82iCEEEIIIYTUhaIuQ4lzoJRkrqjpUHWJpRDu3UDJ8pspaKFdzAuqrEng1oougUcnl5AKaYFOxpXQcwdWLOjjC/lQhxwxBVBqOOAgFOiEEEIIIYSQOhHUrd1IOYv59FIhtEjRZCmLeVj6U7GaBG698J/5vr7ospSB3VpuzS/JmIIOnyEJxB6uHiGEEEIIISQS6JA4tlQM7aKeK+qoIQl76ORq9SIVVxBv4Rh0CTw/m0dnC70I1joU6IQQQgghhJBIUNB0LBbCW8Czqg56WNfGfF5tmQWfUKATQgghhBBCIsJCToNE+CzqBVVHktbf0HTEROj4d1IfuPqEEEIIIYSQSFDQ9VDZy8v0p+K0/tZAXBEtd/Nf61CgE0IIIYQQQiLBQCpRU3uKS9LuNKUOuhDi3wCcD+ColPIUm/cFgE8D+EMAGQDvklL+ohljI4QQQgghhATgyBEkb74FYmoKcv165K+6EhjZ1NwxTIwjecutrR0DIQ2gKQIdwL8D+CyALzm8/yYAJy7/70wANy3/PyGENIyxsTHcf//9eM1rXoMdO3a0ejhrDq5/cymv9+DgINLpdNutu5/9wj21tlir97vV8xYHDqDrr9+LwuSxyjXl8f3I7t7dPIE8MY7Oa65B7PCR1o2BkAbRFIEupfyREGK7y0feDOBLUkoJ4MdCiH4hxCYp5XgzxkcIWXuMjY3hzW9+MwqFAjo6OnDXXXetqX/gtRquf3Mpr3c+n4eu61AUBclksm3W3c9+4Z5aW6zV+x2FecQiDn0AACAASURBVKd27YJy+BAQT1auxQ4fQfKWW5G//vqmjCF5y60mcd6KMRDSKJplQfdiC4CDhteHlq85CvTJyclGj4k0kHQ63eohkIjSrL2xd+/eilgpFArYu3cvRkdHm9I3qd/681niD+N6A2i7fe9nv/j5DPfL6qEZz/Ao7pco/O3aeuCA7XVtYgLTTVqz4fFx2EWqN3MMVubn51rSb5TJJRSs0xZaPYxIMjw87PheVAR6YNwmRdoD3kPiRDP2xs6dO3HTTTdVrBA7d+7knmwi9Vx/3jdvyutttKC30773s1/87ql2mC/xplnP8Kjtlyj87YqPjgK/PVJ1PTYygqHBQfNFpzjxGuPHY5s2AY895m8MTcRx/ocPQ8zMQA4OQm7evGbi5bs7Yhhe39XqYbQdouRV3oSOSi7u/+WQJO5mAD+QUt6+/PoJAGdbXdzn5uaaM1hSwRjnBKBuMU+Tk5OR+6NH/NGoPVGmmXujVXF8rY4fjAr1WIe1+CwJu26NiEGv9R4GaV+PGHTrfql3/+1Gu86pWfkUvJ4vzVg/u7+55XmHnX+t6ycOHMCB/+/PTTHo2pbN1fHfNnHi2pbNyF37AaQ+/rGq64Hixx2+u5Ux6NPptFmg24yxTKvH2iy6O2I4kQLdk76+PlPpgagI9PMA/DVKWdzPBPAZKWXVk4ICvbkY45xisRiEEFBVtS4xT2vxH9WrgUbuiTKrfW9EIX5wNbHa94uVKO2fWsfSirkY90uQ/qO07vWiXefUzHG7PV+aMQ63v7k33HADrrvuusD91ysfxW9+9RTkzbdATE9DDg3ZWoSTu3YhsW9fVVttZASxiYmq68VzzgkWP162TruMoZlYBbrT/MsEnm8bQoHuD6tAb0oddCHE7QAeAvBiIcQhIcSVQoi/EEL8xfJH/hvAMwB+C+CLAN7TjHERd+6//34UCgVomoZisVj570KhgPvvv7/VwyMtgHuidoxryHUjQYnS/ql1LK2eS5D+Wz3WRtCuc4rKuJsxDre/uXfffXeo/svfac1HEXj8mzcjf/31yH3qUyWRabGcJ3ftQuyhh2ybKseO2V4X09PBxjCyyXkMEUBMTbm/H3S+ZM3QrCzul3m8LwH8VTPG0i40023KycXpNa95DTo6OmxPbsuuVu2M2xo3222tHawWwOrfE36p5d5Z1/DgwYMYGxtrmz3QCGpx2d67dy927ty5ZtbPuH9q/d3V+gwKOxbj355GzsVpfkH7Hxsbw8GDBxGPl/7JZPxsOz7Hy9RzLwWlFhfrVo67XuPwO3+3v7kXXHABHnroocD9l7/Tmo+ibuvo4tZdRmia7XU5NFSfMUQEuX69+/urbL6kfjTNxb0erBUX92a6TXm5OK3WGHS3NW6221o7uRYCqysGPQz1uHdjY2O4/fbb8eUvf7nuIQLtRtj1ND7D2qlcWD2ohyis1zMo6Fis/d5www01xxDbzQWA7fz27t2LK664wnf/Vhfjd7zjHbjsssuwY8eOtn6Ol2nFAUM9XKybNe5GxKAHnb/b39xW5qPYf3QRNz54CL8cX8QfvGAAl5yyAUIIT7duI1878XfxwJaX4KxDj+L87EHkAsZkP/T8HB58fg6v3NKLs7b3Qwjh3cjAk1MZPHBgDqeOdOOMLesCtQWAiYUCxg7N40XrO3HShu7AMehHP/oJPKL3YEtfEqP9qcD9FzUdz8zkMNAZx8bujsDtpZRIZ1UkFIF1qXA2W1WX0HSJZNzeKZsu7v6wuri3bRb31Yyd21S9/wC5uTgZ+9qxY0fV69WA2xo3c/0b2UejWK17wi/1uHc7duzA/fffD1VV23IP1JOw62l8hq219bP+BsNQr2dQ0LFY+02n07j66qsD9+v2nWVXXbv5jY2NBerf+N0AsG3btqb+rWg09dhLQfH77w83WjHueo0j6Pzd/uaGXYd6rN9Xfn0Ut//6KADgN8cyOHljF04Z7vF06y5zz3Evx0fPvAQAcN/WU7Dh1YN4WQBx/uuJRXzwnmegS+Bbv5nGnj98IU7f3Ou7/YHZHN737aeQKZbuwyd3noAztvoX6dOZIt77X0/i2FIRAPCxc0/AC7stHxrZhOzu3aU4+SNHINJpyKFByE2bMfOuK3D1Txfw1PRRKAK44Y0n4Mxt/vtXdYkP7XsWPz44j0RMYNc5LwjUXkqJTz90CN/cP4XuhIL/8/rj8aoA8weAOx89ipvHjqC3I4brX7cdr9zif/2JOxToEaQZ7lsNd3GKOG5r3Mz1b7WLHglOve4d90CJsOvA9auNVq1fI/p1+k67azt27AjUf6v/VqxG+O+P9p+/qkt85sFDpms/PbSAU4Z7PN26AUACuO61f2K69pNMAi8LMIayOC/zwIG5QAL9Yz86UBHnAHDvM7PuAt1SFu7mV/5xRZwDwD2/TeOFL7Npvxwnb+WrvxjHU9NZAIAugf++6wGc+ZaXe3sQLI/jXnUdfrz19wEARU3i648dDSTQHx5fxDf3lw5Tloo6vvyryUAC/fnZHD7348MAgJmcitt+Pk6BXkfo4h5RmlFCJGwfq6U0kt8YdKD+btxe/a9mvNY2yN5opzJpQWJkWzXGVvXRrjHo9XQvBdCwZ75XLHY7/H682vu9Njk5iQMHDgR2y3dyKwYa8/eh2TR7LzTy3zhByvF59d+of6s08994jfibc9f+Y/iTrz1uuvaHLxrEta8dtS9/NrwRABCbLFncH95wPK46929M7V+1pRefeNMLffV/cC6Hd95p7n97fwr//paX+Go/my3iwv941HStNxnDt955mn0Dy5xysQRec9nHqz729YtHfdVg16XEH9z6cNX1n3z/E+6l1wzjOPut/4LFjk7T2z+46hWefZf5828+gSemMqHbf+T7z+F7T894tqeLuz9aVmatHqwlgQ5EM065XmOKgkD3QxTvQTvjp0yb373RTvem2WNdS3kUWvUsqUfsfNl6Fo/HIYRAsVisqexRPccZVWqdT637ZbWtJ7C65uRnLkFiwNvl3ypWguRlCMOb/v1hPPT8vOnauScO4rqzRksv7MqfAeh8398hNjGB615zOe7ZbhZzr93ehw+f8wJf/d/40CF8/TFzJvggAv8/Hp7AF382brr2kg1duOnNL7b9vDWu/u4X7MCHf9ec/3pzbwdufMMmXwL9Jwfn8IHvPmPuQy3gga98wLX0WnkcTwxsxjvO+/uq9/0K7KOLBbz1K4+Fbr9U0PDHX34UOVU3Xd/3py9HXDHnAaBA90dLyqyRcESllEjUx9RI1tp8G009y7S1071p9libXf4n6uvfCMLO3y7+tPxbqLnsUR3HGVVaPZ9W998IVtOc/MylbmXGIozdOtTrPj/yy6eqxDkAzOXUlRd25c9GNkGOjGCyqw/3HldtqZ7L2Wd2t5I5dBjfeaQ66ZqpfxdUXeKbj1fHyS/knfs3xtVLAHec9PtVn8lretU1WybG8c27f1x1Ob68Hx1Lr02MI/bznwMA7nhxdf+KKFnm/XC3zfwBVAluJ777VNr2s6Z7sFxqr+vP/xydf/ZnEAcO+PpuUoICPcKU45RisVhk4pOiOKZ6MDY2hj179mBsbMx0fbXOt1UY1zORSNS0tu10bxo11lbu23Zafyec1s9Pu3LZraDzL6+bopT+/CqKUvktGK/Zfad1vH7G34j7FHbdwvZh/G/rfAYHBxs+FiOrYd9bWU1z8jMXu99gmDJp9d539fxOu3Wox30WBw7gno//m+17fgSyXL8e/3ni70JTYqHaY2Ic937my8goier2eX8C/f4Ds6bYcT/tjXH1v9pwPJ4Y3FrdPqfB0yt5YhzHrv8IHkpurHprqSOFghKzL7227NquzMxgNtmNvce/suojugQWXQ4ZyuRVHd96wv4QYDbrvYa6lPjPx+zr2Ffu4fJ4E/v2If7zn6PjzjvRfeGFFOkBYJK4CLNjxw7cddddkYpvi+KYasXNJW41zreVWNcTCB+/2U73phFjbfW+baf1t6NWF/VymMbll19eKbvlB+O6BYlBtytPdt1113mOv973qdnhE3ahMMb187MG9aTd970dq2lOfubi9BsMkk+k3r+Ben+n0zrUep9Tu3bh/3znTux8+F5c9Yb3Yv/64yrv+RHY+auuxINf/qXte37aJ2+5FQ/02LvB+7XA3/fcnO31hbwGVZdVLtpAadzK4/sRO3wE/zNq7wau6hJZ1V2gJ2+5Ff/Ttc3x/fToC9CzHA5gbVeOf/+f0ZejEKs+oACA2ZzqWS7twefnHNd6Lq9ipNe9XNuvxhdxaD5v3375e43jLRN79lmkdu1C9otfdP1+UoICPeJEpZSIkSiOqRa8SuWstvm2GreSMbV+V5Sp91ijsG/baf2t1Freza7sll+c1s3te6zjvfvuu32Pv573qdllKMtuyFLKSn9XX301duzYgT179rSkzFk773snVtOc/Myllvk24jfQiO+0m2Ot91kZH4cA8OrxJ/B/77kRr7nsE5X3fFnARzbh2IajQN7GPTqvQpcSikstczE1hcmtp9u+l1N15FQdKYd63GUmFwuO7y3kVQx02ohfQ7m0w93bHdvPF9wPCcTUFA71vNR5bNd9CD02CeKMLvbPrXPOieDnHjw7k6upfTnzvG37ZS8Ep1J7ysSE5/eTEnRxJ2ue1eTeR9YO3Le1EXb9WrXu1n4vuOCCSIyj0eETbqEw/A2QVtCIfdcue1nftCIeewsZKPqK0F4q6ih6xGFLKTFTsP+MLkvJx1zbr1+PmVSP4/vzPgSmmxu3q0BdjquffoF9IjkAWLA5eDAi169HOuVcimy2e8CxXZl0p3N7P27+M9lq9/5Kex/r59r+aBoAHEvt6SMjnt9PStCCTiJBK0uOrSb3PrJ2aOW+dSs71Q6/n/J4b7jhhsDurbWsey3rZNfvySef3JLSWGHWzdjeq7Sl31AYPrtJmWY+gxqx7+rxnc1Yg9z11yP2s58h9uyziEmJdYUMZg2CeT6vYajL2fa3WNCguXiBz+VU9CadpUnmyj/F7H85W2Hncio29ri7aM+4iFA/bvIzLgJ/3uHwoUz+qiuRvv3XLv3bf7fRxT7tckBR6/j9CXTnz2Tu+jYweolpvGW0449HziE7PamGAp20nCiUeFlN7n1k7dCKfRs2Fjoq1ON5E2bdG9FvM+9/reN3a+/0np9QGD67SSv+DdGIfVfLdzZrDeToKJa++U2kdu2CNltEf1xi1vD+XE7FUJd9fDTgLu5K7TVs7XN+f75/A6SYdHx/1kNgFjTd1UrvJVCllJh1sSC7ZYIHAIxsQnq9vYs/4GIBN7jYp/vsrdOAP4Ed2oOg3N7lM/N5HclbbkX++usr41WPHkFh4PeQu/56yNFRz+8nJejiTlrOairxQshqx08sdJRp1fOm3Z9ztY7frX27rw1pLdw/zV0DOTqK7Be/iOznP4d1W80uy9ndn0Zy1y5gYty2rZeA9hKI3gLf/X3P/j1cxLOqjryLC4CXBV2XErMun7Ed/3K5stRHPwYASPfau8E7trfQSA+C2VT3Spm45ZCAzBduRvaLX6Q4Dwgt6KRllN2xBgcH0dHRUTn5bXTsVbu549Yb4/yB8FnU25l23wNBxl/vuZZjJcu/1wsuuAAPPfRQ036/gHlOowH/6FvHX8+Sd27rHLTfoPet0Xu61nVza9+oe9JM2v2ZEpYozNtp/0RhbM2iVb+hPos7+sLBcSSe/xWUx/cju3t3qf65AU+B7SGQaxboDW4/72FBX8x7u/ibWC5XVnYVV4WC+Xec57+9DW4eAH5i2Gdzzu1nk92QnTZl4khgKNBJS/jlL3+JK664wuQmGyamMShRcKdvJV7li9bCWrT7Hggy/kbMtdWx0NY53Xbbbdi5c6fv9o2IH/WzzkH6DXrfmrGna103t/btHkve7s+UsERl3nb7Jypjaxat+g31WUp6zSa7AQCxw0cqrs5G3BKMAX4s4B7tPQSyl8D3srC7WZ8BYMHDgu7V3jp/a7my8vr6bW8lr+pYKga04BuQUrqu4UzPAPJvry4TR4JDgU5awtjYmMkdK51O4+qrr254v80oERRlvMoXrYW1aPc9EGT8jZprK2OhrXMaGxsLJNCB5pe8C9pv0PvWrD1d67q5tW/nWPJ2f6aEJUrztu6fKI2tWbTiN1Ql0FMrArLi6mygVgt47e1rOyDwau9lQfe24JvbW8uVuWWwB7wt4LWGGGSLOgouLgAzw5urvCZIOBiDTlrCjh07Vm2JoCjjt3zRaqbd90CQ8bf7XO2wzikK/+iu9zoH/b7VeJ/bibW6/lGed5THtpqotqCvCEg5VO3qbBWI2/tTpteLP3zAPYbdInC39SVNr4PGoG9eZ874HtTFfdiSMd7Tgm4R+Bu6zQn1rALbWq5s2lKibaDTvP5eMeTWA451yZilvfv805b2vVre3N79/IIEgBZ0YkujY7de8YpXtMQdq91dKWvBrkQS0H4x6HZ7M8h+receaEWMY5Dx13u/RyGm0zqncgz6airVaFdmbM+ePY7fHfXnWhT2TSMJs/6rYU2ivO+iPDa/1GuPNHKv9aXMAq/sgq1t2Yz8VdWuzlaBODqQwnOzucrrucUcEj/c5xzDbiPwD86tiMSgFvjt/SkcmS8Y2gcTuMcPpDC5uNJ+3qOOu934jy2tqFrr+K3lyqwW9O39KcxkFx3bW7GGCGwfSOHXE0um9lJKCCF8td82O4knBrZAU0r7IKfqyKs6knHaf2uFAp1U0azYrVa5NLazK2VY3O5pO62F3TwABN6v9dgDrYxxDDL+eu33KMV0Guc0OTkZibHV+7lS/j6/c4vqcy0K96YZBFn/1bQmUd13QLTH5kW99kij95rVgj6zYROK55xTEuc2rs5VArE/hR8a318WoH5j2EcHUrjvwFzldVAL+vaBTjz4/Hzo9qP9Kfz44Er7BYfyaZX2NgcUPz28YOrfJJAN5dXE9DSObXulqf22vhQeHl9E2el8saBB1SXiir3Ath4wbOzuQGcii+xyXLomgaWijp6OmF3zqvaD2QX0dy1hunOdaQ5eteiJNzziIFWwZMnqY7XcU7t5sGxWc4jyfKM8tlpp97m1+/gbAdeEeFGvPdLovWbN4j4zekJJVDvEIVdZsAfMLu7GJGh+YtitLvLeWeCrDwhqaX/C/feYXi8WdGj6slwul0d73/sqbvvW8W/uTSIRWxHTBU1C/stHzS7+y+XKcp/6FKZ+/3Wm9kN6Duv0gunavMshg/WAYKAzXnUP3eLkrQcUA7lF9OcWTddyf/d+pN7zHtdQBeINBToxMTY2hoMHDyIejzN2qw0YGxvDnj17MDY25vq51RKPZzePVs1ttaypX6I83yiPrVaaPTe/zxS/7aJ0b8bGxnDzzTcHnlu9idKakGhSrz3S6L1WFYMewgJtet8g0P3EsI9aBP5cToOUzknMrOJza18SRmNztlhy0XZsP5cxvd78s4fQU1xx0ddRsmKXy6Ml9u1D/OGHkdi3D53XXIPZ2QVT+4HOOPoSZmv30oNj6LzmGltxay2RtvFb/4n+hRnTtbnDzqLYesDQ3xmvuoduhxRVFvTcIvrzS6Zr8ws5xPfvr8xZHDkCEhy6uJMK1hJcl19+OS677LK2dRFb7QRxXVsN8XiA8zyYz6DxRHm+UR5brTRzbmHdYb1CaKJwb8pjzOfzuOmmm1oeohGFNSHRpV57pNF7rUrcuQj0oqZjwZDlXKAkkI3MJ7uhCgVi84ivGPaRng6k4gpyy6Ja1aW7i7bVArwsUI3fO59XsSFu76I9OzEFJFbcuQdyC+jPLWAxsXJQMJdTsdFSHg0oue3PPT8OdAxWrvWn4hhYmMFUom+lj2Q3Nh0+5ODibx7/+olD6B94IQ4YrmW+8V/Ate/xNf/BzkRVHgG3e2g94BjMLVQJdGMm/9jhI0h+/vPAF/Y4fiexhwKdVDC6QgHAtm3b+A+HCBO0jEw7x+MZsZsH8xk0hyjPN8pjq5VmzS1saSqvdlG4N+Ux6roeibJbUVgTEm3qtUcaude6EgriioC67Nad1yRyqo6UTZIwq/W7LxVHR0xBbzJmEu7Tb9iJ7j99Z5WbfLaoVYQ4AMQVgZ6OGPpSMeQWV67P5VRbgS6lrBKY/alqgT6XU7Gh216gzwhz1vXB3CL6c0s41LvB1N5aHq1MWppl10BnHH35JcAi0AEHF387F3OLQJ5bMmdWN+I0f1N7F4E+Y8kh0DcyhH7NfM2YyR8AlKljjt9HnKFAJxXKrlBlKwjd7qIN7xchpJ6Efaa0w7OoHcZISLshhEBfKobpjFngpmyShFWJw+USYf2puEmgH/vL96J7oLO6fa5aXAoh0JeMY3LRnAl9y7qktTkWCxqK+or7eyquoDMRq4rBdsrkrukSszGzS31/fqlaIOfVqvJoZWYS5nn1dybQbzlLKGdql12dSO7aBTE1Bbl+PfJXXWnjYl5twZ5ZVx0aUHnPwYPANH6rQJ8YLyWpm5rC3InnA8mV7++56l1Y97W95vaGMAUA0NdvAAkOBfoaxKnkBt3u2otmlwtz+8xqKBnUSrh+zYF72J2wz5R2+NtRHuPevXuxc+dO3n9Sd9p9D4Udf18yXiXQrfXBARtxuCwM+5JxHISxVJq9QLaK03INcL8W4KoEZwHbz+dVSEP5sXX5JSR0DX0xc8z7XE6rKo8GANmt27CorFjgFVGqQ95z0guBAyux7bPJbmjDG6H89reITR6tXBeP78fs6//e1FffQA/6c2aBPr3j1bbjB+ws6AmbAwrDZ5Zj6cvzmN16LmA4++jvjKPnzNOBx1Zi6415BLQtm5F/j727PXGHAn2N4RVjSLe79qJZ5cLcPrOaSga1Aq5fc+Ae9kfYZ0o7/O3YsWMHRkdHMTw8bLrO+09qpd33UC3j7++MA4Y8ZY4CuVaB7WCB99veKvD7ywcE1hhshyRpVQcEUFE85xx0/+4O4BmDwM4VgReby6PJoSGMv+NdwPdW3L37UnEoQqBvcJ1JoKdPOgX6MQ2JBx4w9VeYnIKxiltCEVA+9i/ovf0H5vHHq70PAECX0l+SOMMBSdISS5+21GEf6Eygb8MggBWBPtM3BPWlJ0Nu2oz8VVeie/Nm2/EQd5qWxV0IsVMI8YQQ4rdCiP9l8/6oEOJ7QohfCyF+IITY2qyxrSVY3oVY8bMn3D7DPVUbXL/mwD1MnOD9J7XS7nuolvFbLbBLX/maqbRYGas4HOgsWZN9C+RJc1z3IIrL7cMJ/MFK/+Es8P2jW5C//nr0DfWZrlcErqE8Wv766zHbO2j63KDDAcP0Gb8DsWS2igNAOtVr7r8zDrFpM3rOP9fX+BfzGjSDsb8zoSAVV1yzuBtj6VWhYC7ZZfpsn00Me/r0VyH3uc+7ltsj3jRFoAshYgA+B+BNAE4GcJkQ4mTLxz4J4EtSytMAfBjADc0Y21qjniU3wpbjiTKrcU5e+NkTbp9hySB3vPbUalu/Vv+GwpT7Wm33IAxu963V97TRtPL+t2ptV/s9daJR847SMyTMHGsZv1WgLT71rKm0WFmk28WQ27W3FZgT41j8xn+ZLq1/8EfAxLiNwHRwkbf2X6sFvtzezUXcrX3K6YBAs41hn6myXjuM3+mAw8HFv99l/sZxzCW7IMWKbFyXjCGuiEBJ5oh/muXivgPAb6WUzwCAEOIrAN4MYL/hMycDuHr5v78P4JtNGtuaol6xgu3uzmXHapyTH/zsCbfPtEP8aavws6dW0/q1+jcUttzXaroHYVjr7v+tuv+tWtu1cE/taOS8o/IMCTvHWsZfVQs9aSmztVwuLF2Di3vyllsxWzAL1KGpCSRvuRV9f/wXnu0BGwt+yl5gO9Vyd2zv2wJv9SBwFsh2MexTm4+z9B/QA8C6/ikHDwZDe+M4ZiwW/AFHDwT7AxISjGYJ9C0ADhpeHwJwpuUzvwJwMYBPA7gIQK8QYkhKWV1nAMDk5GQjxrkmGB0dxejoKIDw67h3717k8/lKyZq9e/dWvtMP6XQ6VL+NpNY5tTN+9oTbZ+qxp8pEcW+Exe+equf6tZJW/IaM+8Wr/2bt4XbDbd1W23PR6fnSivvfqrVdbffUL2HmHeTvURSeIbXc26Djn0rnkdck4rq5rNesJYu3NjGB6XQaR+czpusxNYfpdBox1dz+6HwG05Z1Hx4fR7r/FaZrg7lFaBNZxNSs6foxm/YAMDG7aHqdkAVMp9NQiub2Uws52/ZHZhZMr5MoYjqdhijkTNenF+3bH5qeN71OCbX0uXzBdD2dyWO6Ywix6z+E/ttvRzydhjo4iGdfdwnw9Ip47lQ0TKfTkBbhP5Mp2PZ/cMrsNt8V0zGdTkO3COrZbHGlfUeyMo6Jgjkzfk9cYjqdhmYofQeUDiKmpqchlhPq5RIK1mnmtSMlrPlQjEQpSdz7AXxWCPEuAD8CcBiA4zGM26RI49m5cyduuummyintzp07A9+TqN3DesyJ1IfVsu5rbU+1ar7lPtbaetcLt3VbjWsalfG3am1X4z31Q9h5t9PaNPPezihLyBV1bJ4BjFniZi2u2LGREQwNDmJJO2q6ftyGAQwNdmPLQgzAii0up8cwNGiO145t2oQZabHg5hYQe8FWbBnqB7ASK53Rlar2AJCVc6bXW4fWYWhwEFu1DICVsWU0Yds+D7PA3zzQi6HBQWxTcgBWDjSWNNi2LwjzQcCm/h4MDQ5CTxYArMTqLxZlqf3gIPDhD6MsyfO/nDB9bqSvG0ODg0j2aABWLO0LBWnbf3HCLKmG13VhaHAQfbpEyW663H9ew8iHPwJl/RDyV10JvOQlwIc/jKnfpoEfHKh8bkNvZ6WfZOwQ8ssB7qoOdPb2o3u5Fn13RwzD682x68SbZgn0wwC2GV5vXb5WQUp5BCULOoQQPQD+WEo526TxkYBExZ2rnvidU7uXUmkW1nVai+u2Gn8nbrR6vo3uP+wejvreTuaTowAAIABJREFUt1s345ibeU+jtFaNHkst+7U8tsHBQaTT6aaXxYvSffJLq59PfqllbVsxR6uL+Iy1zNZVVwLwn8XdzsU8f9WVSH/lEXO/vZ3IX3Ul+jpCZoH34eLt2n7ZxbvKRT3r5OJu336dTQy7lLJigXZuX2rXnVAQE6gkgMupOvKqjmTcnGbMKQt+XBHoTcYqteilEMg8/iQG8ktQHt+P7O7dwMgmxxh+oHQPjy6tWPJnc2pFoJNwNEug/xTAiUKI41ES5m8D8HbjB4QQ6wGkpZQ6gOsA/FuTxkZC0g5ldYLiNae1GrsXFOs63XDDDbjuuuvW5Lqtxt+JG62eb6P6D/vbb5dnhnHd7MZ89dVXe3xD7URprZo1ljD7tTy2siuzoihIJpOBxljL7yRK9ykorX4+eVGPtW32HK0Ce2ZoGOorXgE5tGyBHdkEKaVLkjYfAnlkE6aHjsJYZ6zrf10DjGxCX8bs4u07Bt0pBjxvL5BnHGLIezpiUASgLwvkpaIOVZeIK5b2Dv0n4wo6EwqyxdLcdAksFjT0Wg8+HNoLUUrUZozxn8up2GipRV9VJs4w775kvCLQgVKYwkB+yZRDoDqG3Vmgz+dUbFlndoknwWhKFncppQrgrwF8F8DjAL4qpXxMCPFhIcQFyx87G8ATQognAQwD+OdmjI2QILR7KZVmYV2nu+++m+tG2pqwv/12fGa0asxRWqsojcVKeWy6vvwP+uV447V4n1Yb7bi2VRbwdYOV0mLlMltLRR1FQ42vZEygc9nC6ycLuS4l5grmWOf+4zbbtl/Ia9B0CStWC3RZ4KbiCjpiK2K6qElkjXHVE+NI7tqFuUOTtu1jiqgS03aHBK4C10/7qvEnVtr7SBRXnaTO0D5miSNProQpxH78YyR37cLsYcv8iys5Bfxmkif+aVoddCnlf0spXySlPEFK+c/L1/63lPLu5f/+mpTyxOXPXCWlzLt/IyHNZWxsDAcPHkQ8Ho9EKZUoYy3ZcsEFF0SmBM1qpN1KJrXbeAH/ZYisc2t2+aV6rG2rSkY1qt9ml51qNOWxKUrpn3CKoqyK+0Tac23txKGUZoF8bMmcCG2wK1GxUJct0GWyxZKLtpF0RoVRc/d0xNARK+3/uCLQY3CnlgAWCuZ467yqY95gIVbEimt52QJtnQMAYGIcnddcg/i+fZhSzBbhfpPA9vYCmLZYwK0u4ub21Sm4pjP2Zers21f3n7a2L/c/MY7BJ/eb3ptNrYQpKIuLSOzbh7lfmT+z8ctfqpTQcyvVRsIRpSRxhEQWo9tZLBbD5ZdfjssuuyzSrnKtxC4O7uSTT4587F870m7upu023jJ+Yjud5tasmNB6rW2rYnUb0a91TW677Tbs3LmzJWOpF8axhYlBr2f/UVubdqcd1zYZV5CKK8gti2pNlizmRtE8sWAW6CMG9+uyQDa6YM/lVWyMr3xmYtFssxvpNbtv96XiWDSI8rmsahKNE4vm/jd0dyBmOBXoS8VxzOCiPZdTsak3ieQttyJ2+AimUz3IG8bTrRdN8+tLxYG5vKm9kbyqmwS2IkpjKOMlcKWUmLTMwejCbuemb8W6BhuX+0/ecisGFoeADSdW3ptJmhP9AcBEV7/p9aZDz1Tc36u8KBzi8Il/KNAJ8YHR7QwAtm3b1hZ/OFuJNQ4u6rF/7YqdS2SU17ndxmvEaw87za1Ze7+ea9uq32u9+7WuydjYmC+B3oix1JNWj63V/a9m2nFt+1Jx5AwCcDarmgTsuEWgb7IR2DPWGGqDgK1q32NtH8NhQxUzq0CdWDAL/Kr+HVzMxVQpO/yRniHT+5vzC6YYdS+BbRXXG7oTphj1qjh8y/hnc2rlAAQAOhOKyWrvJZALmo5pQ6y+ALCxp+TiLqam0C9S5vaWUnkSwJEec2b4zYtpiOlp2/7n8qyFXitNc3EnpJ1pR7czsjZot73ZbuMNQqvn1ur+o4h1TdpN+BDSDngJTKv1dqTX2V0cqBa4VRZ4i8AO3N4i8I3u5qX2yxnN168HABzpNovTTcL8fV4u5lXz7zHP30tg243feEDgJZCPLhZgDDoY6kpUQgTk+vXoz5trpBtd3AFgrqMLmcSKiE+pefTnlyCHSgcXflz8STBoQSfEB+3odlYvai2nE5VyPFEZR72x7k0A2LNnT2TnuZp/S62em9X1uZxgajWtcVCs92R0dLTVQyJk1VGrQPaKwa4WuF7tvQ4I3C3o5YRs+auuhPL4foxbrMcbXvIC1/6tCd28DhiCC/zaDiiMHgT5q65E3yfMhbNm+oagDW9EbLJUH77Kg2BxBrqhhF5f1QEHBXqtUKAT4pN2dDurlVpjWqMSbxyVcTSK8t5sl3mu5t9Sq+dW7rsd9kGzMN6TyclJj08TQoLiLTA9Ysg9sphXC0yLBdpBYJexushXC3wHC/DIJmR378bBr/7E3H54wNLe/YBh3OJi7ymwq1z0PebvUapu3O2AYmQTOi9/O/DT2cql6Ze9Etl3vwHJW26FmJ7Gwc0vNbdPiUp9dMB7/Ulw6OJOCHGk1pIvUSkZE5VxNJq1Mk/iDvcBIaSZeAp0Twuyl8D0ThLn2v+il8B1aT+yCUdOPMXS3l1gLz74EyR37apkOfe04HuMv+qAocYDjqoDik0bze1lHBjZhPz11yP3qU/h4Ll/ZHp/4+kvrYhzP+MnwaEFvUE0wp12tbrokuhSjt8sW+KCxrTW2r5eRGUcjWatzNMP5edlK7JcG/tvxfM6CvuAf69IVKjnXlwtIV/1xk0gLhU0U4mzuCIwZKjBDbi7aGu6xNFFc4ky7xjyOsewe7rYWw4YMkUk7t0H5fH9yO7eHdjFv8pF3npAEbh9MA+E2kMUKNBrhQK9ATTCzbRdXFfJ6qLWmNpWx+RGbRyNZq3M04vy8zKfz0PXdSiKgmQy2bTnZquf163eB62ePyFl6rkXV0vIVyNwE8jWDObDPeYSZ4C7wJvOFqEaiqCvS8bQ1WEWxNUCc+VAIFPUTII1JoD1XeYDAjeBq0tpI/DdLfAzy0nWYoePIHnLrZjY/mZLey8LuCUG3ysLfq0HFNb2nkn+3AX6Ql6Dpsuq+0z8Q4HeABpRRqidSxOR9qbWmNpWx+RGbRyNZq3M043y81LXS2VpdF1v6nMzCs/rVu6DKMyfEKC+e7HW71rNvws3gellfQXcBbKXuPRqX+sBQTqjomg4IOhNxkwl5GzbG8qU5dOzmBlxroFeau/s4i+lDJzkbi6nQkpZyfTuFQPfnVAQE6Ua9gCQLerIqzqS8VIktFcMfFwR6OmIVWrRSwALeRX9Fk8J4h/GoDeARpS6YfkcQgjxR/l5qSilP3GKojT1ubnWn9drff4kOtRzL9b6Xav5d+EmkKvEoY3AdnMxrxb4ZnFY6t9Z4IYR+MYyZV7u5XbtZ5PdlbJm4xu2mt7b2N1hqoEOAL3JOIxXFgtaxWsgnVVR0FYOCLoTStUBQTKuIBVfkXSaBJaKpQPqvKojnTUfEGy0zEEIYbMGpTa2BwQ+1sDqBUCCQQt6A2iEe2GrXRajSKtjucL23+pxRxHjmtS7DBLXuzaitH5+x2ItNxYmBr2Wea/l53V53W644YaWxP6T1tCs2Oyg/dTzt7haQr68cFtj43vrjl/J7O0qkKvin/0I5Pq198rgbtd+Ia9WXLT9tO+MK0gowLImRj7egVysAx0j63HgDy8Efjqz0t5m/DFFoDcZM8Xqz+VUDHUlbGvIG2ugl+lPxU2fnc2q6OmIVXkQbOhOVB0QAKU1MAr5uZyKjd0dmM2pyKn6ylwTCtZZ6p6X2sdweH7ltdVNngSDAr1BNMK9kK6rK7Q6lits/60edxSxrsltt92GnTt3NuS7ud7BiNL6BR1LLc/Lesx7LT6vo7RfSPNoVmx22H7q+VtcLSFfTritsfW9z/y/r+DEU04H4F4mzI+L+zob62vZRXvChwW+pyMGRQC6jYu2ncC1ElcEujtiWFp20dYlsFDQSqLXhwW+ZIFOYCqzkszu2DnnYvCKt2MiHQdgEOg28wdKAtlWoPvov9zeONe5vIqtSNpYv6vnX25vZG5ZrFe5t/d0OB4QmNozUVxN0MWdtCWtLiMUtv9WjzuKWNdkbGysYd/N9Q5GlNavmWOJ0rzbCa7b2qRZ5Ti5vxqP2xpb3/vFTx6qvNdjcdFeyK+4aLvW4F4mZXHRVnWJzLI52o8F281F288BAeDsBeCVAX2lvbn/o1f9JTCyyTPBm1P7Sv8e8eMr7e3H71qibWIcyV27kHrf+zD4zJPm9nkf7X2Mn4SDFnTSlrS6jFDY/ls97ihiXZN6Whfqud5RcvUOQ5jxR2m/NmssY2NjOHjwIOLx0p/HVs+7nYjSfmkVxt8ZgLZ+ZvjF7313egb5bc/91Xjc1tj63ulnvrryXtzGRXs+p2LQxgLsJnBzRhftnIrujpgvF/dy+xkbF20/FniglGjtCAwW6IrA9SeQnSzIfg4obNvnnQ4I6iTwJ8bRec01iB0+AgAYTJwAvHizob1m27+jBd6SqM5a6o0EgwKdtCWtjuUK23+rxx1FrGtSzxj0eq13u7vu1uIaGpX92oyxGNcpFovh8ssvx2WXXdZW97qVRGm/tALr/hFCQFXVtnxmBMHPfXd7BvndN2t9fzUDtzW2vrfu+JciV1yJTa5y0c6rSMREJbM3ACRiAgOd9tKjLxXD5OLK67mciuGeDhy1ycJuh5NA9sqAXq/2jhZ4H0nuSu39uZjXa/zJW26tiHMA6M8v+Rs/LehNgQKdtC2tjuUK23+rxx1FjGsyOTnZsO8OS7uXx6ll/FHar40ei3GdAGDbtm2RmXu7EKX90myM+6dc4k9K2ZbPjKB43XevZ5DffbOW91ezcFtj43u/OWYWdH3JOA5ixVo7lyslWjMy0tMBxSZ+GbAXeNOZIgwJzNGfiqMzUZ2gzL69hqWCZjo0iCuiqga6W/+aLnF0sWi67hZDbm0P1GABXx631cV8k1+B73hAUOpfTE2ZrlsF+mzFA8BsgXcaf1UtdQr0mmAMOiGEeNDu5XHaffzNgutEasG4fxKJBPeSAf62Vj99VQJNw+F5f9ZXwN4CfGTenzgE7GuBW8XpsNMBwcQ4Bh/+aVX76UyxEksPAOuSMXR1+D0gUJEpaiahGhPAkNMBgSUz+uKPHoQ+fqS6jntgF3f7EAO5fr3pen9+0fTaS+BXj59l1uoJLegRo93jXAlpJY2K/4yCayXLfjUerhOpBev+AdZGDLof+Nta/djFII8dmjdd27LO3voL2NdS3380Y7q22bV9tYv5fQdmTddsBf5yLPZg30nA6SestE/P4SeHzGMKdMCQV/HLI2bRO9zTgZhNiTMA6C+YLdjzR9N47p8+ieIZ76xc603Gqmqgl7ETyOMLecwYDggUAazvLh0Q5K+6Esrj+ytu7v25ahf3hXz1IYdfF3fGoNcGBXqEaPc4V0JaSaPjP1vpWsmyX82D60Rqwbp/uJdW4G9rdWMVyPuPLuHBA3Oma2cf3+/c3iIwD87lse+3adO13z2uz6V/c/tjSwU89Lz5gODMbeuq2pVjsQdSW03X5x97EndOn2C6dsaW6vZO/c/lVNz56FHTtZdt6nFsv/7ee4DBld/HTLIHdwydbPrMSzd2O7a3upjP5lT852PHTNdOHOpaqYE+sgnZ3buRvOVWiOlp9AwfX9X+209Mo2jwIBjuSaA36ZxDwAhd3GuDAj1CtHucKyGtZDXHf/LZQAghJMpYBep3nzKL6xcNdeJlI84C1dr+209Mm15v7E7gLBeBb7Vg//eT5v67Egr+8EVD5kYT44j9/Oel9pYY7L2dW4G5FRd7RQAXvsTsFo6J8ZLAnZrC+s0vBgZ/p/LWTw8vIGtIogcAF5+8wXn8M8eAwZXXTwxuwUJHp+kzF51s6d+A9YDjyEIez85kTdcutLYf2YT89dcDALoWC8BXHqu8NZ0p4usWgf9HJ7n075CFnoSDAj1CsIQIIc54uXgbfz9WC3q7/5bq/WxgKA0hhKzAZ2I1QdfEKpCtvOWUjRAOCeL8tL/4pRtWrL82WAWilfNfPIRuo3v4smu7MjNT6t/i4m3ldS8YwMYecw1xY5my9c9NAuevCHSrOH/Fph6cuL7LefzrzGJ8NmU+zBjtT+FVW90s+GYLtrHkHAAMdMbx+hMGXNqb128+rwGGBHvJmHAV6D0dMSgCKBvcs0UdeVU3rznxDQV6hGCMFiH2+HHxXs3xn/V8NjCUhhBCVuAzsZowa+ImkNd3JfC6Fzhbv73ap+IKznvxkOP7Xu0VAVz80o2ma15lxqxccorZ+h28/UbX97ve+TZg71HH999yygbHDPgA0JuMQwCQDu9f+JL16Ig55wZPxhWk4gpyqm77/rknDrmusRCiuhZ9XsWgQ1I84g4FesRgjBYh1fh18V7N8Z/1ejbQXZ4QQlbgM7GaMGviJt4uOnk9Ei7isNTe2dJ63ouHHGOf/fT/2u39VcnNrGXGBixZzI2cOtyNkzaY47+9ypQZ2bouid85ztn6DQCdWzYjoRxF0UYfr0vG8MYXDla/YSCmCPQmY6aycmUSMYE3W93zbehLxZGzZI0v85ZTnN3zje2NAv3JqQyOH+h0aUGcYJk1QkjkYYme+sG1JISQFfhMrCbMmjgJ5IFUHBf4FId2JGPCtzi0QwB422nDVdetZcZ6Cjkour31+DIf7RO6hu5CtupzAPDWUze6Wr+BsgXa3tp80ckbkIx7SzanNTj3hYPo7/S2ZDsdkvzOtnU4rj/l3d5yiHL9Pc/iJwfnHD5N3PBtQRdCfArA/5NSPtzA8RBCPIhyrFyjxsbwj/phXMvBwUHcf//9leuErHUa+XyN8rN7LcO/L9WEWRO7GHJFAP/7D7Z7Wr8BOH7m6tdsq9TudiPlIGCveOUmnLShOvbbWmZMgYSuVH/Hm140iFfbWL+t7QFAV6oF7umbezzd88vYORlsH0jh/2/v3qPkuKs7gX9vVb/moedImhk9PJZj8TDYgUAGQpQQAhwmrI/thJDYbBaMH0nYODxESGysAMdMjsPDA9kTouTYBkOOH7B52E7iDASWDSgHaGtZCFgG47WiSLJmbM/oYUkz3dNVd//o7lF3Tz27e6qrur+fc3ys6enq+lX1r6vn1u/+7u/qy7zT46uczsHGvhTe+YrRQNs7LeGWSxn43fGtgbZfm125/Xv+6Um89qIN2LHOP8Cn88KkuJsAviwizwL4awD3qurR1WkWETmJ81y51W4bp3+0T/U8xrUvEXXCal7D4nztJn6/OAl7TvrTBgbSBs7W5Gj/9s9uxcu3rgm0fcoQbOxLYb4mRfryFw7hTbuCBbdAeZ3z4zXrdr9sdBC/9bKVo98AViwzpkND2LkmhUPPn9//8GAa733NDufidg7b71ifxRNn6meBf+h1F7qufd5o29osZs8s1T320TfsRF86WKG14cEMfjJXP4r/kdfvxFDAeeBOz/vAL+zAhQHT1Dc4jNL/zs9uZXDehMAp7qr6bgBbAdwM4GUAHheRr4rI20XEfd2EChGZEJEfi8iTInKzw+8vEJGvi8j/FZF/F5E3hzkQol7gNC8sLuLcNlqJ7xdRvdX8TPDzRt1ORPCWmkJoE7s24jcvDTbyW1W7DNrLRgfxntds93j2Sq+76HyV8u1rs/joG3Z6p5ZXlhlb/NSnUNi7F6+56Pz+12ZNfPq/7PJOLa9u/0d/CAD4uSe/u/yrtCHYd8ULAqWWVzUuQ/fRN+wMFdy+eEt9psDvvXobLvNY2q7RxRvrA/G3vGQzXv9T3nPfa124ob6tPz+2Du/4mZHA29N5oYrEqaoF4B8B/KOIvATAfQDuAfAXIvIAgA+r6rHG7UTEBPAZAG8EcBTAoyLysKoerHnaXgBfUtV9InIJgEcAXBj+kIi6VzPLbUWVVsllApOF71cwTEvuHav5mejFzxs/O73nuleM4tU71sJWxUu2DHguq+bk+leO4qUjA1hcsrH7wvWey6o5ueGVo7hwfQ6nCiW8+QVDoZf4eucrRrGhL4Xnzi7hV1+yGcODGf+NapZb+20jhcxLZ3Fkyw5c9eu/iBdtGfDfvsZbL92C0wULh04s4KoXb8YvXOhd+b7RVS/ejMMnFvHE3AJ+ZddG/PpL/Ofu13rzC4fw7zNn8YPZM3jdRRsCp7ZXvfHiDfjXQyfx/ZkzePWOtbjltWO+c+/Jmai6FeR3eLLIWgBvBfBbAC4D8LcAPg/gPwG8H8Avq+plDtv9HICPqOqbKj/fAgCqenvNc/4KwFOq+rHK8+9Q1dfUvs6pU6eCN5ZibXZ2FsPDLmlH5CnMHz1Rp1W24w8y9o3odMMf0KvZX5iW3H38+gvnoLdHt3x2+H3k7kfPnsWiU8nxHpOdnET6q19d8fjSG96Awt69HWhRZ6kqbC3XHxARDGRMz/XfqWzdunV1dzLCFIn7GwBvAvANAH8J4EFVLdT8fg8At1J92wAcqfn5KIBXNTznIwC+IiK/D2AAwBu82jM7Oxu06RRD8/PznW5CYo2NjWFsbAyA/+dgenoahUIBtm2jWCxienp6edtOt80N+0Z02vF+ddpq9peoPz+0+vz6y2p+Jrrh8xZUt3x2+H3k7rn5AgoWx82Gjx+HUxK7NTODOfYfLKYNrLWe73QzYsnr5l+YFPdvA7hJVWecfqmqtoi0cpvxGgD3qOodlRH0vxaRl6qq4+053tFMPr6Hq29iYgL79u1bHsWYmJhIxHlPQhspPlarvyT180Pe+B6uvm767CS13avthMERdAAwR0eBxx5b+fjICIY2Bp+/3a0GMiaGOYIeWuAAXVU/GeA551x+dQzAjpqft1ceq3U9gInK63xLRHIANgF4Jmgb46iXUtoofrh8TDBx+pzGqS29jp8foubws0O9wmm5NWvbVhRuuL6DraKkCzUHvemdiKQAPAHg9SgH5o8CeJuqPlbznH8G8EVVvUdEXgzgawC2aU0DkzYHvVvmYK0GzusiN1H3jTh9TuPUlqTgtYTCYH+hMNhf3HEOeo2Z48jedTesmRmYIyPl4Hwk2Nrj3Y5z0INpeg56K1S1JCI3Afgyyuupf1ZVHxOR2wAcUNWHUS4yd6eIvA+AArhWo7h7sIqcllXhH9tE8RKnz2mc2kJERJQIlQBZnnsOumlT9AFyZbm1ufl5prVTW0QSoAOAqj6C8tJptY99qObfBwH8fFTtiUIvLqsSRD6fx/T0NCYmJpoKPpgCvBLPSfPi9DmtbYtpmjhy5Ajy+TzfUyLqOdXvtY0bN2J+fr5j329hv18b293p9ne9mmXOqozHD2Lhjjs4ik2JFUmKe7skLcUdYODUqJrCWygUkM1mQ6fwMgV4pW47J51IKYzT5zSfz+P+++/Hfffdh1Kp1BXv6WpiCiqFwf6SDLV/K9i2DcMwmvqboVXT09N45zvfGfj7tbHdIgJV7Vj7V1NcUtzjtMwZR9BXYop7MI0p7kanGtIrxsfHsWfPnq65ILeqmsJbXXpl//79TW1fmwLc63hOWhenz+n4+Dh27NiBUqnE95SIelLt3woAmv6boVX5fD7U92tju6uDYJ1qfy+Q555zfnxuLuKWELVPZCnuREDr6cRxSkeOC56T7sP3lIh6WfUaWDuC3olr4fj4eKhrcWO7a0fQeS1fHbppk/PjQ0MRt6SDOj0Hn9qOKe4RiVMKbadxDnr7teucxOHcdksKaqvnMg7vRRJ0S3+haPT6FJooNB5vkudwz87O4vDhw4lt/2qqprirKkTEf4PV4jAH3dq2tSNz0DuS4h6j43fCFPdgGlPcGaBHoNvmCLcD/6iOn7j0027oG3E5l72gG/oLRaeXl3GMQuPx3n777bjllltCz+GOy/ni9cVdNUA/U7RgCtCXNjvXmOoI8twcdGioYyPInQjQ4zQH3wkD9GA4B70DOEeYkoD9tH14LokI6L1rQePxPvzww03N4e6V89UNTBEoOjiCDiwvc7b4qU+Vg9IYjByHYdnNjz9yDn53YoAegeqcJNM0OQeJYov91Fk+n8fU1BTy+Xzgbdp5LpvZfxwktd1E7dRr19XG473iiitCHX+vna+uIACQyATXWFgs2TjXQjV8zsHvTkxxj0ivzUHzw7SxeIpDP41T32gl3bId5zJu6Z5BRdnuOPUXij/OQV997ZqDHofzxeuLu2qKuwhwtmihv5Mp7k0o2YqipRjIGDhTtDDQhvY3k+K+ULJhAMimmhwzjcEc9IUly3WKA1Pcg2lMcWcV94iMj493/IuGyA/7aT2ndMug56cd57KV/XdSUttNtBp67braeLxhj7/XzlfS5VIGzhWtTjcjtKKt+Nnta2Aagm//5+mOtWMgbaJgtbCe/MgoFu64o2Nz8Eu2YrFkd7YGQRdigE5E5KLTy511ev/NSmq7iYgouCXLxpbBDE4ulJp+jZJdnsFuGtLUcmHNVpE3AaTN8qi12aEp9EuWjdG1OTxzptD0axQsG8WNW4AOFYQrWDb6MwzO240BOsVKnFLbkoznsT3Gx8fx0EMPdexcdnr/zWql3ey7RETx4nZdLtqKtbkUDKP5CLdo21AVDDwzsyJV23j8oGuq9kLJxrpcCoYAc+eWQqeo18b0rbTfshVF20ZfKnyQumQrtgymMXeuiGZnHAsE2VTnivSlRDCQNlFqodAdrcQAnWIjqfNt44bnsb06nW7Z6f03q5l2s+8SEcWL13VZAGRNaXoEeqFk4wVD/XjiuXPI3nV3XXAOAOaxp5G9627H5cJMAS7ZMoAly8b8ufAj+GZNUJ5qIUAvWFof7YfQlzaRMQ2YhqBkhQ9wF0s2dm7M4enTxab2X1Wytelz0JcxkTaFAXqbsYo7xQaXV2kPnkdKKvZdIqJ48boumyJIVwLMsJYsG5sH0ljflwbgsVzY008jOzmJ3Hvfi+zkJDBzvLzvyj5NQ9DMKm+1AemK9s8QXzUpAAAgAElEQVQcd9ynk/6M0VQwZdmKdbnUiraEkTIFw4PZ8Oe/5vjMyT/B2SNP+2/jwLIVazImTEOQpKLjScARdIqNXp632s603nacR6YZ02rw61e9fA0g8sPrMnWC13U5U6k83swIsK3ARRv7ICgPQLstF2YeOgQ5eHD552rae2q0nPZuiKCZGdCG1I+gF6sjwA5V0d1S7ZcsGyNrszh+Ovwc8kXLxvBgZkVbglooWXjhpoGV7ffTcHzFVAYbf/QjWJ/8eOjCcouWYtNAGicXlnBSgQ5m2ncdBugUG0mdb9uqdqf1tnoemWZMqyFIv+rVawCRH16XqVO8rsvVpcFSTQToKVOWA1NTBIUbrofx+MG6wNju64OxsFC3XTXt3frwHy8/1swc8tpR65QIqkniYVLtl2zFyGAGz54Jn2IuADLm+SyAsMXuVMtLmAHl8xdU4/HlSktIHTmMgstUAi+mAIMZEwtLFqwW0uRpJQboFCtJnW/bitVYkqqV88glsmg1BO1XvXgNIPLD6zJ1ktN1WVWRrRRGM5rIMa9WUAcqI8gOy4XJ00/DqBk9r5K5ufoAu4nAsHbUOm0K7KLCEHFPtZ+bW/HYYCa1nOIfNsNbcL7dWdOAFXoEWpa3T5kCLQYL8GuPz4ZgfeEsFlIZx+Pz05c2ICLIpgxYTHFvKwboRB0Wt7TeuLWHugP7FVHz+PmhuCnZwFCmHGTXBrhBpZ0C7JHRulHc7OQk4BCg69BQ3aixaQjsEEXKVBU19wfKAaatMJ6dgczMOG8zNFT3c6Fk44INueX9h80gMESWA+qMidAj0IacnzsfJsCvnUqwmMpgdP4IDq/dvOL4/NiqWJ8r1w9ImwYYnrcXA3SiDotbWm/c2pMEnBvqj/2KqHn8/EQvn89jenoaExMTPN8ODAEGs+UwIpsyYGv5saDMhiJtlkOA7ZT2bm3binPXX4fNqfoAP/AcbACWlqvPV+VSBqyZGaz9wz+A6RCgW9u2ltdkr3sNxab+9PL+wwbotcefMQ3YIUega7fPpSRwgF97Tk21MFAqQLauPD4/RUuxvqbInTRTqY9cMUAnioG4pfXGrT1xxrmhwbFfETWPn5/oVK/rhUIB+/bt43XdQSZlIFsZhs6YwQNEoLysV19DgO0UoDulvRduuB7W5mHkUueHwGvnkAdhq9al2GdSBtL3fGHF3HMAsEZGHAvEGXJ+5L+ZFP/ac5U2DdghX6N2+1Ap5jXndODZWSztvgzWe/4I9oYtoarRW1pfg4DxeXsxQCciagHnhhIRdZfqdd22bV7XXWzMpZZHcTOmhJqDbNmK/sz5EMQzNb4h7R0ASkvWcnAIhE+xt7U8ar28vSGQOee55zo66ljdvDZFvbr/MBozCCRkknhLc/BHRnHq5g9i81AfFgYySJ0uwDq1CCPEgva1c+ibraRP7rgOOhFRC6pzQ03T5NxQImpKPp/H1NQU8vl8p5vS8/L5PI4cOYJUKsXruoehgczyv1Mh5yCXFPUj4Ga4dbQV9UXmqin2QVmqy0vEAeVA020OttvjK0awwzQALQbYbdjeUkV/pQp8LlWewx5Wuiagb6aSPrnjCDoRUQs4N5SIWsFpMvFR+16Ypom3vvWtuO666/h++Ag7B1lQH9yFrWIuNRXMgUqAGSLFXlBeIqzKNASld7wD1sEfrJjv7jY322wI0EPG5/Uj6E1kiJsN67iH3b68zFtlikITVdhNWbmWPLUPA3QiohZxbigRNYvTZOKj9r0AgK1bt/K9CCDMOtwAINC6Ku6hq5hLfUAYPsCUFfuS0RHH+e5O6e1A/Qh+dQ5+ULYqsjV3I0QkVAV8y1Zk081vD5SD6+o5aOYGQeOIedhK+uSNAToRERFRh3AJtfhofC8YnAdjGgKR4MFZ+flNFjkDYGLl6G3I+LxuBLv6Gk7z3d2kGkePQ0S4lq3LBfaqwqSIW7py+1SI+eNA/fE3M/qddjh/YSrpkzcG6ERtwGW2qNuwTxNFg9Nk4qPxvRgbG+t0kxIjzCh6Y0AYdh3txmA2bIBsYGVhOjNEkF+uAt8Y4IYJsOvn4AP1Kfd+SraiL90QoIe8SdG4Dn3oFPvGEfSQI/jkjQE6UYs4f5C6Dfs0UbQ4TSY+at+L2dnZDrcmOcKkWKcaR38NAbT5AN+UcFWvnQaM06aBYskOtH1jgGyGvEFga32KfPU1ggbYjUXyqtuHWYu99gZDMynyje9ByhRoUesyI6h5kVVxF5EJEfmxiDwpIjc7/P5TIvK9yn9PiMjJqNpG1Aqn+YNEScY+TUREYYRJk86YK0dfw8R1jaO3YQPMxu2rbQjKsrVuBLyZZcZW3GQIcf4E4phiHm7/zafYAyvbWy30R+0RyQi6iJgAPgPgjQCOAnhURB5W1YPV56jq+2qe//sAXh5F24haxfmD1G3Yp4mIKAwjYJEw1ZXF4ExDHEe13TgFo2HmYDsF42FGgG2gbpk2AKFuMABOWQCCUsBEf8HKcxjmBkVjkTqn9nix7JXb51ISrtAfeYoqxX0cwJOq+hQAiMgDAK4EcNDl+dcA+HBEbYtcN87t7MZjCipO8weT/j7k83lMT09jYmKi4+1P+rlsRZz6NBH5i+J61cvXRPIXtEhYef71yvHmUAG6U4AdIkXcabQ6zFJvjcu8VfcflOFQpC5MgG2IrLiRkE0Jnl/UQCPxS5aiP70yRT5oFfaSrehruEHRzFrw5C6qAH0bgCM1Px8F8CqnJ4rIGICdAP5XBO2KXDfO7ezGYworDvMHk/4+VNtfKBSwb9++jrY/6eeyHeLQp4nIXxTXK14TyU/QAeySvTI4BIKneDcWaKvdPugcbKd9hRkBblwmzu013Tg9NcwIvlO2QPkGg8IMMBneUnUsUhdsBn6linzKoY4AB8/bJo5F4q4G8Deqank9KamFO6anp1EoFGDbNorFIqanpxNfJbSZY5qfn4+odb0j6X0rTu2PU1vIG68lFEY39pcorle9ek3sxv6yWk6cLOLskn+It1CyMWKcw9Lz9QHeqROLywne5uws1t9/P1JzcygNDeHkNdfAGh4GACzZitRgCrNL6brtT84XUAgYoOdSglk9U/fY2SUbz80tIudw86BR0bLxTK5Qv/8Tizh9+lSg/asqZjOLdY+der6I585ZgQJ9ATCbWqh77HShhGfniysCbycLJQsnUwtYqHnuyRMFLJaCnb+FJRsnUwtYrNl+yVKcOFH/mgCwmDaw1no+0Ov2muFKn3YSVYB+DMCOmp+3Vx5zcjWA3/N7Qa+DirOJiQns27dv+S70xMREYo+lqtljivq4uz09L+l9q7H9F1xwAe69915s3LgR8/Pzkb5vzZ7Lbu9jzWj1nATZPkn9nDqv2/pLFNf+pH+/tKJXjrNVi9kFPHdmyTfAPLdkYdvo2hVVyJ/FmfII+Mxx9E1+FOaxp5d/1/f/nsTCHXcAI6NYLNnYvqkfG/vrA/RT5jmcK3qO7S0byJgY3tRf3/6SjRnrNPrT/uXeLFUMD6+te+yEcRYlGxjauNF3exFgeHhN/WMDBZROLCJj+gfYaVMwPDxY99hg0cKzegYDAW4wnFuysX3r2rq0+tPmOZwNeP7OLVnYOlL/HqoqjiydQl/D+XM61+QvqgD9UQC7RGQnyoH51QDe1vgkEXkRgA0AvhVRuyLXjXM7k3BMvZCel4T3wUu1/dPT07jgggtwyy23LI/YGIaBbDYb2fvWzLnshT4WVqvnhOeUyF8U1/6kf7/Q6guaYm2IS5G3Sop69q6764JzADCPPY3sXXejsHcvLNUVBdqA4HOwLVuRcZhoHmYOudNzQy0z57B9xqzM4Q5QDt7t/AVtgSkr25tJCU4HnMMuDm1oZqk2chdJgK6qJRG5CcCXUe56n1XVx0TkNgAHVPXhylOvBvCAatAyD8nUjXM7435MTstGxbm9zYr7++BnfHwcY2NjuPfee1EsFmHb5XS5alpllO9b2HPZK30sjFbPCc8pUTBRXPuT/v1CqytrGghSI8ypwBkAGJXwUp57znE7mZsr/x/OAWrQGwS2KtKGwxx4CV6ozmn/aUNgBwxfnKvQG4HmgKvqinXk3V7Tdf8tzmE3Def3MMw8fPIW2Rx0VX0EwCMNj32o4eePRNUe6i1cNipZqu9X7Qh63N839rGVWj0nPKdERMmQTpUDPN/nuaRwp02BXVTopk2Ov9ehoeV/OwWjuVSwEehyFfmVbQgzAty4hjhQqWIeID5XdR6lDjoCbmk5mG4UZqm6Vs5fdV9BX5eaE8cicURtF4f0PM5PDq72/YpyDnor71Ec+ljctHpOeE6J+N1ByRA0wHQL4qrLdBVuuB7G4wfr0tytbVtRuOF6AO4p8mnTgB2gBbbtXAUeCDYCXB7Bdg5wg4yglwNsh9HngLGtZStyLmvBBY2Pnea5pwOO4APu76FpCJdaaxMG6NQzOpmex7m04UX9frXjPWIK6EqtnhOeU+pl/O6gpAgaYGZcnpgxpZwiPzKKhTvuQPauuyFzc9ChoXJwPjIKwH2ud9AbBOoS4Fdfwy/GdloDHKhkAASIcC175RJlQOXmQIAR/JIqci6F7IKOYDvdiDBDzGH3On8M0NuDATpRBDiXNv74HhFR3PC6REmRChBg2qquVcqrI+gAgJFRFPbudXxeq+nVxswsBif/CLnjx2CPjmJx715oZcnAIGupu6XIpwyBSJARdOcA3RAJkl3uOgcfqMxj9wmQS7aiz6HSe6tF8gDAZJG4tmGATomR5DQ/zqWNP75HRBQ37bwuJfk7lOJPAgSYbsEhUA3w/ffjlV7tG2POHEfu1g+i7/98HaaWh7vNAwdw9sEHoWNjy5XkvVgKxwA7ZQg0wAEo3OfhB4lvBYK0x02KYoAAfcBhBD5okTy3InXA+ToCrObeOgbolAhJT/PjXNr443tERHHTrutS0r9DKRn84rKSrej3CNCDJEd7jfT6BZjZu+5G6dix5eAcAMxDh5CbnMTCnXcGCizdRrBNQ+CbH49ygO11k8F3e3F/XpARbLcbDCKCIEnubkXqgPNZEEbQ+Q7kigE6JUI3pPlxLm388T0iorhpx3WpG75DKf6CpElnU87j7G5LdzVyWiKt9jW8yHPPwXQohWbMzFTaFmAtdYFjkTlDJNgyYy3Ogfc6xxlTcNZnBFvg3H4g2A0CyyMLIlepZJ/2fRXy497LiWKkmuZnmibTj4mIiELgdyhFwTfAE3ENDoPMwbZsRS7tvg+/GwS6aRNMhxRwe2QEwPm1wL2YcC9UF2Tc2Gv7ICP4OZfgGGiYx+9CoJ4p8n5KLnPoASATcKk98scRdEoEph8TERE1h9+hFAW/Imsp8Q5CDZ8AsZwi7x7G++2/cMP16D94EJj9yfJj1s6dWKwUpAuyFrjXTYggAa7f9l4Btqq6ZiAAwUawvTIVDEN8i8wJ4BngM7m9PRigU2Iw/ZiIiKg5/A6l1eZXZM0vgHUL/KpKqujzCNB9i7yNjML+sykU//zjMGZmYI+M1FVxD7KWulsGABBsDrjb6HOQ7YuWYl3W/fizlQDdi1sVfSBYkTl4zKEPUwmevDFAJyIiIiKilhi+wa33zFrTZwRZ4J4iD/iniBctGyMXXYCFO+90/H2QEWDPADvAxGG3AmuAfxX0kioGs+6hW5D2t3qDwfQsUhesEjz54xx0IqIel8/nMTU1hXw+3+mmEFGH8XpAzUqbAttjDnLGp7q3V/AIeM+fBspF3rwC/JINbOhzTwD3GwG2VT0DbL/ti5aNtTmfEXCP9hsijmuwB90/4F1kL2UK1GcOudd7JCJcYq1NOIJORNTDuPwSEVXxekCtyKQM2Oo8imqr+o6g+wV3fpXes6YBWxWmyzhyyvAbAfdeS33JUqzxSDE3jXKA69bGJRtY4zEC7jeHPG14B8CmIfC6x2HZiqxHkb1ykbxyrQA3GY/zV20DtY4j6EREPcxp+SUi6k28HlArsqb7CLbXGuhVfSlByWME2S/Az5jec7AHMn514r1TtEuq6Pd4jawBz/0L4DkC7lcF3auCe5VXob2SrRjwmMOf88lAALxH4AHOQ28XBuhERD2Myy8RURWvB9SKjCmuAWaQAN0vxdsvBd4rwC3ZirUeo99VXgGmQDxT3IO036+Ku9tv1WN5s8bXcFNSeBbZy/rcICi/h/5ZDtQ6prh3UD6f55InRNRRcV1+iddHoujF9XpAyZAyDXiNv2Y8lggDqineHgFugNFbt/CwYNkYGsh4bg9U09TdXt87AM2mDJQsRdbj9168guslW7E2QAaA91Jt6lkHwG/0e8myPVP0q6/hWUmfAmGA3iGc50VEcRG35Zd4fSTqnLhdDyg5ygGyS5AnEqBInHsAa6t3cFndv+vvRNAXcAR6ySXA9FqirLwPeFZR9xp9B7yroC/ZijU5/7DNK0A3xfsc+U0hUPjfZGCRuPZginuHcJ4XEZEzXh+JiJLHa5mulPgHb54jyJZiINN8gNuXMT0LzAVpQysF0sqjz94j4F5V0MWngjsAyOHDGPjQHyP33vciOzkJzBxvaJ/heQ5MnxsMEPEN0P0q6VMwDNA7pHael2maOHLkyKovaZLEpVOS2GYiag3nwRLx+4+Sx6sKepDiYSmP7S1Vz/nTQDmIdRrBt1UxGCA9HHAPsjXgCL77CDh8A3Sv/Wd8KrjL4cMYuOoqDP7TP0C+/32kv/pV9L3//XVBul/7/ZZJC3KTpVwJngF6q5ji3iHVeV73338/7rvvPnzhC1/AAw88sGqpnElMGU1im4modZwHS72O33+UVG4Bql/6NOAXIIpvijngHOAuWjY29gcLebKm4JStK15nyQ4W5Lu33/8GA1AO8p3iW7+R69zkJMxDh5DrXw9LDJhqwTz2NLJ33Y3C3r0Agr0HKY8gPsj5z1UL5QW7H0IuOILeQePj49ixYwdKpdKqp3ImMWU0iW0movYYHx/Hnj17GJRQT+L3HyWV6wiwz+htletIu/hXcXfdXoHBTLAA3a0SfMkGBn0KpLnuv/J4kCwCp/Nnq6LPpwK+cbw8Ut5fKsCS89GxzM2db0OLKf5Bzn/aNGB7J8pTAAzQOyyqVM4kpowmsc1ERESt4vcfJZXTPHRbNdDoLeAe4AdJr3bbPm0agdfndl8qTZENEKC6tT/IEmmAc4BcsGxs6k97bmePjgIA0rYFrTlPOjQEoLxEWp/PEmmAd4p/oBF4j0r6FBxT3DusmVTOZpYfSlrKaPUYb7/9dszPzyeizW7atVwUl52iKLCfEXVO7ecvSd/ZRFWmQxXxJUsx4DMCXOVWRT1ogO1Uxdxv9LlWxmUE2BQJHKA6tT/ns8RcldNNCFX/0fvFvXthHjiA1OEjQGWxO2vbVhRuuB5AOUAfCJBF4LZMWilgin/Q94m8MUCPgTBLmrQyLy0pS6d009y7dh1LN50Tii/2M6LOcfr87dmzp9PNIgrFKUC2VLHBZwT4/PYGlixrxeOBR+AbAlxbFQPp4OGO2whwkPTu6vaNAfqSZWPLoP8a7EC5CvqZgtYF6pkAGQA6NoazDz6I7OQkrDMGljasLwfnI+WRdUsVuQA3KtyyFJZs/yr6gHehQAqOKe4J0wvz0rrpGNt1LN10Tii+2M+IOoefP+oGTgFeLm0GKjAGlIuUqcMc8CABshw+jIE/vhXZmmXGFi0bGwIWiAPcR4D9llhb3t40VrS/aCvW9wUtUrcyxb4/YAV6HRvD4p13ovixj6Nww/XI3nX38pJr5g9+gLX//V0YuPxy9N14I+TwYef9uy6TJiGyAAI9jTxwBD1hqvPSqnfYu3FeWpKPsTE9uF3HkuRzQsnBfkbUOfz8UTdImQIt6vJ627Yq1uaChxt9KQPzttYF5EHmP1eXGVvz7Gk8P7ARKbVhPH4QCx/7BAa3vzDw/g1ZOQJsqwYOTsvLjJXnzFeZUj6uIHKp8vbVfIOSrRgKMHJdK/XMLPo+8H6Yx55efqz/G/+GgaM/PN+mAwdw9sEHoWNjDu1XmJU8gqJlI2MaEPgvM7e8f0boLWOAnjBJm0vejKQeo1t6cDuOJannhJKF/Yyoc/j5o26QMVAXoC5ail0B07uBlQGqrYolSzE86J0iv7zMWG4NSoaJlGXDPPY0Bu65B6nxPw11DI3x5WLJxgvXBDuGXGUEujZIzabM5RsWftKmgdoB7IKlWN8XbHpA1cDdd8E89jQWzRRUDKStErJLhbrnmIcOITc5iYU772xo//ll0golG30ZE2cKJaRMI/AxmC5LxVFwkQXoIjIB4M9QXhnvLlVd8WkRkd8A8BGUqxt8X1XfFlX7kiQpc8lbkcRjdEpPrB5HO44lieeEkof9jKhz+PmjpKtWQa8GqClBoOJitdtXA9SCZaMvZeDSkUHfEfTqMmM5qwRLzj938NnZkEewcgQ4mzICFVirPrdxmbYwRerK+z6/vQHFQIjzBwDp556FAkjbNn7mmZ/g8Y3bUTBXBvnGzMzKbWuK5Fmq2DXUB1XFzJliqGNwKpRHwUUSoIuICeAzAN4I4CiAR0XkYVU9WPOcXQBuAfDzqnpCRLZE0TaidmF6IhEREfWyTMqAXROgDmSCjx4D9cGxiODSkcFA21eXGUupBalWMRfBwND6wPuuqh0BLtmKzT6j97XSplE3elyuft78HPhc2gy0vFwtY9NGnDXT2HXyaaTUxqVz/4misbIN9siI4/6rezNEkEuVR84v2hjuGBigtyaqInHjAJ5U1adUtQjgAQBXNjznRgCfUdUTAKCqz0TUNuoC+XweU1NTyOfzHWtDNT3x1ltvZfVrIiIi6jlp4/wIbKFkY/NAuPTs6txzy1Zs6k8HDu4X9+6FtXMnUvb5CvAL2y9A/57fD7V/AEjXBMkFy8bommzgbVOGoLbJBUuxIWCBOGBlFfT+EKPvVda73gVzZAu2LJxefqzxZaydO7G4d++KbetT84Ontdcq3+BggN6KqFLctwE4UvPzUQCvanjOCwBARP4N5TT4j6jqdDTNoySL09JQTE8kIiKiXlUega2MYAPY2B98/jlQHrU1pRwYb1sbPDCuLjOWmZyEdcbE0oZ1KLzzOqzZtTPU/oFyJfbni0vImgbWZFKBK9AD5eOvDbANCZfiXt7m/A2O0YBz32v1X7gDfX/5aRQ/eTuMmRnYIyMoXHstsvfcs/zz4t69KwrEAfU3CHIBC9s1ypqCkwqULBtDISro03lxOmspALsA/BKA7QC+ISKXqupJpyfPzoafU0LxMT8/37bXmp6eRqFQgG3bKBaLmJ6expjDRYeSoZ19g7of+wuFwf5CYbC/hFeyFSdOLGAhZSBlAHPPLoZ+jZMnF5A2BCfnCv5PrpXLAZOTmJk5h7Qh6EsbePaZ8Am5a1WxuFTCsfkStq9JY3b2bKDtqv3l5Ilzy3PmVRXPZsOdg1MnFmAYgsWSjR3pPsyeCzeKbQIorh/Af0xO1v+i8WeXWOrkiXMwRLCp38Ssngm1bwA4fbaEoycLGFubRqaQwezsaf+NetDw8LDr76IK0I8B2FHz8/bKY7WOAviOqi4BOCQiT6AcsD/q9IJeB0XJ0K73cGJiAvv27VseQZ+YmKh77calzyj++PmmMNhfKAz2l3B6/TuU/SUcVcWRpVNQFbxocz829IdLcQeA9cVT2Lkhhy2DwUfQa21aOo0ly8ZlI4MYzDYX6owAuFQ1dIr38PAwNpdOw6xsl00ZGN4yEOo1ttjPw7YVubSBrVsGQ23bDltKp7FYsnHx8ADW5sK/f+uWLOzYpljb5Lmn6AL0RwHsEpGdKAfmVwNorND+IIBrAHxORDahnPL+VETtowTzWpomTunvREREScLvUApLRCAQiAGsDzH3utZQfxqbBsKndleV08yNpoPzqmbmX1f3r9rcGuZAOc38bNHCrk39Te2/VaZRnqTQH6K4Xa1c2kSuvU3qOZEUiVPVEoCbAHwZwOMAvqSqj4nIbSJyReVpXwYwJyIHAXwdwAdUdS6K9lHyjY+PY8+ePSv+cHBa+oyIiIj88TuUmiFSDrKbDXAvHuoPXbm8lgLYErI4XTulKkXSlixt6kZDyhBkU63fYGhWyhBkTGNFRXmKTmTvvKo+AuCRhsc+VPNvBbCn8h9RW3DpMyIioubwO5SaI9ixrnNjqANpA6Nr6/cvhw8jNzkJ4/hx2KOjrkXS2iFlCM7Yip8eHUBfOtwa5kC5SNyWweYzCFqVMqTpAnHUHpwcQJGpnccWVRE3r/R3IiIiclb9zr799tsxPz/P71AKbNemPmQ7GODt2lQ/Ai+HD2PgqqtgHjq0/Jh54ADOPvjgqgTpmwcyGFufQ66J4BwAtgymQ62d3m6mIejj6HlHMUCnSDTOY/vc5z6HiYmJSPbNpc+IiIiC49xzasWGvs6llwNYkR6fm5ysC84BwDx0CLnJSSzceWfb97+xicJ4tdY3UZitnXIpE7kUA/ROYv4CRaJxHls+n+90k4iIiMgB555TNzGOH3d+fGYm4pYkw/qcibU5juF2EgN0ikR1HptpmshkMl1/Jz6fz2Nqaoo3IoiIqCNa+R5q/M7m3HNKMnt01PnxkZGIW5IMg9kUMiZDxE7i7RGKRONc8KjmoHcCUwOJiKiTWv0eYv0W6iaLe/fCPHCgLs3d2rkTi3v3drBVRO4YoFNkaueCz87Odrg1q8cpNZB/3BARUVTa8T3E+i3ULXRsDGcffLBcxX1mBvbIyKpWcSdqFQN0ojbjsjRERNRJ/B4iqqdjY6tSEC7uolxejtqHATpRmzE1kIiIOqF2OVN+DxH1tqiXl6P2YYBOtAqYGkhERFFymne+Z8+eTjeLiDok6uXlqH1Yoo+IiIgo4bg0GlGZHD6MvhtvxMDll6Pvxhshhw93ukkdweXlkosj6EREREQJx3nnREzrrsXl5ZKLI+hERERECVetf3LrrbdyeU/qWV5p3b1mce9eWDt31j3G5eWSgSPoRHaCy6EAAA5tSURBVERERF2A9U+o1zGt+zwuL5dcDNCJiIiIiCjxmNZdr1eXl0s6prgTERERdal8Po+pqSnk8/lON4Vo1TGtm7oBR9CJiIiIupDT0mtMgaduxrRu6gYM0ImIiIi6kNPSawzQqdvVpnXL4cPlYP34cdijowzWKREYoBPFSD6fx/79+7F7927+EUVERC3h0mvUy7jkGiUVA3SimGAqIhERtVN16TXe+KVe5LXkGgunUZwxQCeKCaYiEhFRu3HpNepVXHKNkopV3IliopqKaJomUxGJiIiIWsAl1yipOIJOFBNuqYicl05EREQUzuLevTAPHKhLc+eSa5QEDNCJYqQxFZHz0omIiIjC45JrlFQM0IlijPPSiYiIiJpTu+QaUVJwDjpRjHFeOhERERFR7+AIOlGMcYkcIiIiIqLeEVmALiITAP4MgAngLlX904bfXwvgEwCOVR76c1W9K6r2EcUVl8ghIiIiIuoNkQToImIC+AyANwI4CuBREXlYVQ82PPWLqnpTFG0iIiIiIiIiipOo5qCPA3hSVZ9S1SKABwBcGdG+u1Y+n8fU1BTy+Xynm7IsLm2KSzualfT2ExERERFReFGluG8DcKTm56MAXuXwvLeIyC8CeALA+1T1iMNzCPFcfisubYpLO5qV9PYTEREREVFz4lQk7h8A3K+qBRH5HQCfB/DLbk+enZ2NrGFxND09jUKhANu2USwWMT09jbEOr+sYpk3z8/OxaEccJb39rVrNvkHdh/2FwmB/oTDYXygM9hcKY3h42PV3UQXoxwDsqPl5O84XgwMAqOpczY93Afi41wt6HVQvmJiYwL59+5ZHWScmJhzPST6fj6wCuFObDh8+7Lr/1XgP8/k8Tpw4gXQ6jVKp5Hlu4iroe9vNeu14qTXsLxQG+wuFwf5CYbC/UDtEFaA/CmCXiOxEOTC/GsDbap8gIqOqerzy4xUAHo+obYkUZPmtqFOlG9sEINL91x6vaZp4+9vfjmuuuSZx6eFcWo2IiIiIqDdFEqCraklEbgLwZZSXWfusqj4mIrcBOKCqDwN4t4hcAaAEYB7AtVG0Lcn8lt/av38/isUiLMtCsVjE/v37Vz3Yq23T1NRUpPuvPV4A2LFjR2KDWy6tRkRERETUeyKbg66qjwB4pOGxD9X8+xYAt0TVnl6we/duZDKZ5RHs6qh2t+6/08dLRERERETUijgViaM263SqdNT77/TxEhERERERtUJUtdNtCOzUqVPJaSx5mp2dZSENcsS+QWGwv1AY7C8UBvsLhcH+Qs1at26d1P5sdKohRERERERERHQeA3RaFfl8HlNTU8jn851uChERERERUSJwDjq1XdTLuxEREREREXUDjqBT2zkt70ZERERERETeGKBT21WXOzNNk8udERERERERBcQUd2o7LndGREREREQUHgN0WhXj4+MMzImIiIiIiEJgijsRERERERFRDDBAJyIiIiIiIooBBuhEREREREREMcAAnYiIiIiIiCgGGKATERERERERxQADdCIiIiIiIqIYYIBOREREREREFAMM0ImIiIiIiIhigAF6F8jn85iamkI+n+90U4iIiIiIiKhJqU43gFqTz+dx5ZVXolgsIpPJ4KGHHsL4+Hinm0VEREREREQhcQQ94fbv349isQjLslAsFrF///5ON4mIiIiIiIiawAA94Xbv3o1MJgPTNJHJZLB79+5ON4mIiIiIiIiawBT3hBsfH8dDDz2E/fv3LwfnU1NT2L17N1PdiYiIiIiIEoQBehcYHx/H+Pg456MTERERERElGFPcuwjnoxMRERERESUXA/QuUjsf3TRNHDlyhEuvERERERERJQQD9C5SnY/+9re/HSKCL3zhC7jyyisZpBMRERERESVAZAG6iEyIyI9F5EkRudnjeW8RERWRV0bVtm4yPj6OHTt2oFQqMdWdiIiIiIgoQSIJ0EXEBPAZAL8C4BIA14jIJQ7PWwPgPQC+E0W7uhWXXiMiIiIiIkqeqKq4jwN4UlWfAgAReQDAlQAONjzvowA+BuADEbWrKzUuvcZK7kRERERERPEXVYC+DcCRmp+PAnhV7RNE5GcA7FDVfxIRBugtqi69RkRERERERMkQi3XQRcQAMAXg2qDbzM7Orlp7aPXNz893ugkUU+wbFAb7C4XB/kJhsL9QGOwvFMbw8LDr76IK0I8B2FHz8/bKY1VrALwUwP8WEQAYAfCwiFyhqgecXtDroCgZ+B6SG/YNCoP9hcJgf6Ew2F8oDPYXaoeoqrg/CmCXiOwUkQyAqwE8XP2lqp5S1U2qeqGqXgjg2wBcg3MiIiIiIiKibhNJgK6qJQA3AfgygMcBfElVHxOR20TkiijaQERERERERBRnkc1BV9VHADzS8NiHXJ77S1G0iYiIiIiIiCguokpxJyIiIiIiIiIPDNCJiIiIiIiIYoABOhEREREREVEMMEAnIiIiIiIiigFR1U63IbBTp04lp7FEREREREREHtatWye1P3MEnYiIiIiIiCgGGKATERERERERxUCiUtyJiIiIiIiIuhVH0ImIiIiIiIhigAE6BSIiO0Tk6yJyUEQeE5H3VB7fKCL/IiI/qfx/Q+XxF4nIt0SkICJ/0PBa7xGRH1Ze570e+5wQkR+LyJMicnPN4/dWHv+hiHxWRNKrddzkL059o+b3/0NEzrT7WKl1ceovUvYnIvKEiDwuIu9ereOm5sSsv7xeRL4rIt8Tkf0icvFqHTc1p0P95bMi8oyI/LDhccd9UnzErL98QkR+JCL/LiJ/LyLrV+OYKRkYoFNQJQDvV9VLALwawO+JyCUAbgbwNVXdBeBrlZ8BYB7AuwF8svZFROSlAG4EMA7gpwFc7vRHjoiYAD4D4FcAXALgmsr+AOBeAC8CcCmAPgA3tPE4Kbw49Q2IyCsB8A+h+IpTf7kWwA4AL1LVFwN4oI3HSe0Rp/6yD8B/VdWXAbgPwN52Hii1RaT9peIeABMOj7vtk+IjTv3lXwC8VFUvA/AEgFtaOC5KOAboFIiqHlfV71b+/TyAxwFsA3AlgM9XnvZ5AFdVnvOMqj4KYKnhpV4M4Duqek5VSwD+FcCvOexyHMCTqvqUqhZR/sP5ysprP6IVAPIAtrfxUCmkOPWNyh/XnwDwh208RGqjOPUXAO8CcJuq2tV9tekwqU1i1l8UwNrKv9cBeLoNh0ht1IH+AlX9BsqBWyPHfVJ8xKm/qOpXKtsCwLfBv217GgN0Ck1ELgTwcgDfATCsqscrv5oBMOyz+Q8B/IKIDIlIP4A3ozyC1WgbgCM1Px+tPFbbjjSA/wZgOuQh0CqJQd+4CcDDNfulGItBf/kpAL8pIgdE5J9FZFdTB0KRiEF/uQHAIyJyFOXvnj9t4jAoIhH1Fy9h90kdFIP+Uus6AP/cwvaUcKlON4CSRUQGAfwtgPeq6mkRWf6dqqqIeC4LoKqPi8jHAHwFwFkA3wNgNdmcvwDwDVX9ZpPbUxt1um+IyFYAbwXwS+FbT1HrdH+pyAJYVNVXisivAfgsgF8I+RoUgZj0l/cBeLOqfkdEPgBgCpxiFUsx6S+h9kmdE6f+IiK3opx6f28z21N34Ag6BVYZsf5bAPeq6t9VHp4VkdHK70cB+KaIqurdqvoKVf1FACcAPFEp1PG9yn+/C+AY6u8+bq88Vm3LhwFsBrCnHcdGrYlJ33g5gIsBPCki/wGgX0SebNMhUhvFpL8A5dHR6v7/HsBlrR4btV8c+ouIbAbw06r6ncrjXwTwmrYcILVVxP3FS+h9UvRi1F8gItcCuBzlWhe8odPDOIJOgUj5duLdAB5X1amaXz0M4B0op/q9A8BDAV5ri6o+IyIXoDxH59WqehLAy2qekwKwS0R2ovwH09UA3lb53Q0A3gTg9dW5o9Q5cekbqvoYgJGa551RVVZZjpm49JfKrx8E8DoAhwC8FuXCPBQjMeovJwCsE5EXqOoTAN6I8nxVipGo+4uP0PukaMWpv4jIBMr1c16rqufCHQl1G+ENGgpCRHYD+CaAHwCoBsUfRHmuzpcAXADgMIDfUNV5ERkBcADlgjo2gDMALqmkDn0TwBDKRTb2qOrXXPb5ZgCfBmAC+Kyq/knl8VJlX89Xnvp3qnpbmw+ZAopT32h4zhlVHWzfkVI7xKm/SHkZm3sr+zwD4HdV9fvtP2pqVsz6y68CuK3yuicAXKeqT7X/qKlZHeov96M8tWoTgFkAH1bVu0VkyGmf7T9qalbM+suTKE+7mqs89duq6jvqTt2JAToRERERERFRDHAOOhEREREREVEMMEAnIiIiIiIiigEG6EREREREREQxwACdiIiIiIiIKAYYoBMRERERERHFAAN0IiIiAgCIyD0iMtnpdhAREfUqBuhEREREREREMcAAnYiIiIiIiCgGGKATERH1KBF5uYh8V0SeF5EvAshVHt8kIv8oIidFZF5Eviki/JuBiIholfHLloiIqAeJSAbAgwD+GsBGAP8TwFsqv34/gKMANgMYBvBBANqBZhIREfUUBuhERES96dUA0gA+rapLqvo3AB6t/G4JwCiAscrvvqmqDNCJiIhWGQN0IiKi3rQVwLGGwPtw5f+fAPAkgK+IyFMicnPkrSMiIupBDNCJiIh603EA20REah67AABU9XlVfb+qXgTgCgB7ROT1nWgkERFRL2GATkRE1Ju+BaAE4N0ikhaRXwMwDgAicrmIXFwJ3k8BsADYnWsqERFRbxBOKSMiIupNIvJKAHcCuBjAI5WHfwJgDsB7UC4SdwLAX6nqRzvSSCIioh7CAJ2IiIiIiIgoBpjiTkRERERERBQDDNCJiIiIiIiIYoABOhEREREREVEMMEAnIiIiIiIiigEG6EREREREREQxwACdiIiIiIiIKAYYoBMRERERERHFAAN0IiIiIiIiohhggE5EREREREQUA/8fsNGU84PrjRYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "f, ax = plt.subplots(1)\n", + "f.set_figheight(5)\n", + "f.set_figwidth(14)\n", + "ax.scatter(test.index, test['occ_rate'], color='r')\n", + "fig = model_simple.plot(forecast_simple, ax=ax)\n", + "plot = plt.suptitle('Occupancy %');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The red dots are the true values, there are quite some variations between true values and predicted values." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoIAAAGoCAYAAADSL4TYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde3xU9Z3/8deZSxISkkCAcJkELY0CCQRUUqUWW0QBWRursAjlgVyU+qDso9Wi1u5WyrZe0Jaihd2tD0sLKhC1amMtpUWwXrZCipUWC93izyAQaJAk5DLXc/n+/jgzkwy5QCCZZDKf5+ORB5kzZ86cTyDhne9VU0ophBBCCCFE0nH09A0IIYQQQoieIUFQCCGEECJJSRAUQgghhEhSEgSFEEIIIZKUBEEhhBBCiCQlQVAIIYQQIknFPQju2LGD0aNHU1BQwJo1a1o9f/ToUaZOncoVV1xBcXEx27dvByAUCrFkyRLGjx/PhAkT+MMf/hB9zfvvv8/48eMpKCjgG9/4BpEVcWpra7nxxhu57LLLuPHGG6mrq4tLjUIIIYQQiSCuQdA0TVasWMFvf/tbDh48yLZt2zh48GDMOQ8//DBz587lgw8+oKysjK9//esAPPPMMwAcOHCAnTt3snLlSizLAmD58uU888wzHD58mMOHD7Njxw4A1qxZw7Rp0zh8+DDTpk1rM3gKIYQQQiQrVzzfrKKigoKCAkaNGgXAvHnzKC8vp7CwMHqOpmk0NDQAUF9fz4gRIwA4ePAg119/PQC5ubkMGDCAffv2kZ+fT0NDA9dccw0Ad9xxB7/61a+46aabKC8vj7YcLlq0iC996Us8/vjjMfdUX1/frTULIYQQQvQW2dnZMY/j2iJYVVVFfn5+9HFeXh5VVVUx56xevZrnn3+evLw8Zs2axfr16wGYMGECr732GoZhUFlZyfvvv8+xY8eoqqoiLy+vzWtWV1czfPhwAIYNG0Z1dXV3lyiEEEIIkTB63WSRbdu2sXjxYo4fP8727dtZuHAhlmWxdOlS8vLymDRpEvfccw+f//zncTqd531dTdPQNK0b71wIIYQQIrHENQh6PB6OHTsWfXz8+HE8Hk/MORs3bmTu3LkATJ48mUAgwOnTp3G5XKxbt479+/dTXl7OmTNnuPzyy/F4PBw/frzNaw4dOpSTJ08CcPLkSXJzc7u7xIuSjC2WyVZzstULyVdzstULUnMySLZ6IXlqjmsQLCkp4fDhw1RWVhIKhSgrK6O0tDTmnJEjR7Jr1y4ADh06RCAQYMiQIfh8PrxeLwA7d+7E5XJRWFjI8OHDycrKYs+ePSilePbZZ7nlllsAKC0tZfPmzQBs3rw5elwIIYQQQsR5sojL5WLDhg3MmDED0zRZunQpRUVFrFq1ikmTJlFaWsratWtZtmwZ69atQ9M0Nm3ahKZpnDp1ihkzZuBwOPB4PDz33HPR6/73f/83ixcvxu/3c9NNN3HTTTcB8OCDDzJ37lw2btzIJZdcwosvvhjPcoUQQgghejVNRRbdS1K9adZwdXU1Q4cO7enbiKtkqznZ6oXkqznZ6gWpORkkW73Qd2vu0VnDQgghhBCi95AgKIQQQgiRpOI6RlAIIYQQIlkZlsKvm9QHTLwhE79ukD+gH4PS3T12TxIEhRBCCCG6kGkpfC0CX8AwCRoWhqVQQKrTgcuhYVgQNKwevVcJgkIIIYQQF8BSioBh0RAwaAjaYS9gWOimPQ83xanhcmjhzx2knP8+GHEjQVAIIYQQogORwNcYMGgI2YEvaFiETIWlFG6Hhtth72AW+TxRSBAUQgghhACUUvjDLXyVdUGqVRNBw0K3FOqswOfUNPq5EifwtUeCoBBCCCGSjmEpfCGDuoCBL2Th101CpoWpwO3Q8BmKfpZKuBa+zpIgKIQQQog+RymFbikCuolPt2gKmeimImRa0YkbYE/ccDo0HJpGmqsXDuLrZhIEhRBCCJGQTEsRNC18IZPGoEnQtMfthQwLw7KwlAYoXC26dKH3TtzoCRIEhRBCCNErGZbdghfQLbwhA7+u0K3msGcqezkWl6bhdtqtegAuh4bLIUnvfEgQFEIIIURcmJbCVArDUuimRchQBE27Vc8Iz8ANmfbyK0b4XACnpoXDnR30NCDVJZujdQUJgkIIIYToNNMKL6kStNfQ000LS9lLrbT8UymFUqBQ4a5aUICGwqlpOB0aTo1oty0QE/pE95IgKIQQQoh2hUyLxqCJXh/EG7LH4QV0E8OyA53bQcz4O7Bb7JyaHfDsR6K3kiAohBBCJDG7O9aeXdsYNPDpdvdspIvWUlBXG2SoI9jrd8kQnRf3DvYdO3YwevRoCgoKWLNmTavnjx49ytSpU7niiisoLi5m+/btAOi6zqJFixg/fjxjx47lscceA+D//u//mDhxYvQjKyuLJ598EoDVq1fj8Xiiz0WuJYQQQvR1SimChkVDQOdUU5BPzvj5x6c+Dp7y8peTjbxf1cDeo/XsOdbAn6saOHTKS3WTjl83MS272zbN5SDd7SDN7ZCu2j4qri2CpmmyYsUKdu7cSV5eHiUlJZSWllJYWBg95+GHH2bu3LksX76cgwcPMmvWLI4cOcJLL71EMBjkwIED+Hw+CgsLmT9/PqNHj2b//v3R63s8Hm699dbo9e69917uu+++eJYphBBCxEVknJ4vZNIU7rYNGpHJFs3Lp0QmWzhbhDmnpuHsAztjiIsT1yBYUVFBQUEBo0aNAmDevHmUl5fHBEFN02hoaACgvr6eESNGRI97vV4Mw8Dv95OSkkJWVlbM9Xft2sVnP/tZLrnkkjhVJIQQQsSHCu93W+c3qA8Y+HSToBFZPgVZPkVckLh2DVdVVZGfnx99nJeXR1VVVcw5q1ev5vnnnycvL49Zs2axfv16AObMmUNGRgbDhw9n5MiR3HfffeTk5MS8tqysjPnz58cc27BhA8XFxSxdupS6urpuqkwIIYToWqalOOPX+ajGx1//2UTFsQY+ONFIVX2AoGHh1DTS3Q4y3A5SXY5oCBSiM3rdZJFt27axePFiVq5cyXvvvcfChQv58MMPqaiowOl0cuLECerq6pgyZQo33HBDtHUxFArx2muvRccOAixfvpyHHnoITdN46KGHWLlyJT//+c/bfe/q6upur68jtbW1Pfr+PSHZak62eiH5ak62ekFq7gpK2evpnQkYNIQUAd0iFN4CLaVFSx+Av0vf+fw0NNT3wLv2rHjUbFiKlJALp9/dre8zdOjQdp+LaxD0eDwcO3Ys+vj48eN4PJ6YczZu3MiOHTsAmDx5MoFAgNOnT7N161ZmzpyJ2+0mNzeXa6+9ln379kWD4G9/+1uuvPLKmGJbfr5s2TJuvvnmDu+voy9UvPSGe4i3ZKs52eqF5Ks52eoFqbkzIosp+3WLGr+OL2QS0O1dMtwpGpn9HGR28b12hUFn9cIlg+6u2bAUg7NSGZqV2q3v05G4dg2XlJRw+PBhKisrCYVClJWVUVpaGnPOyJEj2bVrFwCHDh0iEAgwZMgQRo4cye7duwHwer3s2bOHMWPGRF+3bdu2Vt3CJ0+ejH7+6quvMm7cuO4qTQghRJKzwrN0m0Imn3pD0Vm6f6tu4i8nG9l3vIE9R+upOFbPByca+cdpH00BA6XsXTLS3U7cTtktQ8RXXFsEXS4XGzZsYMaMGZimydKlSykqKmLVqlVMmjSJ0tJS1q5dy7Jly1i3bh2aprFp0yY0TWPFihUsWbKEoqIilFIsWbKE4uJiwA6GO3fu5Omnn455vwceeID9+/ejaRqXXnppq+eFEEKI8xHZ8zZkWHhDFsfOhKhzeNFNu3XPsBSGAsI7aLjamKUru2WI3khTKryRX5Kqr+894x6qq6uTrnsl2WpOtnoh+WpOtnoh8WvWTYuQqfDrJl7dJKDbS6/Y4U9F98cFuxvN5dCoP1PH4EGDevbG46imtjbpuobjUbNhKUZkpTIijl3D2dnZMY973WQRIYQQojv4dZNT3hC+UPOuGYalsJRCoeHSaNWK53ZouNtoxdNkhq7oIyQICiGE6JOUUtQHDaobdRqCBrppkeJs3iFDumqFkCAohBCiDzEsRY03xKdeHW/IxFKQ5tLCLXuywLIQZ5MgKIQQImEZlqIhYHDaq+PVTfy6hVOzZ+GmumQGrhDnIkFQCCFEwgiZFmf8OnV+w95b17BwaBqpTg0tvNOGEOL8SRAUQgjRK0QWWg6FF1v26/Zs3pYzeHVTRVv87C3WpLtXiIshQVAIIUS3UUqhh0NcQDfx6yZ+w56pG5m1q5sWllJYChSg0TyRo+XWau3N4BVCXDgJgkIIIS6YYSn8ukWtT8cbMvDrCt2yl2YJmRampbCUBpq9yLLzrJm6GpAiu2kI0WMkCAohhGiTpZpb8ny6hU83owFPb7HQcm1tgMGWr9VyLClOB0jPrRC9mgRBIYRIYpH9cX0hk4agSdC0CBqRsXkKpVRMV21kIeWWoc/vdpAmM3SFSEgSBIUQog+KtObpphUel2cR1BWGarE3rqkwscfxuTQNt7N5TJ6MxxMiOUgQFEKIBHP2BIzI/riRsXm6aWEoILw/rlPTWm2d5tQ0nC4JekIkOwmCQgjRSxiWin60nGFrWnbwM8IteaZl740L4Dxrf9zI5IuUHqxDCJE4JAgKIUQ3My0VXRvPGzLw6c1r45nh4GcqFWnAQ0GbM2wdmkaKU5MJGEKILiNBUAghLpIRDnohw+JkY4h6hw/dsqJj9AwLQOEId9G2Ge6EEKIHSBAUQogORFrzQqaFN9S8hIoeXgjZMMOteYADaPCZDE03gRbdtNKCJ4TopeIeBHfs2ME3v/lNTNPkrrvu4sEHH4x5/ujRoyxatIgzZ85gmiZr1qxh1qxZ6LrOXXfdxZ///GcMw+COO+7gO9/5DgCXXnopmZmZOJ1OXC4X+/btA6C2tpbbb7+dI0eOcOmll/Liiy8ycODAeJcshOiFIhMudDO8fIpuz66NtO5FZ9UqgLaXUGlrwoVPZtoKIRJIXIOgaZqsWLGCnTt3kpeXR0lJCaWlpRQWFkbPefjhh5k7dy7Lly/n4MGDzJo1iyNHjvDSSy8RDAY5cOAAPp+PwsJC5s+fz6WXXgrAm2++yeDBg2Peb82aNUybNo0HH3yQNWvWsGbNGh5//PF4liyEiIPIdmWmCk+sCIe7SPesaYXPaWPChaLFhAuNDkOeEEL0NXENghUVFRQUFDBq1CgA5s2bR3l5eUwQ1DSNhoYGAOrr6xkxYkT0uNfrxTAM/H4/KSkpZGVldfh+5eXl/OEPfwBg0aJFfOlLX5IgKEQCiOxYEZlIoZsKn24RNC0M00K3mgOfadlr4aFAodAUOMKhzqFpOFqEO5AJF0II0VJcg2BVVRX5+fnRx3l5eezduzfmnNWrVzN9+nTWr1+P1+vljTfeAGDOnDmUl5czfPhwfD4f69atIycnB7B/yE+fPh1N07j77rv52te+BkB1dTXDhw8HYNiwYVRXV3d4f+d6vrvV1tb26Pv3hGSrOZnqjbTSVZ+uoc5voFvY69xZYFl2l6ulFFb4TyPcamdhL38X7pEFwOEIt9CdFep6o4aG+p6+hbiTmvu+ZKsX4lOzYSlSQi6cfne3vs/QoUPbfa7XTRbZtm0bixcvZuXKlbz33nssXLiQDz/8kIqKCpxOJydOnKCuro4pU6Zwww03MGrUKN599108Hg+nTp3ixhtvZMyYMVx33XUx19U07Zz/gXT0hYqX3nAP8ZZsNfeFeu3gZn8EDYumoIG/xYLGoRYLGtdaGViO/jic4da4BAhzF2tQ+JfUZCI1933JVi90f82GpRiclcrQrNRufZ+OxDUIejwejh07Fn18/PhxPB5PzDkbN25kx44dAEyePJlAIMDp06fZunUrM2fOxO12k5uby7XXXsu+ffsYNWpU9Bq5ubnceuutVFRUcN111zF06FBOnjzJ8OHDOXnyJLm5ufErVogEpJQiaCp8IZP6gNE8aaLFendKEdMV62xjSZSWCxr73Q5SZR9aIYToleL607mkpITDhw9TWVlJKBSirKyM0tLSmHNGjhzJrl27ADh06BCBQIAhQ4YwcuRIdu/eDYDX62XPnj2MGTMGr9dLY2Nj9Pjvf/97xo0bB0BpaSmbN28GYPPmzdxyyy3xKlWIXskML3kSMCyaQiYnG4L841MfH1Y38X5VA3uP1fPnqgb+cdpHnV/Hr9stfEpFxtbZoS7d5SDd7SDD7STN5YgJgUIIIRJHXFsEXS4XGzZsYMaMGZimydKlSykqKmLVqlVMmjSJ0tJS1q5dy7Jly1i3bh2aprFp0yY0TWPFihUsWbKEoqIilFIsWbKE4uJiPv74Y2699VYADMPgq1/9KjNnzgTgwQcfZO7cuWzcuJFLLrmEF198MZ7lCtGlVIvuWFOBbtiTJ3TTImSBaSosVIsZseEu3HCQUygsFQls9vNuh4Y7vByKPUtWZlAIIUQy0ZSKbGqUnOrre88A2Orq6j4xfqwzkqlmpRRVJ6sZnJuLaanoZIpQOMwZFuiWigY+UxHtjrXC50e+We0lT+wZsY5ePomiprY2qcYWJVu9IDUng2SrF+JTs2EpRmSlMiKOYwSzs7NjHve6ySJCJBIrZokTe806v27iN8LLm0SXObGwlKKm1s9AvQGFhhbecqyjMKdht9ohXa9CCCG6gQRBkZRUeNmSyFp1duubPR4uEuoMy/5tzQp3q5pttNKdvX6d06HhPGviRGSbMYA0l4N0t3S/CiGE6B0kCIqEEVlzLrLYsKWI7hIRMu2lS4zwWDmFHdqUig1wlrLHyzV3s2pExss5sFvmtBYLETva6G6VVjohhBB9hQTBONn9/2rZ+pdq+rmd0dmW6SlO+kU/d6B7Gxne5CY9/FyG237e/tyB25kYS3C0bG2zoi1okfXlmteasyw4VRukRvPGBrQWCw0r7MWHFWDZFwc0IjEuEt4c7ewiERHZJ9b+TAghhBAgQTBuDn3q45cffnoeZ55o9xm3Q7ODY4ozHBYdpLvCf7qdZISDZbrbDo520Gz+PD0cQtPc9uvS3BppLidpLo1+bieapmFaFkoRbWUzrZaTGJq7SC0VuyuEpZoDm2qjtU0jdnJDJLAFTUXIsFrVGjkn/KCTX20hhBBCnA8JgnHiDZkXfQ3dUuhBk4bgxV+rLW6HRqrLQVr4o194IeB+4c/TXM2P08Lrx8V8uGMf93M7SHU2H2+rm1UIIYQQPUeCYJwE9NatXr2Nbin0kElTF4TWtqQ67aBph0o7SDoxyUyraxUiWwbRtHD4TG1x/OxQmuo89xaCQgghhIglQTBObhs3hDG56fhCFl7dxK9b+EImXt3Ep1v4dZPaRj+mw4UvZB/z6mb4HPt5K8FXfAyaiqAZadHUWz7TJdfvsHUyfCwaHlud62z12pbhM0WCphBCiD5IgmCcjBvan3FD+3d4TkeLKytlj9nz6SbekB0kvbpJU7iruCGoU+83OBM08QbNaIj0hYNm0FAEDJOgoQiaFkHD3mYsoFv4DftxgudMu542xht2BYdGbCtkG2EzGibbCJKRVsygL8BQy9fqtYkyEUgIIUTfIkEwQWiaRqrL7lod2M/dqddGdrAIGiYBw8IbsgiZFkEzvF6eac/qDZrNy7HopsJvWATCr4mExsjnfr05TEaCZOR4IPzYH32dSdBM7JhpKfDpFj7dou6ir1bd6ohTIzzuUosGymiQdDeHz+bu8DZaNZ0tj8eGUtkLWAghRFskCCYBR4sQmdXOOS13xWgMmtGgGDLs7c8s7KVa3M4LCxWWUs2tkC2CZXVdPSn9MtoPknokjKp2Q2nAsO89kZnKnlDkDQEYXX79lhOBWo2x7DBYnjuUprocOCVoCiFEQpIgKAA74LmdkJHiZHBG7HORbmm/YdIYMPDp9v649h65Kjx2UeF2aO12cTo0e4mafmftqpHrCjIoJ7vN13SGaaloeGzZUnl2YAzoZuzjdloxgy2OBwy7lTSRdfdEoBSn1u4YTYdlkp3RGJ1BfnaXecvjbYXSVJlxLoQQ3UaCoDinlt3SA9Jad0uHTDtgNYUnwoTCLXQhw8IMh0SNC29NPB9Oh2avlZjSPdu3GZZq0RIZ2zLZVviM6RpvcW5TIISB1tzCGX59gudM++/b7GhpI99FXT/NFTuDPC0cIPu1Mdu8rdbN5vDpbDVxSCYCCSGSmQRBcdFSnA5SnA6y0lo/Z1p262HQsGgKWfh0M7qXb8i0w5VPN6P78fbWLkaXQ6N/ipP+KU6gc2M0W6qprWVQTk7MMaVUNGi2GSTPbtWMOW62OUbz7PMSPGdGa6nvhms7NOyQ6GwjRLYKkg76hbvL2+taD3h1zNRQ9HpuhwRNIUTvJUFQdCunQ6Ofw+4SHtCv9fP/dPkYMDiLgG5SHzSioSdoWBjhvYJdmobbqfXZ7kEtXJ/b6SAzteuvH+nab7sVs0WQ1M/qGm8vhLZxLJFZCvy6HaIJdNVVm3cIcmi0McbSSapLo5/LGdO6eX7rZsqMcyFE1zmvILh79+7zutj1119/znN27NjBN7/5TUzT5K677uLBBx+Mef7o0aMsWrSIM2fOYJoma9asYdasWei6zl133cWf//xnDMPgjjvu4Dvf+Q7Hjh3jjjvuoLq6Gk3T+NrXvsY3v/lNAFavXs0zzzzDkCFDAHj00UeZNWvWedUi4kPTmseWDThrNrSlwi2GIZP6oEnQsAiFQ4oZ3sYuxaHhkhaXDrXs2r/40ZitWZGgqZttjrE8faYBV1r6ebRuWvjDSxwFDDP6+kSfCGQp8OoWXt0Cf9dfv0tmnJ+1DFLLUCozzoXo284rCN55550xj6uqqtA0jUGDBlFTU4NSiry8PD7++OMOr2OaJitWrGDnzp3k5eVRUlJCaWkphYWF0XMefvhh5s6dy/Llyzl48CCzZs3iyJEjvPTSSwSDQQ4cOIDP56OwsJD58+eTmprK2rVrufLKK2lsbOSqq67ixhtvjF7z3nvv5b777uvs10X0Ag5NC++P3HoCS6QrtSlo0Bg6e1yiQqHh0pDxX3Hg0LRwCHEwoI3na/qbrbrDOyMyEaijABmd+BMJki1CaUC3CJjtt27qCT5AMx4zzs81JlMzdbIzfC260p2tx3S27EpvEU5763AQIZLFeQXBysrK6OePPvooNTU1/OAHPyA9PR2fz8eqVasYNGjQOa9TUVFBQUEBo0aNAmDevHmUl5fHBEFN02hoaACgvr6eESNGRI97vV4Mw8Dv95OSkkJWVhY5OTkMHz4cgMzMTMaOHUtVVVXMNUXf03LM3rCznjPCwcEbMmgMWeGQGGlJtLtKu3vyiug68ZgI1HKMZbBFqGxrBnm7XeThrnVvUMdQWrhr3STBGzSje5w3cq4Z500XdP22Zpz3C3edR1onz72Ye9u7AsmMcyHOrdNjBNetW8eJEydwu+1uvPT0dB577DFGjBjBd77znQ5fW1VVRX5+fvRxXl4ee/fujTln9erVTJ8+nfXr1+P1ennjjTcAmDNnDuXl5QwfPhyfz8e6devIOauV4ciRI3zwwQdcffXV0WMbNmzg2WefZdKkSaxdu5aBAwe2e3/V1a0X+o2n2traHn3/ntDdNUf3cnEAKS0W1zYtvAELv6Hs/+hM+8/mWc52l3NXt1Y0NHTHdIfeLZFq7gf007DnA8WMVHCEP86toaGerKzmTnjdUoQMRcAM7/Bj2hOoAoaK7vQTMJs/j5wTDL/GHt8ZPs9QMY+DhiKxR2iez4zzi2Pvca7ZfzodpLX4PNWlkRbeAz3VqTU/F/PYEX19WovXBH2N9i+VSRI0E+n7uKvEo2bDUqSEXDj9Fz4J8Xy0t2sZXEAQzMjIoKKigmuvvTZ67E9/+hPp6ekXdndn2bZtG4sXL2blypW89957LFy4kA8//JCKigqcTicnTpygrq6OKVOmcMMNN0RbF5uampg9ezZPPvkkWVn2ssnLly/noYceQtM0HnroIVauXMnPf/7zdt+7oy9UvPSGe4i33lRzZJazX7dbFH26Qrfs9RK7qtv5YrpJE1Wy1RyvepWyf4FpHmPZwS4/bayh2bprPXbiUF/YetLe4zxSRdeGTYdWH+0Cj9nbvNX6mOHJQW5nu62Ybc1S720zzpPt+xi6v2bDUgzOSmVoVjfMFDxPnQ6CP/jBD5g5cyZf/vKXyc/P59ixY7z++uv813/91zlf6/F4OHbsWPTx8ePH8Xg8Meds3LiRHTt2ADB58mQCgQCnT59m69atzJw5E7fbTW5uLtdeey379u1j1KhR6LrO7NmzWbBgAbfddlv0Wi0DxrJly7j55ps7W65IMi1nOeekt/4NraNu55aznGVsoogHLfxvLcXZ/q5BF0MpO0TFrqHZYpefcGCsrW/CmZrWauvJjrvW+8bWk9EZ590gMuM8doyls/0Q2dZyR229XraeFC10OgguXLiQq666ipdffpkTJ04wZswYvvvd757XmLySkhIOHz5MZWUlHo+HsrIytm7dGnPOyJEj2bVrF4sXL+bQoUMEAgGGDBnCyJEj2b17NwsXLsTr9bJnzx7uuecelFLceeedjB07lm9961sx1zp58mR0/OCrr77KuHHjOluuEDFcDg1XipOMFCe5Zz0XmeXsDZo0hOxZzpGZzpEuZzPBJyaI5KK1mAhEG+uERtTUahfUctLe1pPnMzGozTGdukXQtPrmjPNu4HJosa2YLcNjZFxmODRaepCczFA4bMbOUm8vmMpEoMRwQesIFhYWXtBkDJfLxYYNG5gxYwamabJ06VKKiopYtWoVkyZNorS0lLVr17Js2TLWrVuHpmls2rQJTdNYsWIFS5YsoaioCKUUS5Ysobi4mHfffZfnnnuO8ePHM3HiRKB5mZgHHniA/fv3o2kal156KU8//fSFlCvEeWk5y3nIWc/Z3c0m/09vpJ/bSdC0mvdxVnZLpLsbxiQK0Zu1t/VkVzGt8NhKvePu75ZBslX4bGfGuV83SfAlNDEsRVOntp5s6NT13U7tHK2TkRZOLbqveceLuTcH1DSZCNRlNKVUp35lqq2t5Uc/+hH79++nqSl2ltjbb7/dpTcXD/X1vWcAbHV1da8aLxcPybdHQB0AACAASURBVFbz2fVGut58IZPGkBFt4Qgakf2NNdwOEnrR4LZ2U+nLkq1eSN6aswcMPGtMpr18kb9F13lHwbLjxdwTf8Z5d0t1audsnezM4uwtu81TnRq1dXVxGSM4IiuVEXEcI5idHbuibKdbBL/61a8SDAaZO3dul00QESJZtex6O3tMYmStxIaAQVPQDM86tde9k7GIQvS8lkNFuoNunmNyz9kTgmLGZJptvrZlK2iij1SxJwIZ4a0n9S69toYdNPu5q85/cfY2us3b63LvTT+7Ox0E//jHP/Lpp5+SmtpzM1yESAax+xs3i4xFbAoaNASb17qLdDM7wgFRuk2ESGxupyN+W0+2GTbDk4N0k9pGLw53aqt1M2MmB7XYJz3RZ5wrIGAqAmbXL9IO9kSgNJeDa/Kz2VB6ebe8x/nqdBAsLi7m+PHjfPazn+2O+xFCnEPLsYi5/ZuPR7qZvUGD+mCka8okFBmHKC2IQoiwzm492dnu/7ZnnLdegL3d5Y7anCBkNg+fSfB+c0uBT7cwrJ4faNrpIHj99dczc+ZMlixZwrBhsXs6LF26tMtuTAjROc3dzCkMarEln4rMZg6ZnAkY0R+wIUuhlN39IctICCG60vnOOL9QkZ6R9tfNbHvJopbLH3U0RlOPU9BMc/X8+O9OB8F33nmHvLw8du7cGXNc0zQJgkL0QlqLmZmDM1Kixy2l8OsWdX6DppAR/cFpWgqXQ1oPhRC9V8ueke5gWIqTn9aQnpndzgxys9W6mWeH0o7GdxrhAZppru65/87odBB88803u+M+hBBx5tA0MqID3e1BSJHunIaAzplAc/eyYYGGkr1bhRBJweXQSHc7GNTGxgJdwbAUft3sFRN2LmgdwZqaGrZv384///lP7r//fk6cOIFlWeTl5XX1/Qkh4ijandM/NWb8Yci0F8quCxj4dHu9tZCpUChSnbJDgRBCdIbLoZGZ6oq2DPakTndOv/XWW4wePZotW7bw/e9/H4DDhw+zfPnyLr85IUTvkOJ0MDDdzaicfowb2p9JeVlcnZ/F+KEZDOnvJsXlwFQKn2Hh1U3ZQUUIIRJEp1sE77nnHl544QWmTZvGwIEDAbj66qupqKjo8psTQvReTodGVpqbrLTmrhPTUnhDBnUBA2/I3n0hYFj4dFN2AhBCiF6o00HwyJEjTJs2DSA6kDwlJQXD6J61doQQiaOtcHjC4SN9YAa1PgNvyMSvm+gmuBzIhBQhhOhhnQ6ChYWF/O53v2PGjBnRY2+88Qbjx4/v0hsTQvQNTofGgDQ3A1qEw6BhUR/QOeM38Ydn31lK4XZoCb2dnhBCJJpOB8G1a9dy88038y//8i/4/X7uvvtufv3rX1NeXt4d9yeE6INSXQ5yW0xIiax1WOc3aAwa+HSLoGHvtZoi4VAIIbpNp4PgNddcw1//+leef/55li5dSn5+PhUVFTJjWAhxwVquddhyKRu/YVHnM2gMGfZuAoaFoQClcGgaboeGU2YsCyHEBetUEDRNk2nTpvG73/2OBx54oLvuSQgh0CILxmY3h0OwF8IOhhdtbQwvhB007WO6pVCRLmaHjD8UQohz6VQQdDqdVFZWYvWCvfGEEMnJ0aL1MOesxV4ju6U0Bg0agmZ0pf9IQJRuZiGEiNXpn4jf+973WL58OZ988gmmaWJZVvTjfOzYsYPRo0dTUFDAmjVrWj1/9OhRpk6dyhVXXEFxcTHbt28HQNd1Fi1axPjx4xk7diyPPfbYOa9ZWVnJ1VdfTUFBAbfffjuhUKiz5QohEkhkt5RhmalcPjid8cP6U5KXxTX5WUwcnoknO400twMrvOahT7dkzUMhRFLrdBC86667ePbZZxk1ahQpKSm43W5cLhdu97m3YTFNkxUrVvDb3/6WgwcPsm3bNg4ePBhzzsMPP8zcuXP54IMPKCsr4+tf/zoAL730EsFgkAMHDvD+++/z9NNPc+TIkQ6v+e1vf5t7772Xjz76iIEDB7Jx48bOliuE6AMiAXFEVipjhmRwpccOh+OHZTC4vxu3U8OwFD7dxGfIgthCiOTR6ckijz/+OHPnzo05ppTi5ZdfPudrKyoqKCgoYNSoUQDMmzeP8vJyCgsLo+domkZDQwMA9fX1jBgxInrc6/ViGAZ+v5+UlBSysrLavebYsWPZvXs3W7duBWDRokWsXr1adkARQgB2OMxMdZGZ2vxj0LAUTSGDM3575rJfNwmaCqUg1anJVnpCiD6n00HwBz/4Affff3+r44888ggrV67s8LVVVVXk5+dHH+fl5bF3796Yc1avXs306dNZv349Xq+XN954A4A5c+ZQXl7O8OHD8fl8rFu3jpycnHavWVNTw4ABA3C5XNHjVVVVHd5fdXV1x8V3s9ra2h59/56QbDUnW72QmDX3C3/gAsupCBiK+oCB11AEdIuAqdBoe0Hshob6HrjjniU1933JVi/Ep2bDUqSEXDj95+5VvRhDhw5t97nzDoK7d+8GwDAM3nzzTZRq7jr5+OOPyczMvIhbbLZt2zYWL17MypUree+991i4cCEffvghFRUVOJ1OTpw4QV1dHVOmTOGGG27okveM6OgLFS+94R7iLdlqTrZ6oe/VbFiKhoDBp14db8ggYFg4NY1Ulz3aZlBOTg/fYfxJzX1fstUL3V+zYSkGZ6UyNCv13Cd3k/MOgnfeeScAwWCQpUuXRo9rmsawYcNYv379Oa/h8Xg4duxY9PHx48fxeDwx52zcuJEdO3YAMHnyZAKBAKdPn2br1q3MnDkTt9tNbm4u1157Lfv27SM/P7/Naw4aNIgzZ85gGAYul6vN9xJCiAvhcmjkpLujs5Z10+JMwKDWp2OGxxq2DIZCCNFbnfdPqcrKSiorK1mwYEH088rKSj7++GP++Mc/Ulpaes5rlJSUcPjwYSorKwmFQpSVlbV63ciRI9m1axcAhw4dIhAIMGTIEEaOHBltlfR6vezZs4cxY8a0e01N05g6dSq//OUvAdi8eTO33HLLeX9hhBDifLmdDoZkpDB6SAYThvZjUl4Wn8mxZyibyg6GQUOW3RJC9D6d/nX12WefveA3c7lcbNiwgRkzZjB27Fjmzp1LUVERq1at4rXXXgPsLeyeeeYZJkyYwPz589m0aROaprFixQqampooKiqipKSEJUuWUFxc3O41wZ7Y8uMf/5iCggJqamqirZpCCNGdUpz2FnpjhmRwlSeLknAw7CfBUAjRy2iq5WC/JFRf33sGwFZXV/e5sVTnkmw1J1u9kHw1n0+9umlR59ep9Rs0BU1CpsLlsANkIqqprU268WPJVnOy1QvxqdmwFCOyUhkRxzGC2dnZMY87PWtYCCHExXGHWwxz+9s//EOmRa1Pp85v0BA0MCx7m7xEDYZCiMQhQVAIIXpYitPBsMxUhmXawTBgWJzx6zQETAKmZe+jbCoUkOJAtskTQnQZCYJCCNHLpLkiwbD5mGkpAoZFfcDuTg6YFiHDwrAUlrJDolOzF72Wha+FEOdLgqAQQiQAp8PeJi8jxdnqOcNShEyLgG7h1U38uh0QddPCr1tYQIoERCFEGyQICiFEgrNbAZ2ku53kELtDgVIKb8ikxq/TFDTxhkwMi4SenCKE6DoSBIUQog/TNI3+qS76t9hTOWjYs5brAwbekEnAsHBoGmmyALYQSUeCoBBCJJlUV+zkFN20xx7W+Ay8IQN/ZMu8NvZSFkL0LRIEhRAiybmdDgZnpDA4IwWI3Us5svi1pQAULoeG2yEBUYi+QoKgEEKIGGfvpayUQrcUQcPCGzJpCtmLYIcMi5Bp4ddNvLpJmtOBUyakCJFQJAgKIYTokKZppDjtBa4zU1v/t3HC5af/wAxq/faYQ59uoZsWGvZSONJ6KETvJUFQCCHERXE6NLLS3GSlNc9Y1k2LxqBJrV/Hp1sEdBPD7l8mxemQpWyE6CUkCAohhOhybqeDnHRHtHsZCK9raFIfNPGFZysHw4tigwREIXqCBEEhhBBx4XY6cDsdMS2HYE9O8YUMezkb3V4YO2hYGErhCndLS/eyEN1DgqAQQoge5Wqja1kpRchUNAYNzgQMAoYdEEOWQinZc1mIriJBUAghRK+jaRqpLo1UV/OyNgCWUvh1e93DxqBJwDCle1mIixD3X6d27NjB6NGjKSgoYM2aNa2eP3r0KFOnTuWKK66guLiY7du3A7BlyxYmTpwY/XA4HOzfv5/GxsaY44MHD+aee+4BYNOmTQwZMiT63M9+9rO41iqEEKJrOTR7z+URWamMHpLOhOGZfC4/m8/lZzNuaAZD+7tJc9v/tQUNy56oYlhYSvXwnQvRO8W1RdA0TVasWMHOnTvJy8ujpKSE0tJSCgsLo+c8/PDDzJ07l+XLl3Pw4EFmzZrFkSNHWLBgAQsWLADgwIEDfOUrX2HixIkA7N+/P/r6q666ittuuy36+Pbbb2fDhg1xqlAIIURPaKt7GYiufXgmYODX7QkqIcPCAhl/KARxDoIVFRUUFBQwatQoAObNm0d5eXlMENQ0jYaGBgDq6+sZMWJEq+ts27aNefPmtTr+j3/8g1OnTjFlypRuqkAIIUQiSXU5SHXFzl62lL04dmPQoD5oEgi3GuqmQiHjD0VyiWsQrKqqIj8/P/o4Ly+PvXv3xpyzevVqpk+fzvr16/F6vbzxxhutrvPCCy9QXl7e6nhZWRm33357zG93L7/8Mm+//TaXX34569ati3l/IYQQycehafRzO+nndpLbv/m4aSkCRjvjDzVIccj4Q9H39LrJItu2bWPx4sWsXLmS9957j4ULF/Lhhx/icNi/ne3du5f09HTGjRvX6rVlZWU899xz0cdf/vKXmT9/PqmpqTz99NMsWrSI3bt3t/ve1dXVXV9QJ9TW1vbo+/eEZKs52eqF5Ks52eqFvlezExgA9ij6FNBNRcAwaQhYNOmKkGnxaV0Dft3CoYHbqeHo493LDQ31PX0LcRePmg1LkRJy4fS7z33yRRg6dGi7z8U1CHo8Ho4dOxZ9fPz4cTweT8w5GzduZMeOHQBMnjyZQCDA6dOnyc3NBeywN3/+/FbX/stf/oJhGFx11VXRY4MGDYp+ftddd/HAAw90eH8dfaHipTfcQ7wlW83JVi8kX83JVi8kX83V1dUMGDQkZvxhMLz3sqXA2QfHHw7KyenpW4i77q7ZsBSDs1IZmpXare/TkbgGwZKSEg4fPkxlZSUej4eysjK2bt0ac87IkSPZtWsXixcv5tChQwQCAYYMGQKAZVm8+OKLvPPOO62uvW3btlYB8eTJkwwfPhyA1157jbFjx3ZTZUIIIZJNW+MPlbK7l2X8oUgUcQ2CLpeLDRs2MGPGDEzTZOnSpRQVFbFq1SomTZpEaWkpa9euZdmyZaxbtw5N09i0aVP0N6q3336b/Pz86GSTll588cXoUjMRP/nJT3jttddwuVzk5OSwadOmeJQphBAiSWmdGH8Y0O3xhylOTcKh6DGaUsm9uFJ9fe8Z91BdXZ2U3SvJVHOy1QvJV3Oy1QtS88Xw6yY1PoOGoIE3ZBIyLVyaRqqrdwXDmtrapOsajkfNhqUYkZXKiDh2DWdnZ8c87nWTRYQQQohk0c/tJC/bCdhBIGRanPHr1PkNmkL2uEPZLUV0JwmCQgghRC+R4nSQ2z+V3P7NwbC6MUiN38AXMnE7pBtZdC0JgkIIIUQvleJ0kD+gH/kDQDctqpt0anwhvCELl8N+XoiLIUFQCCGESABup4O87FTyslMxLMWpphCnvTpe3cQBvW5coUgMEgSFEEKIBONyaNFJBoalOO0NcapJQqHoPAmCQgghRAJzOTSGZaYyLDMV01LU+OxQ2BQyQNNIk+5j0QEJgkIIIUQf4XRo0ckmllLU+nSqm0I0BiUUirZJEBRCCCH6IIemMTgjhcEZKdFQ+M/GEE0hA43et1ah6BkSBIUQQog+7uxQGBlT2Bg0cPTCBaxF/EgQFEIIIZKIQ2vuPj57TKEC+rmcPX2LIo4kCAohhBBJ6uwxhXV+g+rGII1BE0tBmktD02RXk75MgqAQQgghcGgag9LdDEp3o5SiPmhQ3RjiTMAgYFgopSQU9kESBIUQQggRQ9M0BqS5GZBmh8KP8WKkuDgT0DEV9HNKS2FfIUFQCCGEEO3SNI3+KU6GDklHKUVTyOREQ0hCYR8hQVAIIYQQ50XTNDJTXYwe4kIpRWPI5KSEwoQmQVAIIYQQnaZpGlmpLrIioTBocLJRpz5ooJsW/VwOHBIKe724Lxy0Y8cORo8eTUFBAWvWrGn1/NGjR5k6dSpXXHEFxcXFbN++HYAtW7YwceLE6IfD4WD//v0AfOlLX2L06NHR506dOgVAMBjk9ttvp6CggKuvvpojR47ErU4hhBAiWWiaRlaam9FD0vlcXhbFw/rTP8VFyFL4dBNLqZ6+RdGOuLYImqbJihUr2LlzJ3l5eZSUlFBaWkphYWH0nIcffpi5c+eyfPlyDh48yKxZszhy5AgLFixgwYIFABw4cICvfOUrTJw4Mfq6LVu2MGnSpJj327hxIwMHDuSjjz6irKyMb3/727zwwgvxKVYIIYRIUpmpLjKH2BGjKWhwsinEGb/dUpgmLYW9SlxbBCsqKigoKGDUqFGkpKQwb948ysvLY87RNI2GhgYA6uvrGTFiRKvrbNu2jXnz5p3z/crLy1m0aBEAc+bMYdeuXSj5rUQIIYSIm/6pLi4blE5JXhYThvcnK82FoeyWQtOS/5N7WlxbBKuqqsjPz48+zsvLY+/evTHnrF69munTp7N+/Xq8Xi9vvPFGq+u88MILrQLkkiVLcDqdzJ49m+9+97tomhbzfi6Xi+zsbGpqahg8eHCb91ddXX2xJV6U2traHn3/npBsNSdbvZB8NSdbvSA1J4OurDcTyHRBAItqr0Ft0CRoKFJcGs5e1FLY0FDf7e9hWIqUkAun392t7zN06NB2n+t1k0W2bdvG4sWLWblyJe+99x4LFy7kww8/xOGwGy/37t1Leno648aNi75my5YteDweGhsbmT17Ns899xx33HFHp9+7oy9UvPSGe4i3ZKs52eqF5Ks52eoFqTkZdEe9l4T/DBgWJxuC1IUXr0YpUp0OnI6eDYaDcnK69fqGpRiclcrQrNRufZ+OxLVr2OPxcOzYsejj48eP4/F4Ys7ZuHEjc+fOBWDy5MkEAgFOnz4dfb6srIz58+e3ui5AZmYmX/3qV6moqGj1foZhUF9fz6BBg7q+MCGEEEJcsDSXg8/k9OPKEZlcnZfFuKEZ5KS7cTo0QqaFT7cIGlZP32afFNcgWFJSwuHDh6msrCQUClFWVkZpaWnMOSNHjmTXrl0AHDp0iEAgwJAhQwCwLIsXX3wxZnygYRjRoKjrOq+//nq0tbC0tJTNmzcD8Mtf/pLrr79e1jcSQgghejGnw56B/Jmcfowf1p/P5WdzlSeTz+Sk0c/tQAEBw8SrmxgyxvCixbVr2OVysWHDBmbMmIFpmixdupSioiJWrVrFpEmTKC0tZe3atSxbtox169ahaRqbNm2Khre3336b/Px8Ro0aFb1mMBhkxowZ6LqOaZrccMMNLFu2DIA777yThQsXUlBQQE5ODmVlZfEsVwghhBBdINXlILd/Krn97S5UpRQ+3aLOb9AYNPDrJgFTgYIUp4arh7uUE4mmknwabX199w8GPV/V1dVJN+Yk2WpOtnoh+WpOtnpBak4GiVCvpRTekMkZv05jyMKv25NQ4MLGG9bU1sZljOCIrFRGxHGMYHZ2dszjXjdZRAghhBCisxzh7e8yU5ujjWkpvCGDuoBBU9DEr1sETQsNSHE6pOUQCYJCCCGE6KMi4w2z0pqXZzHC4fBMwMCvWwTCE1FMBRqK1CRb8FqCoBBCCCGShsuhkZ3mJjstdu2+oGF3J9f5DfyGhWHZ4xD7+phDCYJCCCGESHqpLgepLgcD+tkBcZBqYsCgTE41Banzm/h0Awvo53T0qRVIJAgKIYQQQrQh1eUgf0A/8gfYk1Hq/QanvDoNQQPdVDg1cDu1hO5KliAohBBCCHEODk1jYLqbgel2i2HAsGgKGjQGTYKmPc4waFjYE5UVDk3D7dB6fHeUc5EgKIQQQgjRSWkuB2muFAZnxB63lAqPN7RoDBn2ZBTTPmaYFgrQALfTQW9YwU+CoBBCCCFEF3FoGv3cTvq5neSkx05IUUoRNBUB3aQxaODVLTJSnD10pzYJgkIIIYQQcaBpGmkujbQWk1J6Wlz3GhZCCCGEEL2HBEEhhBBCiCQlQVAIIYQQIklJEBRCCCGESFKa6g1zl3tQfX19T9+CEEIIIURcZGdnxzyWFkEhhBBCiCQlQVAIIYQQIkklfdewEEIIIUSykhZBIYQQQogkJUFQCCGEECJJSRDswLFjx5g6dSqFhYUUFRXx1FNPAVBbW8uNN97IZZddxo033khdXR0Af//735k8eTKpqan86Ec/irnWU089xbhx4ygqKuLJJ59s9z2XLl1Kbm4u48aNizn+0ksvUVRUhMPhYN++fe2+vr1727JlC8XFxYwfP57Pf/7z/OUvf+nT9dbV1XHrrbdSXFzM5z73OT788MM2X5+INXd03l//+lcmT55MUVER48ePJxAI9Ima77//fsaMGUNxcTG33norZ86cAaCiooKJEycyceJEJkyYwKuvvton6n3ooYcoLi5m4sSJTJ8+nRMnTgD2PqXf+MY3KCgooLi4mD//+c9tvr431dze393Z2ru3H/7wh9G/43HjxuF0OqmtrU34es/1b+Ho0aP079+/1f0lcs3tnVdTU8PUqVPp378///Zv/9bn69V1nUWLFjF+/HjGjh3LY4891u49xIUS7Tpx4oR6//33lVJKNTQ0qMsuu0z97W9/U/fff7967LHHlFJKPfbYY+qBBx5QSilVXV2tKioq1L//+7+rH/7wh9HrHDhwQBUVFSmv16t0XVfTpk1Thw8fbvM933rrLfX++++roqKimOMHDx5Uf//739UXv/hF9ac//ande27v3v73f/9X1dbWKqWU2r59u/rc5z7Xp+u977771OrVq5VSSh06dEhdf/31bb4+EWtu7zxd19X48ePV/v37lVJKnT59WhmG0Sdq/t3vfqd0XVdKKfXAAw9E7y3y3pG6hgwZEn2cyPXW19dHP3/qqafU3XffrZRS6je/+Y2aOXOmsixLvffee21+H/e2mtv7uztbe/fW0muvvaamTp3aJ+o917+F2bNnqzlz5sTcX6LX3N55TU1N6p133lH/8z//o1asWNHn692yZYu6/fbblVL2z7BLLrlEVVZWtnmNeJAWwQ4MHz6cK6+8EoDMzEzGjh1LVVUV5eXlLFq0CIBFixbxq1/9CoDc3FxKSkpwu2M3kj506BBXX3016enpuFwuvvjFL/LKK6+0+Z7XXXcdOTk5rY6PHTuW0aNHn/Oe27u3z3/+8wwcOBCAa665huPHj/fpeg8ePMj1118PwJgxYzhy5AjV1dV9oub2zvv9739PcXExEyZMAGDQoEE4nc4+UfP06dNxuVxA7L/fyHsDBAIBNE3rE/VmZWVFP/d6vdG6ysvLueOOO9A0jWuuuYYzZ85w8uTJXl1ze393Z2vv3lratm0b8+fP7xP1dvRv4Ve/+hWf+cxnKCoqavP5RK25vfMyMjL4whe+QFpaWlLUq2kaXq8XwzDw+/2kpKTEfM/HmwTB83TkyBE++OADrr76aqqrqxk+fDgAw4YNazNgtDRu3Djeeecdampq8Pl8bN++nWPHjnXLfZ7PvW3cuJGbbrqpw+sker0TJkyIfnNXVFTwySeftPvNGpEoNbfnH//4B5qmMWPGDK688kqeeOKJc74mEWv++c9/HvPvd+/evdGu8J/+9KfRH7xtSaR6/+M//oP8/Hy2bNnC97//fQCqqqrIz8+PnpOXl0dVVVWH1+lNNZ/9d9fSue7N5/OxY8cOZs+e3eF7JEq97WlqauLxxx/ne9/73nm/JhFrvpCvTUSi1ztnzhwyMjIYPnw4I0eO5L777mszcMZL+z8xRVRTUxOzZ8/mySefbJXaNU1rsxWipbFjx/Ltb3+b6dOnk5GRwcSJE9tsqelqbd3bm2++ycaNG3n33XfbfV1fqPfBBx/km9/8JhMnTmT8+PFcccUVHd5DotbckmEYvPvuu/zpT38iPT2dadOmcdVVVzFt2rQ2z0/Emh955BFcLhcLFiyIHrv66qv529/+xqFDh1i0aBE33XRTmy0LiVbvI488wiOPPMJjjz3Ghg0b+M///M9OX6M31dzW31172rq3X//611x77bUd/oeZqPW2tHr1au6991769+9/XucnYs0X+rWBvlFvRUUFTqeTEydOUFdXx5QpU7jhhhsYNWrUBd3HxZIWwXPQdZ3Zs2ezYMECbrvtNgCGDh0a7Y45efIkubm557zOnXfeyfvvv8/bb7/NwIEDufzyyzl27Fh0EPRPf/rTC7q/JUuWMHHiRGbNmnXOe/vrX//KXXfdRXl5OYMGDerT9WZlZfGLX/yC/fv38+yzz/Lpp5+2+02WaDW3Jy8vj+uuu47BgweTnp7OrFmz2p1MkIg1b9q0iddff50tW7a0+cN+7Nix9O/fv82JQYlYb8SCBQt4+eWXAfB4PDGtF8ePH8fj8bR5zd5Uc1t/d5352QVQVlbWZrdwotbbnr179/LAAw9w6aWX8uSTT/Loo4+yYcOGPlPzub6PO9JX6t26dSszZ87E7XaTm5vLtdde2+Hkse4mLYIdUEpx5513MnbsWL71rW9Fj5eWlrJ582YefPBBNm/ezC233HLOa506dYrc3FyOHj3KK6+8wp49exgwYAD79++/qHv8xS9+EfO4vXs7evQot912G8899xyXX355m9fqS/WeOXOG9PR0UlJS+NnPfsZ1113X5hiMRKy5PTNmzOCJJ57A5/ORkpLCW2+9xb333tvqvESseceOfW8ntgAAIABJREFUHTzxxBO89dZbpKenR49XVlaSn5+Py+Xik08+4e9//zuXXnppwtd7+PBhLrvsMsAeOzdmzJjoPW/YsIF58+axd+9esrOzo91iLfWmmtv7uzvf72Ww94R/6623eP7559t8j0Sstz3vvPNO9PPVq1e3O5M2EWtu77zz0ZfqHTlyJLt372bhwoV4vV727NnDPffcc17v3S16bJpKAnjnnXcUoMaPH68mTJigJkyYoH7zm9+o06dPq+uvv14VFBSoadOmqZqaGqWUUidPnlQej0dlZmaq7Oxs5fF4orP/vvCFL6ixY8eq4uJi9cYbb7T7nvPmzVPDhg1TLpdLeTwe9bOf/UwppdQrr7yiPB6PSklJUbm5uWr69Oltvr69e7vzzjvVgAEDonVcddVVfbreP/7xj+qyyy5Tl19+ubr11lujM6b7Qs0dnffcc8+pwsJCVVRUpO6///4+U/NnP/tZlZeXF73fyCzaZ599VhUWFqoJEyaoK664Qr366qt9ot7bbrtNFRUVqfHjx6ubb75ZHT9+XCmllGVZ6utf/7oaNWqUGjduXLszj3tTze393Z2tvXtTSqlf/OIX0VmWfaXe8/m38L3vfa/dWcOJWHNH511yySVq4MCBKiMjQ3k8HvW3v/2tz9bb2Nio5syZowoLC9XYsWPVE0880e49xINsMSeEEEIIkaRkjKAQQgghRJKSICiEEEIIkaQkCAohhBBCJCkJgkIIIYQQSUqCoBBCCCFEkpIgKIQQcbR48WK++93v9vRtCCEEIEFQCCGEECJpSRAUQgghhEhSEgSFEKIbffDBB1x55ZVkZmZy++23EwgEADh9+jQ333wzAwYMICcnhylTpmBZVg/frRAi2UgQFEKIbhIKhfjKV77CwoULqa2t5V//9V95+eWXAVi7di15eXl8+umnVFdX8+ijj0Y3pRdCiHiRICiEEN1kz5496LrOPffcg9vtZs6cOZSUlADgdrs5efIkn3zyCW63mylTpkgQFELEnQRBIYToJidOnMDj8cQEvEsuuQSA+++/n4KCAqZPn86oUaNYs2ZNT92mECKJSRAUQohuMnz4cKqqqlBKRY8dPXoUgMzMTNauXcvHH3/Ma6+9xo9//GN27drVU7cqhEhSEgSFEKKbTJ48GZfLxU9+8hN0XeeVV16hoqICgNdff52PPvoIpRTZ2dk4nU4cDvmRLISIL021/FVVCCFEl9q3bx/Lli3jo48+YtasWQBcdtllDBo0iKeeeopPP/2UgQMHcvfdd/PQQw/18N0KIZKNBEEhhBBCiCQl/RBCCCGEEElKgqAQQgghRJKSICiEEEIIkaT+P3t3HhdVvf4B/DPs+zKACAMuOIAIygiSa0oqcl0aNVTcENy6ebXFfnW1MsTSG11bzdIyUzQVt5u4JKKZWWkiKpriMiioLLJvss/M9/cHemQcQFAOMzDP+/XyJWed5zycYZ455/v9HioECSGEEEJ0FBWChBBCCCE6igpBQgghhBAdRYUgIYQQQoiOokKQEEIIIURHUSFICCGEEKKjqBAkhBBCCNFRVAgSQgghhOgoKgQJIYQQQnQUFYKEEEIIITrKQNMBPBQfH4/XX38dCoUC8+bNw9KlS1WWnzx5Em+88QYuXbqE2NhYTJo0iVsWExODlStXAgCWLVuG8PBwAMC5c+cQERGByspKjBkzBl9++SUEAoHKfktKSng+MkIIIYQQ7WBtba0yrRVXBBUKBRYuXIjDhw8jJSUFO3bsQEpKiso6Xbp0webNmzF9+nSV+YWFhVixYgXOnDmDxMRErFixAkVFRQCABQsWYMOGDZDJZJDJZIiPj2+zYyKEEEII0XZaUQgmJiZCLBbDzc0NRkZGmDp1KuLi4lTW6datG/r06QM9PdWQjxw5gqCgIAiFQtja2iIoKAjx8fHIzs5GaWkpBgwYAIFAgFmzZmHfvn1teViEEEIIIVpNK24NZ2ZmwtXVlZt2cXHBmTNnnnrbzMxMZGZmwsXFRW1+U3JycloYecsUFhZCKBTy+hq6iPLKH8otPyiv/KHc8oPyyp+2yK2jo2Ojy7SiENQWTSWqPb2GLqK88odyyw/KK38ot/ygvPJHk7nVilvDIpEId+/e5aYzMjIgEomeaVuRSISMjIyn2ichhBBCiC7QikIwICAAMpkMaWlpqKmpQWxsLKRSabO2DQ4ORkJCAoqKilBUVISEhAQEBwfDyckJVlZW+Ouvv8AYw5YtWzB+/Hiej4QQQgghpGmMMdwrq0ZRZa2mQ9GOW8MGBgZYu3YtgoODoVAoMGfOHHh7eyMyMhL9+vWDVCrF2bNnMXHiRBQVFeHAgQNYvnw5rly5AqFQiPfffx8BAQEAgMjISO5e+zfffMMNHzN69GiMHj1ak4dJCCGEEB2iZAx3iqtwI78S1/PKcT2/AjfyK3Etrxyl1QqsGuWGSd0NNRqjgDHGNBqBhrXlOII5OTnUxoIHlFf+UG75QXnlD+WWH5TXptUqlLhVWIXr+RW4nleOG/kVuJ5fCVl+BSrlyka3C/frjHcDrNs0t4+PI6gVVwQJIYQQQrRdRa0CsvzKukIvrxzXH/x8s7AScmXLr6udyyzDfV8LaLLEpkKQEEIIIaSe4io5buRVPLjCV/HgCl8F7hRXobVuo5ob6sHezBAWRvqttMenQ4UgIYQQQnQOYwy55bUqhd7Dn+/dr2m117ExMUBPBzN42JvB08EMnvZ1P7tYG0NPIOB9DOMnoUKQEEIIIR2WkjHcLal+dIUvv4L7ubhK3mqv42RpBI8HRR5X+NmbwcHcEAKBoNVep7VRIUgIIYSQdq9WoURaUZVKoXc9vwKy/ApU1DbeYaMlBAC62ppwV/UeXuFztzeDjUn7LKnaZ9SEEEII0UmVtQrICh522HhwhS+/AjcLKlH7FB02GmKgJ4DYzlTtCp+7nSlMDTXbpq+1USFICCGEEK1TUiXn2u7Vv8J3u6j1OmyYGujBo167vYdX+LrbmsBQXyueucE7KgQJIYQQohGMMeRX1OJaAx02sstar8OGtYkBetqbwePBlb2HP7s+6LChy6gQJIQQQgivGGPIKK1WuZX78OeiytbrsOFoYQTPB1f2HnbW8HQwQyct77ChSVQIEkIIIaRVyJUM6UWValf4ZPkVKG+lDhsA0MXGGD3tzeva8DmYPvjZFDammn1cW3tEhSAhhBBCWqRKrkRqQYXaFb6bhZWoUbRehw03oQk87c3haW/6oC2fOdztTWHWwTpsaBIVgoQQQghpVHpRJQ5fL8G9v8u5K3y3i6vQSh10YWKgB3d707p2ew/a7vW0N0d3oQmMdKTDhiZRIUgIIYQQNXIlQ9SxNHz9V0ar9NK1Mtbn2uzV76XbxcZE5ztsaBIVgoQQQghRkV9egzl7r+FkenGLt+1kbqj2dA0PBzN0tjCiDhtaSGsKwfj4eLz++utQKBSYN28eli5dqrK8uroas2bNwrlz52BnZ4edO3eiW7du2LZtG1avXs2td+nSJZw/fx4SiQSBgYHIzs6GqakpACAhIQGdOnVq0+MihBBC2pPkrDLM3J2CjJLqJtdztTZu8AqfLXXYaFe0ohBUKBRYuHAhjh49ChcXFwQEBEAqlaJXr17cOhs3boStrS1SU1MRGxuLJUuWYOfOnZgxYwZmzJgBAPj7778xYcIESCQSbrtt27ahX79+bX5MhBBCSHuz/eI9LD4oQ/VjHT4czQ0wQ+LEFX1iezNYGFGHjY5AKwrBxMREiMViuLm5AQCmTp2KuLg4lUIwLi4OUVFRAIBJkyZh0aJFYIypXGbesWMHpk6d2qaxE0IIIe1drUKJdxNuYcPZLLVlg7pYY/Uwe3h3F2kgMsI3rSgEMzMz4erqyk27uLjgzJkzja5jYGAAa2trFBQUwN7enltn586diIuLU9lu9uzZ0NfXR0hICJYtW9Zk+4ScnJzWOJxGFRYW8rp/XUV55Q/llh+UV/5Qblsur0KON45mIelepdqyWT62+PcAB5SVFCEnRytKhg6nLc5ZR0fHRpd1mN/qmTNnYGZmBh8fH27etm3bIBKJUFZWhpCQEGzduhWzZs1qdB9NJaq1tMVr6CLKK38ot/ygvPKHctt8ZzNKMWtfitrj3EwM9PDlOHeE9qnLZY6+gPLKI03mVisG6BGJRLh79y43nZGRAZFI1Og6crkcJSUlsLOz45bHxsZi2rRpatsAgKWlJaZPn47ExES+DoEQQghpVzafy8aYzRfVikBXa2McmS3hikDSsWlFIRgQEACZTIa0tDTU1NQgNjYWUqlUZR2pVIqYmBgAwJ49ezB8+HDuNq9SqcSuXbtU2gfK5XLk5+cDAGpra3Hw4EGVq4WEEEKILqqWK/H6wRt445AMtY+NCh3Y3QYn5vvB18lCQ9GRtqYVt4YNDAywdu1aBAcHQ6FQYM6cOfD29kZkZCT69esHqVSKuXPnIiwsDGKxGEKhELGxsdz2J0+ehKurK9fZBKgbbiY4OBi1tbVQKBQYOXIk5s+fr4nDI4QQQrRCVmk1Zu1OQVJmmdqy1we54P3h3WGgR2P96RIBY6yVHhLTPpWUlLTZa+Xk5FAbCx5QXvlDueUH5ZU/lNvGnbpdgog9Kcgtr1WZb2aoh6+lnpjo7dDotpRX/rR1bq2trVWmteKKICGEEEL4wRjDhrNZeDfhFuSP3QrubmuCbaHe6NXJXEPREU2jQpAQQgjpoCprFVh8SIbYS7lqy0aJhfhuoids6EkgOo0KQUIIIaQDulNchbDdKbiYfV9t2dvPd8E7gV2hR8/+1XlUCBJCCCEdzG9pRZi95yoKK+Uq8y2M9LF+gifG9bRvZEuia6gQJIQQQjoIxhjW/pWJ5cdu4bHmgHC3M8W2UG942JtpJjiilagQJIQQQjqA8hoFXjtwA3uv5KktG+tph3UTPGFlTB/7RBWdEYQQQkg7l1ZYiRm7UpCSW64yXwDg3cCu+L/nu1B7QNIgKgQJIYSQduxYaiHm/u8aSqpU2wNamxjg+4k9EeQu1FBkpD2gQpAQQghphxhj+OyPu1j5azoefzJEr05m+HGKN9yEphqJjbQfVAgSQggh7UxZtRwL4q7j4LUCtWUTezngK6kHLIz0NRAZaW+oECSEEELaEVl+BWbuSsH1/AqV+XoCIGpEd7w60AUCag9ImokKQUIIIaSd+Pl6AV7Zdw2l1QqV+bamBtgU4oVAN1sNRUbaKyoECSGEEC2nZAzRv93Gf0/eUVvWp7MFtk7pha42JhqIjLR3epoO4KH4+Hh4enpCLBYjOjpabXl1dTVCQ0MhFovRv39/pKenAwDS09NhamoKiUQCiUSCV155hdvm3Llz6N27N8RiMV577TUw9nhzWkIIIUS7FVfJMS32SoNFYGifTjgy25eKQPLUtKIQVCgUWLhwIQ4fPoyUlBTs2LEDKSkpKuts3LgRtra2SE1NxeLFi7FkyRJuWY8ePZCcnIzk5GSsX7+em79gwQJs2LABMpkMMpkM8fHxbXZMhBBCyLO6mluO4d+fxxFZocp8fQHw8T96YP14T5gaUqcQ8vS0ohBMTEyEWCyGm5sbjIyMMHXqVMTFxamsExcXh/DwcADApEmT8MsvvzR5hS87OxulpaUYMGAABAIBZs2ahX379vF6HIQQQkhriUvJw8iNF3CrsEplvoO5IeLC+uCfz4moUwh5ZlrRRjAzMxOurq7ctIuLC86cOdPoOgYGBrC2tkZBQV23+bS0NPTt2xdWVlZYuXIlnn/+eWRmZsLFxUVln5mZmU3GkZOT01qH1KDCwsInr0RajPLKH8otPyiv/OkIuVUoGT4/m48NyerH0qeTCb4KckZn02reP7Pq6wh51VZtkVtHR8dGl2lFIfgsnJyccOfOHdjZ2eHcuXOYMGECrly58lT7aipRraUtXkMXUV75Q7nlB+WVP+05t4UVtVjwv2s4fqtIbVlY385YPVoMEwPN3Mxrz3nVdprMrVYUgiKRCHfv3uWmMzIyIBKJGlzHxcUFcrkcJSUlsLOzg0AggLGxMQDA398fPXr0wI0bNyASiZCRkdHkPgkhhBBtcenefczcdQV3iqtV5hvqCfDf0T0Q4edEt4JJq9OKNoIBAQGQyWRIS0tDTU0NYmNjIZVKVdaRSqWIiYkBAOzZswfDhw+HQCBAXl4eFIq68ZRu3boFmUwGNzc3ODk5wcrKCn/99RcYY9iyZQvGjx/f5sdGCCGEPMmuv3MQ/EOyWhHY2cIIh8J9MdvfmYpAwgutuCJoYGCAtWvXIjg4GAqFAnPmzIG3tzciIyPRr18/SKVSzJ07F2FhYRCLxRAKhYiNjQUAnDx5EpGRkTA0NISenh7Wr18PobDuAdvffPMNIiIiUFlZidGjR2P06NGaPExCCCFERa1CichjaVh3Rr0N+wBXK2ye5IXOlsYaiIzoCgHT8cH1SkpK2uy1cnJyqI0FDyiv/KHc8oPyyp/2lNu88hpE7LmKP2+rfw7ND3DGqlFuMNLXiht37Sqv7U1b59ba2lplWiuuCBJCCCG65HxmGcJ2X0FmaY3KfGN9AT4b644Zks4aiozoGioECSGEkDb0Y/I9/N8hGaoVqjfkXKyMsXVKL/R1ttRQZEQXUSFICCGEtIEahRLvHrmJ75Oy1ZYN6WqNTZO84GBupIHIiC6jQpAQQgjh2b2yakTsuYq/7paqLftXfxE+CHKDgR71CiZtjwpBQgghhEdn7pYgfPdV3Luv2h7Q1EAPa170wOTenTQUGSFUCBJCCCG8YIxh07lsLIm/iVqlanvArjYm+HFKL/TubKGh6AipQ4UgIYQQ0sqq5Eq89bMMPyarPw94uJstNob0hK2poQYiI0QVFYKEEEJIK8ooqcKs3VdxPqtMbdniwa5Y9kI36FN7QKIlqBAkhBBCWskf6cWI2HMV+RW1KvPNDfXwzXhPjO/loKHICGkYFYKEEELIM2KMYX1iFpYl3MRjwwOih9AUP07pBa9O5poJjpAmUCFICCGEPIOKWgXeOCjDrr9z1ZYFuwvx7cSesDGhj1uinejMJIQQQp7S7eIqzNx1BX/fK1dbtmRoFywZ1hV6AmoPSLRXs59mvXjxYiQnJ/MZCyGEENJu/HqzCIEbzqsVgZbG+tge6o13ArtREUi0XrMLQYVCgeDgYPj4+ODjjz9GRkYGn3ERQgghWokxhi//vIuQ7X+jqFKusszT3gzH5/bFGE87DUVHSMs0uxBcs2YNsrKyEB0djeTkZHh5eWHkyJHYsmUL7t+//8yBxMfHw9PTE2KxGNHR0WrLq6urERoaCrFYjP79+yM9PR0AcPToUfj7+6N3797w9/fH8ePHuW0CAwPh6ekJiUQCiUSC3Fz19huEEEJIc92vUWDO3mtY/ksaHhsjGi/2tMexuRK425tpJjhCnkKzC0EA0NfXx7hx47Bjxw789ddfyMvLQ0REBDp37ox58+YhMzPzqYJQKBRYuHAhDh8+jJSUFOzYsQMpKSkq62zcuBG2trZITU3F4sWLsWTJEgCAvb09Dhw4gL///hsxMTEICwtT2W7btm1ITk5GcnIyOnWix/gQQgh5OrcKKzHqhwv4KSVPZb4AQOTwbtgy2QuWxtT0nrQvLSoES0tLsXHjRrzwwgsYOnQo+vfvj99//x1Xr16FhYUFRo8e/VRBJCYmQiwWw83NDUZGRpg6dSri4uJU1omLi0N4eDgAYNKkSfjll1/AGEPfvn3h7OwMAPD29kZlZSWqq6ufKg5CCCGkIUduFCBww3mk5FaozLcxMcDu6T54c0gXCKg9IGmHmv3VZdKkSThy5AiGDh2KV155BRMmTICxsTG3/LPPPoO1tfVTBZGZmQlXV1du2sXFBWfOnGl0HQMDA1hbW6OgoAD29vbcOnv37oWfn59KXLNnz4a+vj5CQkKwbNmyJt+oOTnqjwJqTYWFhbzuX1dRXvlDueUH5ZU/rZ1bJWNYd74AXyUV4LE7wfAUGuPrYGe4Wtby/vmhaXTO8qctcuvo6NjosmYXggMGDMDatWvRuXPnBpfr6elp9I1w5coVLFmyBAkJCdy8bdu2QSQSoaysDCEhIdi6dStmzZrV6D6aSlRraYvX0EWUV/5QbvlBeeVPa+W2tFqOV/Zdx8/XC9SWhXg7YM2LHjA30m+V12oP6JzljyZz2+xbw2+99VajReBDZmZP10BWJBLh7t273HRGRgZEIlGj68jlcpSUlMDOzo5bf+LEidiyZQt69Oihsg0AWFpaYvr06UhMTHyq+AghhOiWG/kVGPH9BbUiUE8ArAxyw/cv9dSpIpB0XE1eEXR1dW1Wm4c7d+48UxABAQGQyWRIS0uDSCRCbGwstm/frrKOVCpFTEwMBg4ciD179mD48OEQCAQoLi7G2LFjER0djcGDB3Pry+VyFBcXw97eHrW1tTh48CBGjhz5THESQgjp+A5ey8eCfddRVqNQmW9nZoAfQrwwrLuthiIjpPU1WQj++OOPbROEgQHWrl2L4OBgKBQKzJkzB97e3oiMjES/fv0glUoxd+5chIWFQSwWQygUIjY2FgCwdu1apKam4oMPPsAHH3wAAEhISIC5uTmCg4NRW1sLhUKBkSNHYv78+W1yPIQQQtofhZLhoxPp+OSPu2rLfJ0ssHVyL3SxMdFAZITwR8AYe7z9a4OysrK43rn1JScnQyKRtHpgbaWkpKTNXisnJ4faWPCA8sofyi0/KK/8edrcFlfWYv5P13A0tUht2TRfR3w2RgxTQ929FUznLH/aOrePd+xtdhvBUaNGqfVsOXv27FMPGUMIIYRogys55Xjh+wtqRaCBngCrR4vxjdRDp4tA0rE1uxB8+eWXMWrUKO4pIqdOnYJUKsXGjRt5C44QQgjh009X8hD0wwWkFVWpzO9kboj9YX0wP8CZxgckHVqzh4957bXXUFxcjDFjxuCdd95BREQEtm3bRh0wCCGEtDtyJcMHv6RhzekMtWX9RJbYMrkXnK2MG9iSkI6lRc/CiYyMRElJCUJDQ3Hw4EEMHTqUr7gIIYQQXhRU1GLO3qv4La1YbVmEX2d8/A8xjA1a9OAtQtqtFg8fo1QqoVQqMXPmTG7esw4fQwghhLSF5OwyhO1Kwd0S1UeRGunXtQcM93PSUGSEaIZWDB9DCCGE8C32Ug7eOChDlVypMt/Z0ggxk3shwMVKQ5ERojlNFoLDhg1rqzh0wmdn8tCnC8MMSdNPaCGEENJ6ahVKLDt6C98mZqktG9jFCjGTeqGThZEGIiNE85rdCKK6uhrvvfce3NzcuDFoEhISsHbtWt6C60g2nM3Et8mFWLj/Bv5zIh3NHL6REELIM8i9X4PxW/9usAh8+Tln7A/rQ0Ug0WnNLgQXL16My5cvY9u2bVy7QW9vb6xbt4634DqK+BsFWBJ/k5v+78k7eCXuOmoUyia2IoQQ8izOZZYicMN5nLqj+uAAEwM9rBvvif/+QwxDfeoUQnRbs3sN//TTT0hNTYW5uTn09OreOCKRCJmZmbwF11FUK5Qw1BOgWvHoKuDOS7nIKq3G1sm9YGNqqMHoCCGk49lyIRtv/ZyKGoXq3RcXa2P8OLkXJM6WGoqMEO3S7K9CRkZGkMvlKvPy8vJgZ2fX6kF1NOO9HLB/Vh/YmKiOTP97egmCN13E7eKqRrYkhBDSEjUKJRYfkuG1AzK1InBoNxucmNeXikBC6ml2ITh58mSEh4cjLS0NAJCdnY1FixZh6tSpvAXXkfR3tcbOCV3gJlR9YPn1/AoEbbyAC1llGoqMEEI6huyyaoTtv4tN57LVlr060AX/m9kb9ubUHpCQ+ppdCP7nP/9B9+7d0bt3bxQXF8Pd3R3Ozs6IjIzkM74OpZu1EY7O6Yv+jw1RkFtei7ExF3H4eoGGIiOEkPbtz9vFCNxwAcm5qndYzAz1sPGlnvgwyA0GevSoOEIeJ2BP0X01Ly8P9vb2HeL5iyUlJU9eqZXk5OTA0dERVXIlXtl3DftS8lWW6wmAj/8hxvwA5zaLqSN4mFfS+ii3/KC8tp5bhZX44Hia2t9TAOhma4Ifp/SCj6OFBiLrWOic5U9b5/bhyC8Ptai71LVr1/Dhhx9ixYoVEAgEuH79Oi5dutQqgcXHx8PT0xNisRjR0dFqy6urqxEaGgqxWIz+/fsjPT2dW/bRRx9BLBbD09MTR44cafY+NcXEQA8/hHjhtYEuKvOVDHj7cCreS7gJJQ0vQwghjcorr8Hbh1Px3DdJDRaBI3vY4td5fakIJOQJml0I7t69G0OHDkVmZia2bNkCACgrK8Obb775zEEoFAosXLgQhw8fRkpKCnbs2IGUlBSVdTZu3AhbW1ukpqZi8eLFWLJkCQAgJSUFsbGxuHLlCuLj4/Gvf/0LCoWiWfvUJD2BAB8EueHTMWI8frfi678yEb77KiprFZoJjhBCtFR5jQKf/H4Hfl+dxYazWZAr1b80/98QV+yc5gNbGpGBkCdqdiEYGRmJo0ePYv369dDXr+v96uvri4sXLz5zEImJiRCLxXBzc4ORkRGmTp2KuLg4lXXi4uIQHh4OAJg0aRJ++eUXMMYQFxeHqVOnwtjYGN27d4dYLEZiYmKz9qkN5vZzRuxUH5gbqv4qDlzLh3TLJeSV12goMkII0R5yJcOW89nwX3sWK39NR1mN+hdlXycLxIxzxfvDu0Of2gMS0izNHkcwNzcXffr0AQCubaBAIGiVdoKZmZlwdXXlpl1cXHDmzJlG1zEwMIC1tTUKCgqQmZmJAQMGqGz7cGzDJ+3zcTk5Oc98LE0pLCxscL6vFbD1RVf8Mz4DeRWP/ridzSzD8A3nsGG0C7rbUE+3xjSWV/LsKLf8oLw2H2MMv94ux6eJeUgtaviLscjSEG8+Z48xPSxRXFTE+99yXUTnLH/aIrdNtUFsdiHo7++PrVu3YtasWdy82NhYPPfcc88WnRZpi8aajb2GoyNw3NURoTvT10pLAAAgAElEQVQuIyW3gpt/t7QW0/bfxbYp3hjU1brBbUnb/O50FeWWH5TXJ0vKKEXksTS1J4M8ZGtqgLee74J5/ZxhbFB3V0VPIKDc8oTyyh9N5rbZheBXX32FoKAgbNy4EeXl5QgODsaNGzeQkJDwzEGIRCLcvXuXm87IyIBIJGpwHRcXF8jlcpSUlMDOzq7JbZ+0T23jam2CwxEShO9OwYm0Ym5+UaUcE368hHXjPRHi00mDERJCCP+a6gkM1HW4e+U5Ed4Y4gobk2Z/jBFCGtDsd1B1dTWuXbuGgwcPYty4cXB1dcW4ceNgYfHsPbICAgIgk8mQlpYGkUiE2NhYbN++XWUdqVSKmJgYDBw4EHv27MHw4cMhEAgglUoxffp0vPnmm8jKyoJMJsNzzz0HxtgT96mNrE0MsGu6D944KMP2i49ub9QoGOb+7xruFFfhjcGuHWLoHkIIqS+vvAb/PXkHm85lN9gJRABgmq8j3g3sChdrE/UdEEJarNmF4Lhx41BeXo7nn38ew4YNg4eHB8zNzVsnCAMDrF27FsHBwVAoFJgzZw68vb0RGRmJfv36QSqVYu7cuQgLC4NYLIZQKERsbCwAwNvbG1OmTEGvXr1gYGCAr7/+muvM0tA+2wMjfT18LfVAN1sT/OfEbZVlK46n43ZxFT4Z406DoxJCOoTyGgW++SsDa05lNNgJBACCxLZYPqI7DQdDSCtr0YDSt27dwsmTJ/Hbb7/h5MmTKCgowJAhQ3Dw4EE+Y+SVJgaUbonYSzl4df8N1D727XhkD1tsmuQFS2O6LUIDnfKHcssPymsduZJhW/I9fHTiNu7db7gjiK+TBT4Y2R3Duts2a5+UW35QXvmj6QGlW1RFuLm5QS6Xo6amBjU1NYiPj0dubm6rBkhUTe3jCGdLY8zcdQWl1Y++KR+7WYTRmy9i1zQfOFsZazBCQghpGcYY4m8UIuqXNFzPr2hwnS42xogc3h0veTtAj5rCEMKbZo8jGBoaii5dumDWrFm4desWZsyYgfT0dCQmJvIZHwEwtLsNEuZI4GqtWvBdzinHyI0XcDnnvoYiI4SQlknKKMWYmIuYtvNKg0WgrakBVo1yw9l/BWCSTycqAgnhWbMLwfPnz0NPTw++vr7w9fWFRCKBpaUln7GReno6mOPY3L7o66zaPiarrAajN13E8Zs0xhMhRHvdKqxExJ4UjPwhGafvlKotNzHQwxuDXHHh1eewcIALNxwMIYRfzX6nyWQynD59GsOHD8cff/yB0aNHw8PDA/PmzeMzPlKPo4URDs7yxWgPO5X5ZTUKTN5+GVsuZGsoMkIIadiTngksADDd1xFJC/shamR3Gg6GkDbWoneck5MTPD09kZWVhYyMDPz66684fPgwX7GRBpgb6ePHKb3wTsJNfJeYxc1XMOC1AzLcKarCey90o+FlCCEa9bAn8JenMnCfegITorWaXQhKpVL88ccfsLS0xLBhw/Diiy/ik08+gbu7O5/xkQbo6wnwcXAPdLMxwXsJt1C/P/Enf9zF7eIqrJV60q0VQkib46MnMCGEP80uBF966SV8+eWX6N69O5/xkGYSCAT41wAXuFib4OWfrqFKruSW7b6ch8zSGmwL7QVbU0MNRkkI0RWMMRy+UYgV1BOYkHal2YVgREQEj2GQpyX1soeTZR9Mi72C/Ipabv6pOyUI3pSMXdN80M3WVIMREkI6uqSMUrx/7FaDnUCAup7Abz/fBXPrPROYEKId6B3ZAQS4WOHoHAnEdqoF3438SgT9kIxzmQ3/cSaEkGdxs6AS4bub7gm8eHBdT+B/UU9gQrQSvSs7iO5CUxydI8HALlYq8/PKazEu5hIOXmv44e2EENJSD3sC91+XhLirDfcEniGp6wm8fAT1BCZEm1Eh2IHYmhrip5l9EOLtoDK/Uq5E2K4UrDuTqaHICCEdQXmNAqtP3kbfr85iw9ksyJXqTygNEtvi93/64WupJ1ysTTQQJSGkJehrWgdjYqCHDS/1RFcbE3z2511uPgPwzpGbSC+qxH9G9YC+HjXUJoQ0T3N6AkucLLCCegIT0u5QIdgB6QkEiBzRHV1tTfDmIRkU9b60f5uYhYySamx4qSfMDPU1FyQhROs1pydwVxsTvD+8G/UEJqSdokKwAwv3c4KLlTHC91xVGdD10PUCjIu5hNip3uhkYaTBCAkh2op6AhOiGzT+7i0sLERQUBDc3d0RFBSEoqKiBteLiYmBu7s73N3dERMTAwCoqKjA2LFj0bNnT3h7e2Pp0qXc+ps3b4aDgwMkEgkkEgm+//77NjkebTNCLMThCF84W6oWfOezyjDyhwu4ntfwt3xCiG6insCE6BaNv4Ojo6MxYsQIyGQyjBgxAtHR0WrrFBYWYsWKFThz5gwSExOxYsUKrmB86623cO3aNVy4cAF//vmnyiPvQkNDkZycjOTkZJ1+JnLvzhY4OrcvvB3NVebfKa7GqE3J+CO9WEOREUK0BfUEJkQ3abwQjIuLQ3h4OAAgPDwc+/btU1vnyJEjCAoKglAohK2tLYKCghAfHw8zMzO88MILAAAjIyP4+fkhIyOjTeNvL0RWxjgc4YsRPVQbcpdUyTHxx7+x6+8cDUVGCNEk6glMiG7T+Fe6nJwcODk5AQA6d+6MnBz1giQzMxOurq7ctIuLCzIzVYdCKS4uxoEDB/D6669z8/bu3YuTJ0/Cw8MDn3/+uco+GouFT4WFhbzuvzm+fMEBKwyV2H2thJtXq2R4+afrSMkowCt9hRC0swbf2pDXjopyyw9tyKtcyfC/6yVYk5SPvApFg+t42xvj7QEOGCgyB1COnJzytg3yKWhDbjsiyit/2iK3jo6OjS5rk0Jw5MiRuHfvntr8VatWqUwLBIKnKkLkcjmmTZuG1157DW5ubgCAF198EdOmTYOxsTG+/fZbhIeH4/jx403up6lEtZa2eI0n+W6yI7z+vIsPjqerzP/ibD7ya/Xx+Vh3GOpr/GJxi2hDXjsqyi0/NJVXXegJTOcsPyiv/NFkbtukEDx27FijyxwdHZGdnQ0nJydkZ2ejU6dOauuIRCKcOHGCm87IyEBgYCA3/fLLL8Pd3R1vvPEGN8/Ozo77ed68efj3v//9bAfRgQgEArw5pAtcrU2wcP911NQbX+bH5BxkllYjZnIvWBlr/IIxIaQVUU9gQsjjNP5Ol0qlXC/gmJgYjB8/Xm2d4OBgJCQkoKioCEVFRUhISEBwcDAAYNmyZSgpKcEXX3yhsk12djb38/79++Hl5cXjUbRPk3t3wk8ze6s1+v71VjH+sekiMkqqNBQZIaQ1UU9gQkhjNP5uX7p0KY4ePQp3d3ccO3aMGwImKSmJ6+krFArx/vvvIyAgAAEBAYiMjIRQKERGRgZWrVqFlJQU+Pn5qQwTs2bNGnh7e8PX1xdr1qzB5s2bNXWIWm1wVxscnSNBVxvVBuApueUI+iEZl+7d11BkhJBnRT2BCSFPImCMqXcR0yElJSVPXqmV5OTkaG0bi7zyGkzdcQXnsspU5lsY6WNTiBeC3IUaiuzJtDmv7R3llh9857W8RoGv/8rAmlMZKoPJ1zdKLMTyEd3VhpVq7+ic5QfllT9tnVtra2uVaY1fESTawcHcCAfC+2BcTzuV+fdrFJgaexmbz2U3siUhRFvIlQybz2XDf+1Z/OfE7QaLQImTBeLCemPXdJ8OVwQSQlqO7gMQjpmhPmIm9cKyo7ew7syj4XkUDHjjkAzpRVWIHNGtXfYiJKQje9gTOOqXW7iRX9ngOl1tTBA5vBsmttOewIQQflAhSFTo6wnwUXAPdLUxwTtHbqJ+u4EvTt3FnZIqfDPeEybUmJwQrXA2oxSRR2/h9F3qCUwIaTkqBEmDXukvgquNMebtvYZKuZKb/78recgurca2UG8IzQw1GCEhuu1mQSU+OJ7WYCcQoK4n8IL+Irw+2JU6gRBCGkVfD0mjxnra41C4LxzMVQu+03dLEfRDMtIKG74FRQjhT3N7Ap9bFEA9gQkhT0SFIGmSn8gSR+dI4GlvpjL/ZmElRv6QjMRGbkcRQlpXeY0C/33CM4FHiYX445/++FrqCZGVsQaiJIS0N1QIkifqZmuKI7N9MaSrapfzgopaSLdeQtzVPA1FRkjH97AnsN8TegLvD+tDPYEJIS1GhSBpFhtTQ+yd0RtTeqs+ArBKrkTE7qtYezoDOj4kJSGtijGGQ9fzMWh9Et44JEPO/Rq1dbramGDjSz1xfF5fDO1uo4EoCSHtHTUeIc1mbKCHbyd4oquNCVb/foebzwAsO3oLt4urEB3cA/p6NDQFIc/iST2BhaYGeHtoV8zxd6KewISQZ0KFIGkRgUCA917ohi42Jlh8SKbSTmnD2SzcLanCxpe8YG6kr7kgCWmnmtMT+F8PegJbUycQQkgroL8k5KmE9e0MFytjhO9JQWn1ozZL8TcKMTbmInZO84GjhZEGIySk/cgrr8F/T97BpnPZDXYCEQCYLnHEu4HdqBMIIaRV0T0F8tRe6GGLwxESuDz2wZScfR8jN17A1dxyDUVGSPtAPYEJIZpGhSB5Jt6O5jg6V4LenVV7Kt4tqUbwpmT8llakocgI0V7UE5gQoi00XggWFhYiKCgI7u7uCAoKQlFRw4VDTEwM3N3d4e7ujpiYGG5+YGAgPD09IZFIIJFIkJubCwCorq5GaGgoxGIx+vfvj/T09LY4HJ3kZGmMn8N9MUosVJlfWq3ApG2XseNijoYiI0R7KBnD7eIq7L2cixd3p1NPYEKIVtB4G8Ho6GiMGDECS5cuRXR0NKKjo/Hxxx+rrFNYWIgVK1YgKSkJAoEA/v7+kEqlsLW1BQBs27YN/fr1U9lm48aNsLW1RWpqKmJjY7FkyRLs3LmzzY5L11gaG2D7VG+8fTgVm85lc/NrlQwL4q7jTnEV/j20CwT0sHvSwd2vUSC1oAKy/ErIHvx/o6ACNwsqUVXvcY2Po57AhBBN0HghGBcXhxMnTgAAwsPDERgYqFYIHjlyBEFBQRAK6644BQUFIT4+HtOmTWtyv1FRUQCASZMmYdGiRWCMUSHCIwM9AT4bI0Y3GxMs/yVNZdlHv93G7eIqfDHOHUb69CFH2jfGGLLLaiDLr8CNgkrcyK+ALL8CqQWVyCitbtG+qCcwIUSTNP5XJycnB05OTgCAzp07IydH/TZiZmYmXF1duWkXFxdkZmZy07Nnz4a+vj5CQkKwbNkyCAQClW0MDAxgbW2NgoIC2Nvb83xEuk0gEOD1wa7oYmOCV/ZdQ7XiUeP37RdzkFlajZjJvej5p6RdqJIrcbPg4ZW9CsgeFH2pBZUNtutriYfPBH6HegITQjSoTT6NR44ciXv37qnNX7Vqlcq0QCBo8RW7bdu2QSQSoaysDCEhIdi6dStmzZr1VHE2VIS2psLCQl73r00G2QObxrngX0eyUFz16APzt7RiBG1IwrejXSCyNGyV19KlvLY1XcgtYwwFlQqkFdfgVr1/aSU1yCitRWs+L8fGWA9utsboZs4Q0bczPO2Mgcpi5FS24ovoOF04ZzWB8sqftsito6Njo8vapBA8duxYo8scHR2RnZ0NJycnZGdno1OnTmrriEQi7vYxAGRkZCAwMJBbBgCWlpaYPn06EhMTMWvWLIhEIty9excuLi6Qy+UoKSmBnZ1dk3E2lajW0havoS3GOAK/uHTGpO1/I62oipsvK6rBtP0Z2DnNGxIny1Z5LV3Ka1vrKLmtVSiRVlTFXdF7eDv3RkElSqrkrfY6egKgu60pxHam8LA3g7u9KTzszOBubwY7s7ovPzk5OR0mr9qIcssPyit/NJlbjd+fk0qliImJwdKlSxETE4Px48errRMcHIx3332X61GckJCAjz76CHK5HMXFxbC3t0dtbS0OHjyIkSNHqux34MCB2LNnD4YPH07tAzWgh50pjs6RYPrOFCRmPHpcVs79GozdfBEbQ7zwD4+mC3RCWqKospbroCHLr8CN/EqkFlQgraiqwXH6npaVsT7c7eoKPfcHhZ6HvSm625pSZw9CSLuh8UJw6dKlmDJlCjZu3IiuXbti165dAICkpCSsX78e33//PYRCId5//30EBAQAACIjIyEUClFeXo7g4GDU1tZCoVBg5MiRmD9/PgBg7ty5CAsLg1gshlAoRGxsrMaOUdfZmxshLqw3Xtl3XeXRWeW1SkzfeQWrR4sxt5+zBiMk7Y1CyXCnuO7q3o2CukKv7gpfJfIralvtdQQAXG2MHxV6dqZwtzeDu50pHC2M6MslIaTdEzDGWrMJTLtTUlLSZq+l67eDlIwh6lga1pzOUFv26kAXrBjZHXpP8cGq63nlk6ZzW1YtV7uNK8uvwM3CStQoWu9Pl5mhHsR2dVf06l/l62FnCjPD1n9utqbz2pFRbvlBeeVPW+fW2tpaZVrjVwSJ7tATCPBBkBu62Jjg3/GpqH+X7qvTGbhTXIX1EzxhysMHL9FeSsaQWVqtchv3xoMx+LLL1AdcfhbOlkaPCj57swdt90zhbGX8VF9CCCGkvaNCkLS5eQHOcLE2xpy9V1FR+2iA3bir+cguq8H20F6wNzfSYISEDxW1CqQW1Cv08iu4gZbrnwfPykhfALHdo3Z77g86bYjtTGFpTH/yCCGkPvqrSDTiHx52+DncF6GxV1Qes5WYUYpRm5Kxe1pv9LAz1WCE5GkwxpBzv4a7oid7cCv3Rn4F7pa0bKDlJ3EwN1S5jevxoLOGq7UJ9PXo6h4hhDQHFYJEYyTOljg2V4Ip2y/jal4FN/9WYRWCfriA7aHeGNDFuok9EE2plitxq7DyUaH34FFqqQUVKK1+toGW6zPQE6C7rQl3G1fMDcViClvT1hmHkhBCdBkVgkSjXK1NcHi2BLN2peBkejE3v7BSjvFbL2H9hJ6Y6O2gwQh1W2GlHLfulHDt9+qu8lUgvagKrTgSC6xNDOD54PZt/bH3utmawJAeSUgIIbyhQpBonI2JAfbM8MHrB2XYcfHR012qFQyz917FneIqvDbIhYbqaCXVciVyy2uQX16L3Ps1yC2vRX553f955TXIe/B/dlkNiipbb6BlAYCutibcFb2Ht3U97M1gb2ZIv19CCNEAKgSJVjDS18M3Ug90szHBR7/dVlm2/Jc03C6uwn9Hi2FAbb/UMMZQVqNA3v26Aq7Bwu7+o+nWvHXbEAsj/UeFHneFzwxuQlOY0EDLhBCiVagQJFpDIBBgybCu6GJjgtcO3EBtvXuPP5zLRkZJNX6Y5AULo44/vIySMRRW1CKvvBa53FW6hwXdo+mHV/aq5K3X67a5XKyM6wq+h8OwPBhs2cmSBlomhJD2ggpBonWm+TrC2coIYbtSVK5eJaQWYszmi9g5zRtOlsYajPDp1CiUdbdjy2vqrt5V1P2fW+92bN3VvLoreq04XvJTM9YXPHh0Wr32e3Z1P5vrQEFOCCEdHRWCRCsN626LI7MlmLzjMjLqDTty6d59BG1Mxs5pPvB2NNdghHXKaxR1BVxjhd39WuRX1P1fXNV67e2ehb6g7rF/DuaG6GRuBPsH/3eyMOR+dniwXFBRBKfOnTUdMiGEEJ5QIUi0llcnc/wyty9Cd1xGcvZ9bn5GaTVGb07Glsm9EOhm26qvyRhDcZUcufcf3XZVK+zqtb9rzYGQn4WJgZ5qYWdhhE7mhrA3r/v/YWHXycIItqYGzX6KRk4l3eIlhJCOjApBotUcLYxwMNwXc/dexRFZITe/tFqBSdsv44tx7ghyarpYkSsZV7xxRdz9GvX2dw9+lrfmuCjPwMpYH50sjOBgZgiHxwu7B/M7WdQVeBZG+tQujxBCSItRIUi0noWRPraHemPpkZvYcDaLmy9XMizafwNz+thC0kX5WGH3oNC7X4PCVhwC5VnoCQA7M0M4PLhC11RhZ29uRD1sCSGE8I4KQdIu6OsJ8N9/9EBXGxO8f/QW6l+z++FSEXCpSCNxGekLVNrZOVgYwsGs7v9OD27HOjxofyc0NaRHnxFCCNEqGi8ECwsLERoaivT0dHTr1g27du2Cra16u6+YmBisXLkSALBs2TKEh4ejrKwMzz//PLdORkYGZs6ciS+++AKbN2/G22+/DZFIBABYtGgR5s2b1zYHRXghEAiwaKALXG2M8c+frvM2ZIqlkb5qYVevY0X9ws7e3AjWxnRLlhBCSPul8UIwOjoaI0aMwNKlSxEdHY3o6Gh8/PHHKusUFhZixYoVSEpKgkAggL+/P6RSKWxtbZGcnMyt5+/vj5deeombDg0Nxdq1a9vsWEjbGO/lAGdLY0yNvYKCitpmbSM0NeBuuzZV2DmYG8LMkIZFIYQQohs0XgjGxcXhxIkTAIDw8HAEBgaqFYJHjhxBUFAQhEIhACAoKAjx8fGYNm0at86NGzeQm5urcoWQdFwBLlb4Za4Eq3+/gzsF9yGyNX9U2D3WscLe3IieSEIIIYQ0QOOFYE5ODpycnAAAnTt3Rk5Ojto6mZmZcHV15aZdXFyQmZmpsk5sbCxCQ0NVbtPt3bsXJ0+ehIeHBz7//HOVfTQWC58KCwufvBJpNlMAkf1tUFiohFD4eHOC2rp/FUBBhQaC6yDonOUH5ZU/lFt+UF750xa5dXR0bHRZmxSCI0eOxL1799Tmr1q1SmVaIBA8dXur2NhYbN26lZt+8cUXMW3aNBgbG+Pbb79FeHg4jh8/3uQ+mkpUa2mL19BFlFf+UG75QXnlD+WWH5RX/mgyt21SCB47dqzRZY6OjsjOzoaTkxOys7PRqVMntXVEIhF3+xio6xQSGBjITV+8eBFyuRz+/v7cPDs7O+7nefPm4d///vezHQQhhBBCSAej8YHKpFIpYmJiANT1DB4/frzaOsHBwUhISEBRURGKioqQkJCA4OBgbvmOHTtU2gsCQHZ2Nvfz/v374eXlxdMREEIIIYS0TwLGmEYfo1BQUIApU6bgzp076Nq1K3bt2gWhUIikpCSsX78e33//PQDghx9+wH/+8x8AwHvvvYfZs2dz+3Bzc8PPP/+Mnj17cvPeeecd7N+/HwYGBhAKhVi3bp3K8odKSkp4PkJCCCGEEO1gbW2tMq3xQlDTqBAkhBBCiK54vBDU+K1hQgghhBCiGTp/RZAQQgghRFfRFUFCCCGEEB1FhSAhhBBCiI6iQrAZVq1aBW9vb/Tp0wcSiQRnzpx55n1GRUXhk08+aYXo2ieBQICZM2dy03K5HA4ODhg3blyr7F/X8ltQUACJRAKJRILOnTtDJBJx0zU1Na3+ekOGDFF5znd7tnjxYnzxxRfcdHBwMObNm8dN/9///R8+++yzZu2L7/Nu8+bNWLRoEW/7bwuNnas2Njbo1asX76/fEXL4LPT19bn8SyQSpKenq62TlZWFSZMmNbh9YGAgkpKSeI5Se7WkHti8eTOysrKe+TX5zrnGHzGn7U6fPo2DBw/i/PnzMDY2Rn5+Pi8frLrG3Nwcly9fRmVlJUxNTXH06FGIRCJNh9Vu2dnZcYVZVFQULCws8NZbb2k4qvZh8ODB2LVrF9544w0olUrk5+ejtLSUW37q1Cl8/vnnGoywY2nsXE1PT3+mL4JyuRwGBvSR9iSmpqZNfomTy+VwdnbGnj172jCq9qGl9cDmzZvh4+MDZ2fnZr+GJs5juiL4BNnZ2bC3t4exsTEAwN7eHs7OzujWrRvy8/MBAElJSdyTTqKiojBnzhwEBgbCzc0Na9as4fa1atUqeHh4YMiQIbh+/To3f8OGDQgICICvry9CQkJQUVGBsrIydO/eHbW1tQCA0tJSlemOYMyYMTh06BAA9UHBCwsLMWHCBPTp0wcDBgzApUuXAFB+Wyo1NRUSiYSbjo6OxsqVKwEAMpkMwcHB8Pf3x9ChQ3Hjxg0AdY9r9PHxga+vL1544QUAQEVFBSZPngwvLy+EhISgqqqK2+fLL7+Mfv36wdvbGx988AEAICEhQeWKwuHDhzF58mTej/dpDBo0CKdPnwYAXLlyBT4+PrC0tERRURGqq6tx9epV+Pn5YfXq1QgICECfPn2wfPlybvvGzrvAwEAsWbIEzz33HDw8PPD7778DABQKBd5++21uX99++y2Aur81Q4cOhUQigY+PD7f+pk2b4OHhgeeeew5//vknt/8DBw6gf//+6Nu3L0aOHImcnBwolUq4u7sjLy8PAKBUKiEWi7lpbadQKDB//nx4e3tj1KhRqKysBKB6RSQ/Px/dunUDUPdBK5VKMXz4cIwYMYJy+JQez2N6ejp8fHwAAJWVlZg6dSq8vLwwceJE7ncCAAsWLODe+w/fE8ePH8eECRO4dY4ePYqJEye27QHxpLF64IMPPkBAQAB8fHzw8ssvgzGGPXv2ICkpCTNmzIBEIkFlZWWTdUNYWBgGDx6MsLCwts85I00qKytjvr6+zN3dnS1YsICdOHGCMcZY165dWV5eHmOMsbNnz7Jhw4Yxxhhbvnw5GzhwIKuqqmJ5eXlMKBSympoalpSUxHx8fFh5eTkrKSlhPXr0YKtXr2aMMZafn8+93nvvvcfWrFnDGGMsIiKC/fTTT4wxxr799lv25ptvttVh887c3JxdvHiRhYSEsMrKSubr68t+/fVXNnbsWMYYY4sWLWJRUVGMMcZ++eUX5uvryxij/DbH8uXLuWOXyWRc7hhj7KOPPmIffvghY4yxwMBAlpqayhhj7I8//mBBQUGMMcZ69uzJ7t27xxhjrKioiDHG2Mcff8zmz5/PGGPs/PnzTE9Pj124cIExxlhBQQFjjLHa2lo2ZMgQduXKFaZQKJi7uzuX+8mTJ7Off/6Z1+N+Ft26dWO3b99m69evZ+vWrWPLli1jhw4dYn/88QcbMmQIO3LkCJs/fz5TKpVMoVCwsWPHst9++63J827YsGHcOXXo0CE2YsQIxljdufbwd1BVVcX8/f3ZrVu32CeffMJWrlzJGGNMLpez0tJSlpWVxay9OEEAAA58SURBVFxdXVlubi6rrq5mgwYNYgsXLmSMMVZYWMiUSiVjjLENGzZwrxUVFcU+//xzxhhjR44cYS+99FIbZbHl6p+raWlpTF9fnzuvJk+ezLZu3coYq8vl2bNnGWOM5eXlsa5duzLGGNu0aRMTiUTcOaiLOWwpPT095uvry3x9fdmECRMYY+p5TEtLY97e3owxxj799FM2e/ZsxhhjFy9eZPr6+tzv4uH6crmcDRs2jF28eJEplUrm6enJcnNzGWOMTZs2je3fv79Nj5EvjdUDD/PAGGMzZ87kjrf+ectY03WDn58fq6ioYIy1fc7piuATWFhY4Ny5c/juu+/g4OCA0NBQbN68ucltxo4dC2NjY9jb26NTp07IycnB77//jokTJ8LMzAxWVlaQSqXc+pcvX8bzzz+P3r17Y9u2bbhy5QqAumckb9q0CUDdN9r6T1PpCPr06YP09HTs2LEDY8aMUVn2xx9/ICwsDAAwfPhwFBQUcLfrKL/Prri4GH/99RdCQkIgkUiwcOFCri3L4MGDMWvWLHz//fdQKpUAgJMnT3JtOvv27Qtvb29uXzt27ICfnx/8/Pxw9epVpKSkQE9PDzNmzMD27dtRWFiIc+fOYdSoUW1/oM00aNAgnDp1CqdOncLAgQMxcOBAbnrw4MFISEhAQkIC+vbtCz8/P1y7dg0ymazJ8w4AXnrpJQCAv78/1xYrISEBW7ZsgUQiQf/+/VFQUACZTIaAgABs2rQJUVFR+Pvvv2FpaYkzZ84gMDAQDg4OMDIyQmhoKLfvjIwMBAcHo3fv3li9ejV3Xs+ZMwdbtmwBUPdEpvZ0Xnfv3p27gl0/Z00JCgqCUCgEAMphMzy8NZycnIyffvqJm18/j/XVf+/36dMHffr04Zbt2rULfn5+6Nu3L65cuYKUlBQIBAKEhYXhxx9/RHFxMU6fPo3Ro0fzf2BtoLF64Ndff0X//v3Ru3dvHD9+nDuPWkIqlcLU1BRA2+ecGlQ0g76+PgIDAxEYGIjevXsjJiYGBgYG3Idk/dtkALjLxg+3lcvlTe4/IiIC+/btg6+vLzZv3owTJ04AqPtATk9Px4kTJ6BQKLhL9R2JVCrFW2+9hRMnTqCgoKBZ21B+m6/+eQrUnasGBgZgjMHe3r7BtkIbNmzAmTNncPDgQfj5+eHChQuN7l8mk+HLL79EYmIibGxsMHPmTO79MGfOHISEhAAAQkNDoa+v38pH13oGDx6MU6dO4e+//4aPjw9cXV3x6aefwsrKCrNnz8Zvv/2Gd955B//85z9VtqvfyaQhD8/V+ucpYwxfffWVyvPSHzp58iQOHTqEiIgIvPnmm7Cysmp036+++irefPNNSKVSnDhxAlFRUQAAV1dXODo64vjx40hMTMS2bdtakgqNevy9/fCWWFN/b83Nzbmfhw4dqvM5fFr189gcaWlp+OSTT3D27FnY2toiIiKC+93Mnj0bL774IkxMTDB58uQO1Xbz8Xrg22+/xaVLl5CUlARXV1dERUWpnaMPNfc8bgxfOacrgk9w/fp1yGQybjo5ORldu3ZFt27dcO7cOQDA3r17n7ifoUOHYt++faisrERZWRkOHDjALSsrK4OTkxNqa2vV/uDMmjUL06dP71DfSOubM2cOli9fjt69e6vMf/7557lcnDhxAvb29k3+Qaf8Nqxz587IyspCUVERqqqquDaZtra2cHJy4q4IKJVKXLx4EQBw69YtDBgwAB9++CFsbW2RmZmJoUOHYvv27QCAixcvct94S0tLYWlpCSsrK2RnZ+PIkSPca7u6usLe3h7R0dGIiIhow6NuuUGDBuHgwYMQCoXQ19eHUCjkvlkPGjQIwcHB+OGHH3D//n0AQGZmJnJzc5s87xoTHByMdevWce1Rb9y4gfLycty+fRuOjo6YP38+5s2bh/Pnz6N///747bffUFBQgNraWuzevZvbT0lJCdfBKiYmRuU15s2bh5kzZ2Ly5MlaXYA3V/2/t011YqActr767/3Lly9z7bVLS0thbm4Oa2tr5OTk4PDhw9w2zs7OcHZ2xsqVKzvU39aG6gFPT08Ade0F79+/r3J+WlpaoqysjJtubt3Q1jnvOGU6T+7fv49XX30VxcXFMDAwgFgsxnfffYerV69i7ty5eP/997kGn03x8/NDaGgofH190alTJwQEBHDLPvzwQ/Tv3x8ODg7o37+/yokzY8YMLFu2TKUjRUfi4uKC1157TW3+w04hffr0gZmZmdof6cdRfhtmYmKCd999F/369YNIJFIZniM2NhYLFixAVFQUampqMHPmTPj6+mLx4sVIS0sDYwyjRo2Cj48P3NzcEB4eDi8vL3h7e6Nv374A6vLeq1cv9OzZE127dsXgwYNVXn/69OkoLS2Fh4dHmx53S/Xu3Rv5+fmYPn26yrz79+/D3t4eo0aNwtWrVzFw4EAAdbeIfvzxxybPu8bMmzcP6enp8PPzA2MMDg4O2LdvH06cOIHVq1fD0NAQFhYW2LJlC5ycnBAVFYWBAwfCxsZGpeNPVFQUJk+eDFtbWwwfPhxpaWncMqlUitmzZ3eYD+G33noLU6ZMwXfffYexY8c2uh7lsPUtWLAAs2fPhpeXF7y8vODv7w8A8PX1Rd++fdGzZ0+4urqqvfdnzJiBvLw8eHl5aSJsXjRWD9jY2MDHxwedO3dW+RsQERGBV155Baampjh9+jSWL1/erLqhrXNOj5jTcnv27EFcXBy2bt2q6VA6JMovv1555RUMHDgQ4eHhmg5FpyQlJWHx4sVcr1nScpTDZ7No0SL07dsXc+fO1XQoOuNpc05XBLXYq6++isOHD+Pnn3/WdCgdEuWXXxKJBLa2tipD/BD+RUdHY926dTrRro0vlMNn4+/vD3Nzc3z66aeaDkVnPEvO6YogIYQQQoiOos4ihBBCCCE6igpBQgghhBAdRYUgIYQQQoiOokLw/9u7t5AotzeO49/GUsumPBbYDGoHgqa0gkStaSywi0QhIk0xvUkRLIIKEgKLSMgkEAyLbiSzg6BgHrAi05GK1IIOQmg3DTIDYoQ2kaVo/4vYw56/Rm52JNv5fWAuFi9rrYd19cxa73ofEZE/qL+/n82bN2M0GufkIs379+9ZsGDBLz/ELiK+QbeGRWTei46OZmhoiIULF+Ln58eGDRvIzc2loKAAg+HP/h++ePEiu3btmrGqi4jIn6YdQRHxCc3NzbjdbhwOB8XFxZSVlc3JN84cDodXrWYRkbmkRFBEfMry5ctJT0+nrq6O69ev09fXB0Braytbtmxh2bJlnpqhf0lNTaWystJrnNjYWE+Jvv/X1NSExWIhODiY5ORk3r59C8Du3bvp6OjgyJEjLF26lIGBAa9+HR0dXuUWU1JSvCoVWK1WGhsbAXC5XOzfv5+IiAhiYmK8jpmnpqa4cOECa9asISwsjIyMDD5+/DhjrA0NDURHR3vWQUR8ixJBEfFJ8fHxmEwmT+WIoKAgampqGBkZobW1lStXrniSrry8PGpraz19X716hdPpnLHc2cDAAFlZWVRUVDA8PMzevXtJS0tjfHycR48eYbVauXz5Mp8/f55Wei8hIYF3797x4cMHJiYmeP36NS6XC7fbzdjYGM+fP8dqtTI1NUVaWhpxcXE4nU7a29upqKjw1HqurKyksbERu92Oy+UiJCSEoqKiabFWV1dz6tQpHj58yMaNG3/b2orIf4cSQRHxWZGRkZ6dsuTkZDZt2oTBYCA2NpasrCzsdjvwo+7swMCAp+D8jRs3yMzMxN/ff9qYdXV1pKamkpKSwqJFizh58iRjY2M8ffr0l/EsXryYbdu20dXVxYsXL4iLi2P79u08efKEZ8+esW7dOsLCwujt7WV4eJiSkhL8/f1ZvXo1+fn53LlzB4CrV69SWlqKyWQiICCAs2fPUl9f73VBpKKigvLycjo7O1m7du2/XksR+W/SZRER8VlOp5PQ0FAAuru7KS4upq+vj/Hxcb59+8aBAwcACAwMJDMzk9raWs6cOcPt27epr6+fcUyXy0VUVJSnbTAYMJvNOJ3OWcVks9no7OzEZDJhs9kICQnBbrcTEBCAzWYDfrxn6HK5CA4O9vSbnJzEarV6nu/bt8/rIoyfnx9DQ0Oednl5OSUlJZhMplnFJSLzk3YERcQn9fb24nQ62bFjBwDZ2dmkp6czODjI6OgohYWF/L0CZ15eHjdv3qS9vZ0lS5aQmJg447iRkZE4HA5P+/v37wwODrJq1apZxfVXItjV1YXNZsNms2G327Hb7Z5E0Gw2ExMTw8jIiOfndrs9dbPNZjNtbW1ez79+/eoVw4MHDzh//jwNDQ3/bOFEZF5RIigiPuXTp0+0tLRw8OBBcnJyPJcz3G43oaGhBAYG0tPTw61bt7z6JSYmYjAYOHHiBIcOHfrp+BkZGbS2ttLe3s7ExASXLl0iICCApKSkWcWXlJREf38/PT09xMfHY7FYcDgcdHd3s3PnTuDH+41Go5GysjLGxsaYnJykr6+P3t5eAAoLCzl9+rQnIR0eHubu3bte81gsFu7du0dRURFNTU2zWzwRmXeUCIqIT0hLS8NoNGI2myktLeX48eNUV1d7nldVVVFSUoLRaOTcuXNkZGRMGyM3N5c3b96Qk5Pz03nWr19PbW0tR48eJTw8nObmZpqbm2d8n3AmQUFBbN26FYvF4umTmJhIVFQUK1asAH4c87a0tPDy5UtiYmIIDw/n8OHDjI6OAnDs2DHS09PZs2cPRqORhIQEuru7p80VFxdHS0sL+fn5tLW1zSo+EZlfFnz/+9mHiIj8VE1NDdeuXePx48dzHYqIyG+hHUERkVn48uULVVVVFBQUzHUoIiK/jRJBEZFfuH//PhEREaxcuZLs7Oy5DkdE5LfR0bCIiIiIj9KOoIiIiIiPUiIoIiIi4qOUCIqIiIj4KCWCIiIiIj5KiaCIiIiIj/ofO/OaAOBu9MIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model_simple.plot_components(forecast_simple);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The overall prediction of occupancy is down trending. Friday and Saturday have the highest occupancy which we know already." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's zoom in to see December forecast vs. actual." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABE0AAAFkCAYAAADVBMV4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXycVb0/8M95ntmTNknXtGm60A1sC0UWQfblgnABqVDA1+Vyr8LlAi5XRHpZBUEB9VauCgr8UEQt4AVBUNQii1CggG2609ItzTrZk9mfebbz++OZmSZN0qZtktk+79crSmcyk5M5OTPn+Z7v+R4hpQQREREREREREfWlZLsBRERERERERES5iEETIiIiIiIiIqIBMGhCRERERERERDQABk2IiIiIiIiIiAbAoAkRERERERER0QAYNCEiIiIiIiIiGgCDJkRERCNICPErIcR3s90OojQhxEwhhBRCuLLdFiIiolzHoAkREeUlIcQeIURCCBERQvQIId4XQtwghCiqzzYhxP8IIXakXodtQohr9rl/sRBirRAinvr/xb3uO0sI8ZYQIiSE2DPAc39WCPFR6rk3CiFO3U877hVCGEKIaK+vZcP6y44QIcTfhRDXjeLP+5UQwhRCTDmIx0ghxJyRbBcRERH1l1crDKFQSGa7DURElBuqq6vx05/+FGeeeSZCoRDee++9k2+77baTTz311J+HQqFsNy/ji1/8IqqqqhAKhe483OeyLAuqqva5bdmyZbj88ssxZ84c1NTUzL/sssuefu21157+zGc+A13XMW3aNNx444247rrr8NRTT336kUceWdfe3g6Px4M33ngDO3bsgKZpWL58+djen7Pd3d2oqKjAww8/jIsvvhgvvPDComXLlq2qq6tDeXl5v7b993//N2pra/HEE0/0nlt8PxQKff9gfkfTNOFyje705JRTTsGVV155RigU+n8j/bNisRhKS0vhdrtx8803Nx/M32pNTc2O4fjb3rBhA4455hh0dHQYuTRWiIiI9lVWViay3YaiWo0jIqLCVFZWhgsvvBBPPfUUnn32WXz88ccAgGQyibvuugsLFy7E3LlzcfPNNyORSGQe9+qrr+LUU09FdXU1Fi9ejNdffx0AEAqF8NWvfhXz58/HUUcdhe9+97uwLAsAsGLFCpx//vm4/fbbMX36dBxzzDH48MMPsWLFCixYsABz5szBM88806d9nZ2duPTSSzFt2jRceOGFqK+vz9y3fft2XHrppZg5cyaOP/54vPTSS5n7brzxRnzzm9/E0qVLMXXqVKxatarf737HHXdg3rx5UBQFxx9/PE4++WR89NFHAIB3330XlmXhpptugtfrxQ033AAAeOeddwAAxx13HK666irMnDmz3/N++OGHmDx5Mi699FKoqoorr7wSEyZMwCuvvHLQ/RMMBjM/59hjj8XTTz+due/BBx/ENddcg+uvvx7V1dV45plnYNs2Hn74YSxevBizZs3Cv//7v6O7uzvzmNWrV+O8887D9OnTsWDBAqxYsQIAsHLlSpx22mmorq7GggUL8OCDD2Yeo2karr/+esyaNQvTp0/HWWedhba2Ntx///1YvXo1br31VlRVVeHWW2/t1/7LL78cTzzxRJ/bTjnlFLzyyiuQUuL222/HnDlzUF1djc9+9rOZv7+BvPLKKygrK8OyZcvw7LPP9rnPsiwsX74cixcvxrRp03DGGWegsbERF1xwAQDg1FNPRVVVFV588UWsWLECn/vc5/o8vry8HLt37z7ga0FERERDx6AJEREVjOOOOw5VVVVYvXo1AODee+/Fzp07sWrVKtTU1KC5uRk/+MEPAABr167FjTfeiPvvvx91dXX485//jOnTpwMAbrrpJrhcLtTU1OCdd97Bm2++iV//+teZn7NmzRosWLAAtbW1WLp0Ka699lqsW7cONTU1eOKJJ7Bs2TJEo9HM9z///PO49dZbsWvXLixatAjXX389ACfrYMmSJbj88suxc+dO/OIXv8Att9yCbdu2ZR77wgsv4JZbbkFjYyNOOumk/f7+iUQC69atw1FHHQUA2Lp1KxYsWAAh9i7SLFiwAFu3bh3S6yml7PfvoT62ty9/+cuoqqrCtm3b8PTTT+O+++7D22+/nbn/z3/+My655BLU1dVh6dKlePzxx/Hqq6/i1VdfxbZt21BeXo5vfetbAID6+nosXboU119/PXbt2oVVq1Zh0aJFAIBAIIDHHnsMdXV1+N3vfodf/vKX+NOf/gQAePbZZxEKhbBlyxbU1tbi4Ycfhs/nw913342TTz4ZP/zhD9HU1IQf/vCH/dp/2WWX4fe//33m39u2bUNDQwPOP/98vPnmm3j//fexZs0a1NfX46mnnsK4ceMGfS2effZZXHbZZbjsssuwfft2rF+/PnPfo48+it///vd4/vnn0dDQgEceeQSBQAB/+ctfADhBsKamJnzhC1844Gu+v9eCiIiIho5BExoWra2t2W4CDYD9kpvYLyOrsrIS3d3dkFLi6aefxoMPPoiKigqMGTMGt9xyS+bi9ze/+Q3+5V/+BWeddRYURYGqqpg3bx7a2trwt7/9DQ8++CBKSkowceJE3HTTTX0ummfMmIGrr74aqqpiyZIlaGxsxLJly+D1enH22WfD7XZnVvwB4LzzzsMpp5wCr9eLu+++Gx999BEaGxuxcuVKTJ8+HVdffTVcLheOOeYYXHLJJfjDH/6QeewFF1yAk046CYqiwOfz7fd3v/nmm7Fw4UKcc845AJygzNixY/t8z9ixY/sEdAZz4oknIhgM4oUXXoBhGHjmmWdQW1vbJ1NnXy+99BKmT5+e+QoGg2hsbMSHH36Ie++9Fz6fD0cffTSuueYaPPfcc5nHnXDCCbjooougKAr8fj+eeuop3H333aiqqoLX68W1116Ll19+GaZp4oUXXsAZZ5yByy+/HG63G+PGjcPRRx8NADjttNOwYMECKIqChQsX4rLLLsN7770HAHC5XOju7sbu3buhqioWL17c77UZzEUXXYRNmzZlMoSef/55XHzxxfB6vXC5XIhGo9ixYweklJg/fz4qKysHfJ6GhgasWrUKl19+OSZNmoQzzjijT7bJr3/9a9x5552YO3cuhBBYtGjRfgMw+7O/12K48L0sN7FfchP7JTexX2goGDQhIqKCEgwGUVFRgY6ODsTjcZxxxhmZi/jLL78cnZ2dAICmpibMmjWr3+MbGhpgGAbmz5+fedzNN9+Mjo6OzPdMmjQp899+v3/A22KxWObfVVVVmf8uLS1FRUUFWlpa0NDQgDVr1vQJNDz//PNoa2vLfP+0adOG9Hvffffd2Lp1K5566qlMZklJSQkikUif7wuHwygtLT3g840bNw7PPPMMHn30UcydOxdvvPEGzjzzTEydOnXQxyxZsgT19fWZrylTpqClpSUTtEqrrq5GMBgc9HdsaGjA1VdfnXlNLrzwQqiqira2tkH7DXAygC666CLMnj0b06dPx1NPPZXp76uuugpnn302rr32Whx55JH49re/DcMwDvg6AMCYMWNw3nnn4cUXXwTgZP9cccUVAIAzzjgD//Ef/4FvfetbmDNnDv7rv/4L4XB4wOf53e9+h/nz52eCPEuXLs0EpYDB/yYPxf5eCyIiIho6Bk2IiKhgpLfgnHTSSRg/fjz8fj8++OCDPhfyTU1NAJxARm1tbb/nSGc37N69O/OYhoYGfPDBB4fcrvTPBIBoNIru7m5UVlaiqqoKp5xySr/2/ehHP8p8f++tNYN54IEH8Prrr+Oll17qkz1x1FFHYcuWLX222WzZsiWzfedATj31VLz11lvYs2cPHn/8cezYsQPHHXfckB6bls786R28aWxsxJQpew+O2fd3rKqqwvPPP595TdasWYPW1lZMnTp10H4DgOuuuw4XXHABtmzZgvr6enzpS1/K3Od2u3Hbbbfhww8/xMqVK7Fy5cpMlsdQXuPLLrsML7zwAj766CMkk0mcdtppmftuuOEGvP322/jwww+xc+dO/OQnPxnwOZ577jns2bMH8+bNw7x583DnnXeis7MTr732Wub3Hux321dJSQni8Xjm3/uulu7vtSAiIqKhY9CEiIjyXjgcxl//+ld8+ctfxhVXXJHZlnDNNdfgjjvuQHt7OwCgubkZb7zxBgDgX//1X7FixQq8/fbbsG0bra2t2L59OyorK3HWWWfhzjvvRDgchm3bqK2txbvvvnvI7fvb3/6G1atXQ9d1fO9738MJJ5yAadOm4fzzz8fOnTvx3HPPwTAMGIaBmpoafPLJJ0N+7h/96Ed44YUX8Ic//KHfVo5TTz0ViqLgscceQzKZzBQzPf300wEAtm1D0zQYhgEpJTRNg67rmcdv2LABhmEgHA7jrrvuQlVVVWbrz1BNmzYNn/nMZ3DfffdB0zRs3rwZv/nNb3DllVcO+pgvfelLuP/++zPbYbq6uvDqq68CcLIz3n77bbz00kswTRNdXV3YuHEjACcgVVFRAZ/Ph7Vr1+KFF17IPOc777yDLVu2wLIsjB07Fi6XC4riTIMmTZqEPXv27Pf3OO+889DQ0IAHHngAS5YsyTy2pqYGa9asgWEYCAQC8Pl8mft6++ijj1BbW4s33ngDq1atwqpVq7B69WosXbo0s1Xpmmuuwfe+9z3s2rULUkps3rwZXV1dA7Zx4cKF2LZtGzZu3AhN0/DQQw/1+Xn7ey2IiIho6Bg0ISKivHXVVVdh2rRpWLhwIZYvX46vfOUr+NnPfpa5/zvf+Q6OOOIInHvuuaiursall16KHTt2AHCKxj766KOZU3CuvvpqNDQ0AAAee+wxGIaBk046CTNnzsQ111xzWPueL7/8cnz/+9/HrFmzsH79ejz++OMAnG0fL730El588UUceeSRmDdvHu655x4kk8khP/d9992HxsZGfPrTn0ZVVRWqqqqwfPlyAIDH48GKFSvw3HPPYcaMGfjtb3+LFStWwOPxAADee+89VFZWYunSpWhsbERlZSWWLFmSee6f/OQnmD17NhYuXIjW1lb89re/PaTf/8knn0R9fT2OPPJIXH311bj99ttx5plnDvr9N954Iy644AJ84QtfwLRp03DFFVdg7dq1AJytPf/3f/+HRx55BLNmzcJpp52GzZs3AwCWL1+OBx54ANOmTcMPfvCDPr9LW1sb/u3f/g3V1dU48cQTccopp+Cqq64C4GSKvPzyy5gxYwaWLVs2YJu8Xi8uvvhi/P3vf8fSpUszt0ciEXz961/HzJkzMzVIvv71r/d7/LPPPosLL7wQCxYswOTJkzNfN9xwA1auXInu7m585StfwZIlS7BkyRJUV1fja1/7WqaGzG233YYbb7wR06dPx0svvYQ5c+Zg2bJluPTSS3Hcccf1KxK8v9eCiIiIhk7sWxk/l4VCofxpbJFpbW3F5MmTs90M2gf7JTexX3IT+yV3sW9yE/slN7FfchP7JTexX3JfWVnZgffQjjBmmhARERERERERDYBBEyIiIiIiIiKiATBoQkREREREREQ0AAZNiIiIiIiIiIgGwKAJEREREREREdEARiVoIoT4pRCiTQixeZD7/0UIsVEIsUkI8b4Q4pjRaBcRERERERER0WBGK9PkVwA+t5/7awGcIaVcBOB+AE+MRqOIiIiIiIioONhSIpI0UdeTwJbWKLZ2aLBsme1mUY5zjcYPkVK+I4SYuZ/73+/1zw8ATBvpNhEREREREVHhSpo2QpqB7oSFhOF82RDwqgIuRUC3JLa0RrGoshRCiGw3l3LUqARNDtK1AP6S7UYQERERERFRfrBsiYhuoituIqY7ARLTBlQBeF3OBgu/W+3zGFURSJo2trXHcNSk0mw0m/JATgVNhBBnwQmanHqg721tbR35BtGQdXV1ZbsJNAD2S25iv+Qm9kvuYt/kpmLuFyklNFOiWzMR0W0kTIkyr4qZZe6sr1YXc7/kMvbL8JJSImlJhJIWwkkbmmkjaUlAAh6XgLLPOIwO8jzhcAgA0GHZCHV3Y1a5Z4RbTkMxefLkbDehj5wJmgghjgbwJIALpJSdB/r+XHshiX2Sq9gvuYn9kpvYL7mLfZObiqVfdMtGWHNWsBOmhYRhw5ISXp+CsQGBsQCSlo1OoeKoSSX9LthGW7H0S75hvxw6w7IRSVroTBiI6xa01Bh0uwVKfQoOJ0dk/LhxAADNsqF5PZhR7h+eRlPByImgiRBiOoAXAfyrlHJ7tttDRERERMXJlhIx3UJXwkA0aSFu2NAtGy4h4FEFhBDwufqfpeBVFSQMGxuCTn0El8L6CESHQkqJuGGjK64jotuI6xaSlg0FgM+lQAiR2W4znHyqguawDo+iYMpY77A/P+WvUQmaCCGeBXAmgAlCiEYA9wBwA4CU8jEA3wYwHsDPUimNppTy+NFoGxEREREVr96FIuOGBc2wIOEESFyKgFsRcCvqgZ8IgEsRsGyJmqYwjq4shc89tMcRFTPdshFKZ3IZFjTTKdbqUZwx6HyNzljyuxTU9WhwqwITSrhVhxyjdXrOFw9w/3UArhuNthAVOsNy9nRGkybihpXt5hAREeUMy5aI6SY64yaiAxSKFOhfKPJgqYqAIoH1wSgWTC7BGG9OJHYT5QwpJRpCGsJJC3F97xjcm8mV3WCjz6Vge0ccLkWg3O/OalsoN/BdnCjP2FJCtyQ0w0IkaSJuSOiWkzpsWBKWdM6adysC7Z1JjCnXMbGUkXKiXCOlhGk74zlp2ogbNhKmBWkD1eXew75wIyIgYVjoTpgIJ02nDoIlASnhVRWoioBHVeAZgaHmXPgJbGqJYd4EP1esiVJsKfFxawxx04JHUUZsDB6ugFvF1rYYFk0pRamHl8zFjn8BRDnIsGzolrMaFtFt6KYTFEmaNkwJSFtCEYBbVTJ7plUhoLr67p/2uRTs6IojblosakU0ikxbpsaxjbhuI27aMC0bhi1hWM59tpSwpYCEs8KWTkG2pcS6Zh3jAx4cMc4Htzr8+7aJCpFpO1mWHXHDCULqFiwp4UoFRxQhEHCNbp2RgFvBjo4ENFNiWhlrJFBxs6XEltYYNMOCJw8+2/xuFZtbYlg8hVvtih2DJkRZkD4mTTMsRFMFrnTbCY7szRYRfVIVATjR+IP8WQGXipaIU2l8/sTsV/Qnyme2dIIeumUjYVhImDaShoRh26lAiZM9YqcyvgAn68ul7B3HAtjvZFERAgG3imjSxJqmCCpLPZhe7oPKopJE/YQ0E83hpFOLxLShCKcgqzJChSIPhd+toDGkIWnZmD2OCxhUnGwpsaklCsOSebUY4FUFNrZEcezUMXnVbhpeDJoQjRDTdlLuY7qJqL43U0S3JEzLhhMW6Zst4kzyhv/CyKsKxHQb65sjWFRZyjd9ogGYtnNiRnqrTNywYNkylR1iw7QkLACQzv+owgmG9A5mpLNFhoOqCPgVgc64gbaojqoyH6rGejLBF6JiFwwnUdudQMCtQhUCJTm8EuxzKeiI6dBNLmBQ8bFsiY0tUVi2zLtTpYQQcCnAhqATOOECRnFi0IRoGNlSYmdnAt1xA5aUkBBwCcCtiswE6WCq8A+ndNp/TXMECyaXcH8mUS+t0STWtyZQrkf7bJVJG2j722hJt6UprKE5nMTMCi8mlTLNn4rbrq4E2qI6AjkcKNmXV1UQTVrYGIxiIY8kpiJh2hIbghFIibz9m1eESG0tcsYug57Fh8vNRMMkqptY2xRGKGHA61IQcKsocSvwupSceXNVhIBXVbCxJYaOmJ7t5hDlhLqeBHZ3JeBzKShxK/C5lJyc2HlVBR5VYFeXhprmMHoSRrabRDTq0hcuHTEd/hzZfnMw3KoCy5ZY1xxG0rSz3RyiEWXaEuubI0AeB0zSXIpA0rSxrT0G2WsLLhWH/Pu0IcoxUkrU9SSwMRiFW1HyYutLwOUUpqvvSWS7KURZI6XEJ+0xBMM6/Fk+3vBg+F0KFAh83BbDxmAEMd3MdpOIRoVh2VjXHEHCsOHNg8/awaiKgEsIrGuOIMrxSwXKsGysawpDESiYLS1uVUEkaWFHZzzbTaFRlr+fOEQ5IGFYWNccQUskv1KEAacwXXNYZ8ScipJlOwXpQpoJXx6uVgPOcYiWLbEhGMPWtih0i6vWVLjiqWxOgfxfsQbSRxI7mZ9dcWaNUWHRUwFOVRE5k209XLyqgq64idouLjwWk/ycKRLlgOZwEuuCUQggb1e8fC4FEc3E+mAUps3ACRWHpGmjpjkMw5J5ceTh/gghEHArSBg21jRGsL0jzrFMBacrbmBDMAqfSy24C7CAS8EnHXE0h5PZbgrRsNBSC4ruAgyYpPlcClqiOpo4botGfs8WibLAsGxsDEZQ36Mh4FLy/iQLt6pASom1TWHEmSZMBS6SNLG+OQKXEAWTLgykjylWENZMrGkMo64n0efYY6J81RhK4pOOOPx5ls15MPwuBXU9GleuKe8lDAsbWqLwKCLv58cH4ncpqO/W0B5ljcBiwKAJ0UFoj+pY2xSBacu8TekfiCIEPIrAhmCUacJUsDpiOja1xOAtgGDnYFyKk/LfFtHxj8YwmsNJbr+jvCSlxI6OOBpDWl4WfD1YfpeCtpiBrdwyS3kqrpvYECyOgEma361gZ1echdmLQOF/ChENA8uW2NoWxc7UCRuFmG4ohIDfreKTjjgaQlq2m0M0rBpCGnZ0JBBwF8fHnltV4FUVNIQ0rGkKo5PBUMojli2xuTWGroRRUAsUB+JVBaKaiY0tUVjcZkd5JKqb2NgSg6+AFyUG43ep2NoWY1HnAlc8n0REh6gnYWBNUxgx3S6a1a6mcBKfcLWLCoCUEts74mgKJeEvkoBJb15VgVtRsKMjjnXNYYSTnNRRbtMtGzXNESTN/D4h51C5VQWmJVHTHGFxZ8oLkaSJTS3Rogpw7svvVrG5JQbNsLLdFBohxfvXTXQAtpTY2RnH1rY4vKpSENX6h8qnKghpTpoli0pSvrKls1rdXWSr1QPxuRQICGxujWJTS4T1iygnRZImapoicInCOCHnUDlHEoNHElPOC2kmNrdE4XcVbs2hofKqAhtaojAY7CxIxT2LJBpENHW0YXfcKMrVaQDwqAosW6KmKYwEI+eUZwzLRk1T8a5WDybgUmFaEuuDUWzjMcWUQ9I1h4oxvX8gQgh4VQWbglF0s14C5aCehIEtbbGCLtJ8MIQQcKfqA3J7XeHhTJKoFykl6noS2BiMwq0ocBf5xZaqpD8AIpy0Ud6I6yZqmiNQiny1ejDOMcUqYrqNNU0R7OpKcIJHWdXQk8COzuKpOXQw/G4V29riCPJoU8ohXXEDW9viCBR5Fue+FCEgAGxqifIEuwLDv3SiFM2wsD4YQUtER4BR8wwhBHwuFVvb4jyPnnJed8LAhmAUXrUwCzYPJ1URCLgUdMcNrGkMo4HHFNMok1Lik/YYGsN6UdQMO1R+t4I9PQnU9fBIYsq+jpiObe2xos3EPhBVETBtiY9bWRuwkPCvnQhAcziJmmAUkGAq/yACbgUNPRq2d8T5IUA5qTmcxNa2OFOFD5JLEfC6FAQjOtY0RtAS4THFNPJMW2JjSxQhzWTAZAj8LhXBsM4i7ZRVbVEd2zsSXFw8AJciEDMsbO+IZ7spNEz4KUVFzbBsbAxGUNejIcB91AfkcynoThjYxOMQKcfs6kqgvkdjev9h8KgKPKrAnm4Na5u5JY9GjmZYWNcchmlJeLhQMWQ+l4JQ6qQSfgbTaAuGk9jVxW10Q+VVFXQnTNR2MUOsEPCvnopWR0xHTVMEpi25ynUQvKoCw5KoaQ7zaDXKOltKbG2LoiOmF/0JOcPF51LgEgJb22Kso0DDLqSZWNcchUsIqKw5dNA8igLdkljXHOEpHTRqmsNJ7OnROF8+SD6XgtaojsYQP0vzHf/yqehYtsS29hh2dCbgdbHuwaFwjkMUWB+Mooer0ZQlpi2xIRhFTOcJOSMh4Faxp1tj4ISGTWs0iS2tUfjdzOw8HC5FQBHA2qYwjw+nEdcYSqKuJ8GAySHyuRQ0hDS0RfVsN4UOA//6qaj0JAysbYogmrT45n+YnAKxCj7majRlQcKwUNMUhm1LnpAzgvxuBXu6NbRGOcbp8NR2JbC7i7UQhouSOpJ4YwsXL2jkNPQk0BDS4Hdx3B4Ov0vBzs44t73mMV41UlGwpcTOzjg+bovDowpeZA2jgFtFXY+GnZ0sEEujI6SZ2BCMwq0wvX80+N0KdndxlYwOTXoLXVvM4IXXMMucbtceY2CThl1tV4InWw2jgFvF1vY4Iklmh+UjjgIqeDHdRE1zBN1xg8WrRojPpaAzbmBza4zF6WhEtUaT+LgtCh8LN48qZ5UsgXYGTuggGJaN9c2R1BY6jteR4nep2N3FI4lp+OzqSqA1xoDJcAu4FGxpjSHBmoB5hyOBCpaUEnU9CWwIOgXn3Kx5MKK8qoKkaaOmOYKkyeJ0NPzqepz0fq5WZ0fA7QROOmIMnNCBxVMLFgCY3TkK/C4VzWEd2zt4JDEdnh0dcbRHdfg4bx4RXlVgQzACnYWc8wpHAxWkpGljQ0sULRGd+6dHkUsRcAlgXXMEIY3phzQ8pJT4pD2GYFhnwCTL/G4F2zvi6IpzXzYNrjthYEMwCo8iWGx9FPldzhGn27uSDJzQIdneEUNXwuRpdCNICAGPqmBDMAqT2dl5Y1RGhBDil0KINiHE5kHuP1IIsVoIkRRCfGs02kSFKxhOoqY5AmlLnqiRBekCsVtao9xjTYfNsiU2tkQR0jiJyxUBt4pPOmIMnNCAmsJJbG2Lw+9WuYUuC7yqgoQh8XEbM05o6KSU2NoeQ3fC5Fa6UaAIAQXAppYobI7TvDBaM9BfAfjcfu7vAvB1AP8zKq2hgmRYNja1RFEXcs6R52QtuwJuFbu7NOzu4h5rOjS6ZaOmKQzTkvAwAJpT/C4V29pjPAmAMmSq4HpDj8b6YVnmUgXiuoUtrQyc0IFJKbGtPYawZnKxcRSpioBlS3zMcZoXRmVkSCnfgRMYGez+NinlPwAMefbFqByl6ZaN7e1xrGmKQDdt7sHMIX6XgvaYjs0tURaIpYMSSZpY1xSBiyfk5KyAW8XWtjiPOyXYUmJLaxRhsm0AACAASURBVAydcYMZYTnCrSpIGBY2t8Y4Z6ZBydTYjegWAyZZ4FIE4qaF7R3xbDeFDiBvR8faxjDiOmsmFDPdsvFJexxrGiOIJE34XQovrnKQV1WgmTZqmsPQWC2chqAjpmNTSwxeZozlvIBbwccMnBQ1JyMsAs20edGVY9ypAu2buQWABmBLic2pk1w8CsdutngUBT2ahZ2dcWac5DBXthtwqEI93XizoxMzyryYVJK3v0bB6OoaNJFo2OmWjbqQgVDSglsVUIUAN4AMLBwOZbsJGVJKvNHRhTkVHpT7invMjuZ4yTfNER3NUad+yWiP61waL/nm3a5OzB/vw1jvyBTq5ZjJTY2tHahpicPFgq85Zd/3MtOW6OjsxFETfOynLMql9zFbSmzt0GDYPN0qVz77u7ps1AcVzBvnhZt1ZTB58uRsN6GPvL1ymTB+PAAgZtroVlyYNyHAD4IsG+k/7qRpo7Yrji7DRGBsCUrZ30Myfty4bDehj07DRsDrQXW5P9tNyapc+zDINqceQgJJj4GqSdlb8cq18ZJPOgwLk8tLMdY7MlMLjpncYdkSLREdQSuGaZMnZLs5NIB938tMW6LVFlhUWcqs3CzKhfexdIH1seWBog+YpOXKZ78tJZpMibnlAYwLuLPdHOol73OxfC4F0aSFtU3crlOoEoaFrW1Rp48NGwG3ygBZHgu4FTSFdWxtY7owOdL1ELoSrIeQz/xuFVtaoogk+VlcqEKaga1tUfyjMYSmsAa/m0eA5wuXImCmLpZZY6w4SSnRoxlYH4zAsiUDJjlIEQJel4JtHTFu18kxo5JpIoR4FsCZACYIIRoB3APADQBSyseEEJUA1gAYC8AWQnwDwKeklOGhPL9LEZASWB+MYVaFD1PGekfk96DRFddN7OnW0JM6ajTAyVnB8LkUxHRnH/zRU0p5MkqRMiwbbVEDzRENAoL1EAqA361ic2sUiypLUerJ22RW6sWwbDSFk+iIG9AtCb8q4HPx8zgfpQMnG4IRHDNlDDNOioRm2mgMaehKmDAtCb9LQLDvc1rApaIrbiCkmVgwqQQ+XgNl3ajMaKSUXzzA/S0Aph3OzxBCIOAWqOvREEqa3K6Tx+K6id3dGsKaBb9LMFhSoJxgp0RNUwRHTgyg3M80xGKgmTZaIkl0J0zEDQseRcDNYElB8btUbGph4CSfSSnRlTDRFNYQTVrwqApcioDLxXlVvnOljjldH4xgMQMnBSu9ha49riOWtOFzCXgU54vyg0dVIKUzVmePC2BiqSfbTSpqBTeb6b1dZ8GkEgQ4YcsbMd1EbZ9gCS+kCp0QAj6XwNa2OKrLfZhWxiyxQhRNmghGdYQ0E8nUCRsuRaCEAdGC5Xep2BSM4Zgp/BzOJwnDQmM4ie64AUtK+F0qFy4KkNorcHLMlDHcplEgpJToSZhojiQRTlpQhXPhXeLhfDpfOfNkFTu7EuhKGJjLpICsKciZDLfr5Jdo0kRtdwKRpM1gSZHyuxU0hjXEdCdLjMfM5rf0xK0tpqNHM2FJwKcKuISAixdgRcPvVrCxJYajKxk4yWWWLdEa1dEaTSJhSGdFmtlfBS8TOGmOYPFUBk7yWTrY2RU3YNvOe6+f9cEKit+lIMKkgKwq2Fe893adHs3AvAklTEHMMZFUsCSatOB3KQyWFDmfqiCsmVjXHMGiylJu2cgzli3RGdfRHjMQTVqwIOFXFdYpKXI+l4JNLTEcPaWURUNzTDhpoimkIaSZTk0hl4KAm/OkYpIOnKxrjmDxFH7u5hPTlghGkuiIGYgbzjzaqyoA32YLVu+kgJkVPkxlUsCoKtigSVqm4GQzI3O5Ipw0sacrgahhwa+ywCvt5VYV2FKipjmCT00qwZgROrqUhke6kGtn3EDUsKAC8LoUeLnCRb14VIENwSiOYeAk6wzLRnMkifYYi7qSQ1UEhNybccLASe6SUqI7VWsoottwC2fexK2uxSOdFFAfcpIC5jMpYNQUxRWJk3IoGJnLspBmYE+3hphuIeBWEeBEjQagCAGvKrCpJYpZFX5ur8sxmmkjGE6iRzORMCy4U4VcAwyU0CCEEPCqwMaWKI6pLOUpAKOMRV3pQBQhAAVY1xzBsQyc5JyYbqIppKNHM2BKiYBL5WdukfOpCuK6jTVNYS4yjpKieoUDbgX1PRpC3K4zqnoSBup6egVLOGGmIQi4VdT1aIjoFuaO97POSRZFkiZaUoVcddPOXHRxLNNQCSHgUZA5sYOBk5GnmTYaQppT54BFXekAFCHgSgVOFk8dw7o2WWZYtrP9Jm5CMyz4XAo8qgKen0JpLkXABWeRsbrMi+pyf7abVNCKKmgCcLvOaOpOGNjTnYBmylTNEk7W6OD4XAp6NAMbWywsmFzKQnWjxJYSoVQh15BmwmQhVxoGTsaJgg0tURzLi7IRkS7q2hbTEdedY0ZZV4iGqnfghGN09NlSoituoDmSRDRpw6MKLlDQAQXcKpojBroTJj7FufKIKcqIAbfrjKzuuIHangSSqWCJnynAdBg8igLTkk7F8MklKGWgc0SkC7m2RQ1EdQt2qpArV7ZoOKUzTnhRNrwGLurK15YOntJrjHI73eiIJk00hXX0JAxI4Wy94Pilg+FVBYzUXHn+hADK/e5sN6ngFPXVR8CtoD7E7TrDpTPuZJboFoMlNLxURUCFwMZgDHPG+zGplJfxw0FPFXLt2qeQq497pWkEZbbqcBvAYWFRVxop3E438vT09puYgaRpO6ff8LOXDkN6rvxxWxxTxngws8LHre3DqKiDJoATzU1v1zlqElexh8KWEoYlYdgSmmEhZljY0ZZAiRZPnQ3PAUojI+BWsKsrjohu4Qh+GBw005boSRjojJuI6SY002YhV8oKkdoGsJ6FJwdlSwnLlrCkkwlm2jYMSyJpSnQmdBZ1pRHVezvd0ZU8+Wo42FKiLZpES8RARDfhZX0wGgEBt4K2mI4ezcSCySVcmBgmjBBg73adTcEYZhT5dh3TljAsG0nTRtywkTBtGJYzUTMsG2ZqAiclICGdGgeKgBACfqYS0ijwu1R0xHTEkiYWTC5lhth+WLZEWDPRHnMySTTDhiKcNE5FcKJG2aX0CpwU0lGnUu4NdFipwIdpSRi2Dd1yMkQMW/b5vt4BEtuWsCEhpcg8H4SAgIQqBJTUMaMcvzTS0hknPDL80NhSIpo00Rk3EdUtNLQmMN7ww8tjgmmEeVUFtpSoaYpg7oQAxge4XedwMWjSiz+1XacQz73unR2SMCzEDQtJw5nEOYESCTM1cZMAFKSqMqcCIkBqn6taOK8J5S+vqsCwJGqaw1g4mRO5NFtKhJNOkCSWtBA3bQhI+FQlFSQpjItSKhzpo07XN0dwbNXYnCxgZ0uJhGGjO2FCMy1YdioLRErYqSBHOjgiJTKfo4CAhISQgKI4wQ5F7P3/faXvQw6+BlS8MkeGB6NYVMkDFPbHsGyENBNdcRNxw0LCtCGls1ChKk7mDgsz02hRhIDPJbC9I4bxAQ/mjPcP+NlDQ8N3vn2kz71e2xTGp/Kk6KRpS+iWDT2VHRI3rEwgZH/ZIb2DQukACVG+UBUBRToXW3MnBDChpPjqnKRXsdpiTvHWhGFDpgq4CiG45YbyQjpwki4Om83PIiklEqaN7riJiG4iYdjQDAs2hHPhIzDgtkBVCKhcVKACJYSA1yWwsSWGoxk4yUgYFrriJsJJEzHdQtKyoQrnvUIIAT8/gykH+F0qQgkDNU3Odh0uNB4avusNIL1dZ2Mwiunlfkwry+52nXRQJK5biCSdN2XdktBNm9khVNScbWEqdnQmEDMszCjwM+qllIjqFtpjBiJJEwnDgpTOZFbhBI3ymCIEpJSZrTqjETiRUkIznQySSNJE3LCRNC1YEvCkav0IgBNMohSfS8HGlhgWVubHouJwSi9SdMSdAElct2BJmakL5sy/+V5BucmtKpBSYl0witnjfJhcWrylKA5Vcb3jHaSAW0VDSEM4ObLbdaSUSFoSmmkhmnSCI3qq4Jtu2rBS+5lVAO5ULQKA2SFEaX6XgpaIgWjSwpETC2drnZQSMd1CR9xAWHO21VkS8KVSfXlSBhUSVRGwbIkNqRM7hnMcpwMkIc1ESLOQMCxopg2710WPADimiA7A51KwqSWKhZNLMcZbuJcR6a02nXFngcLZaiPhcznbXXnSDeUbJwNZYHeXhu6EiXkTAjmzXSd9LRzXLYQ056CCoyaVZLtZfRTuu90w8buGZ7uOYdmpPwYTEd3ZSqOnMkbMVEE4AWSi1QAgAL4pEw2RVxVIGDbWBSNYOKkkb49IjBsWOmI6QpqzkmVKpyaJEyTh+wEVtt6Bk2MOI3CimTbCmoHuhAXNdIogm7aEWxWZkwQ4nogOjd+lYktrFAsKJHCS3pbXe6uNkdpq4+FWGyowfpeCaNLC2qbRPznWsp0FjEjSRES3kDSdw0cMy4Yt9+6QyJVgTm/5/043CoayXceWEknTRsKwEdNNxI1UnRHLhmk5ReIA56QAd6/tM25FwF0gq+JE2eZSUin+wSjmTwygwp/71cIThpNJEkqYmXpE6WNEvS4FTKCkYqMqAqYtsTF11OmBAifJ1ASsK24ikQqQWNI5aSa98MCxRDS8fC4Vm1ui+NTkUpT58utywrIlIrrznhHVLSRSW23Sn73O3Dw/F16IhmKkS1EYlo2EYSGctDP1fpzgiFNSwt3relgVAmoeZHnm17tclqW363QnDPjdSqauiG7ZMCUAKaEI5802Pclz/hAYFCEaLSJVLXxbexzTxnpQnQN1TqR0MsrS9Ylaojo6EEVM7xsk8agKPLn/uUE04lypwMmmliiOnlKauV23bIQ1E92aU6TVudgBVIHMijAzNIlGh9+tYktbDJ+aGEB5Di9S6AOcagNutSFCwK2iMaShJ2HgyEklB1X2QUoJ3XJOZQ0lTcR1O5M54iQLIDO/BfI/UYBBk4PkdykwLRsRy85ki3hUBcV3bgdRbvO7FDSFdUQNG/NHYN+mlQqCGLbMnFyVTGWWmamjvE3bOYbUstNHkDrCMQuVfskgCdF+pAMn65ojiPRoqNNDMG3nRF4vAyREOSHgUvBxezzrgZN9L+ASxt4LOMN2To70upzaRTxZjmgvn0tB0rQz23XG7rPlzk7VBIsmTYSTe7fU6JaELQEBZz6bThgo1M9lBk0OwUDHDRJR7vG5FMSSFtY1R7CosjRTy2Ag6WwQw5aptEInCJI0nO116SBIOhBiS8A5xNvJKHMp/Y8jzRxDuk9gJJHHkXai0ZReobIkGGQkylEBl4KP2+I4atLIb4tNb4eP6RZCqQs4zbAGvYDj+wbRgamKgAqBzS0xTChxAVIgadnQUkFHKZ3AYzqjU0lldRcTBk2IqKC5FAFbStQ0RTB1rAe6JTNZIpkvK310t4CEhILUB4gQfeopCOR/eiEREdFwC7gVbGuLY/7EAMYFDj9wYtlOcdZI0kRE610Twc4sVhTzBRzRSAi4nSKxCmtv9sOgCREVvPSEqi1qDJwNwskWERHRYfG7FWxrj+HIiSVDDpzo6YKRmom44axsJ00bpg1IAB7FOVkScBZBXCzQSjSicvHkmlzAoAkRFY2DKXBFREREByfgVrGtPYZ5EwKYUOJU/JNSImlJxHULIc3MBEacgpEAhIRH2VswkltqiCjXMGhCRERERETDIuBWsaMjgWBEh245W2ps6axge1SRWcku1IKRRFR4GDQhIiIiIqJh43crsGyZ2gLLtBEiym8M8RIRERERERERDYBBEyIiIiIiIiKiAYxK0EQI8UshRJsQYvMg9wshxE+EEDuFEBuFEJ8ejXYREREREREREQ1mtDJNfgXgc/u5/wIAc1Nf1wP4+Si0iYiIiIiIiIhoUKMSNJFSvgOgaz/f8nkAv5aODwCUCyGmjEbbiIiIiIiIiIgGkiun51QBaOj178bUbcHBHtDZtb8YDI22cDiU7SbQANgvuYn9kpvYL7mLfZOb2C+5if2Sm9gvuYn9kqOmjsl2C/rIlaDJQRs/bly2m0AA0BKE98lfYHIwCHXKFCSvuxaozEKSUKodoqMDcsKE7LUjB3Gs5Cb2S25iv+Qu9k1uYr/kJvZLbmK/5Cb2Cx1IrgRNmgBU9/r3tNRtlMtagvDfcgvUpma4AWDLFihbP0Zi+fLRDVj0akdaVtpBREREREREBSVXjhx+BcA1qVN0TgIQklIOujWHcoP3yV/0CVQAgNrUDO+TvyjKdhAREREREVFhGZVMEyHEswDOBDBBCNEI4B7ASU6QUj4G4M8ALgSwE0AcwJdGo110eERHx8C3d3YWZTuIiIiIiIiosIxK0ERK+cUD3C8BfGU02kLDR06YMPDt48cXZTuIiIiIiIiosOTK9hzKQ8nrroVVNbXPbVbVVKcIaxG2I1ckDAs7OuJ4Y1c3PmyKw7RltptEREOQHrsfNoTRo5nZbg4RDVHStLG7K4G2qJ7tphDRQUiaNro1C876PdHgcqUQLOWjyilILF8O75O/gNXSArWyMjun1vRqh+jshBw/vuBPz5FSojthoj6koa4nifoeDfUhDfU9GlqjRp/vfXlXDA+cdwTGB9xZai0RpUkp0aOZqOvRUN+TTI1h579be11wlXhU3HP2TJw4bWwWW0tEvfUkDNSHkqkx64zbuh4NrVEdEoAAcMWiSbj+hKlQFZHt5hJRSo9mpsas81WX+vxtiThj9+jKbtxz9izOlWlQIp8ia6FQKNPY9c2RbDaF9tHZ1cXjukaAaUu0RJL9Lq7qQxoiSWvIzzPJp+ChC+fhiHH+EWwtDRXHS45JHVluDePR6ZYtEYzomWBm70naUMeuIoBvfLYalxw18BbEYsIxk5sKsV8sW6Ilqvcbt/U9GsJDHLunzCjDXWfOgN+tjnBrB1aI/VII2C8jy7IlWqPO525dt4b6UDI1hoc2dieVuPHQ+bM5V84Ri6eOyfx3WVlZ1qPQDJrQsOAHweGJGxYaUm/uvSdpTaEkjGHaXhNwCdx77hFcuc4BHC85ZIAjy62qqUM+sjxhWGhMrzz3WoFuHMaxe+WiSfjPE6dCEVmfM2QNx0xuyud+0UwbDZkszb1jtyGchGEd/tidN8GPB8+bnZWV63zul0LGfhkeSdPOjNtM9khIQ0MoCf0wx27AreCes2fhM9WcK2dbrgVNuD2HaJRIKdGV6JUe2CsC3hYzDvwEQ6RIiapIBzyWgV0Ve2u9xE2J21buws2nVOPiI7lyTQTs/8jy5F13ATi47XCHQwCoHOPJpAun/W5TG5rDSdx51kz4XCxFRjRU6e1wmaDIINvhDpcA4FZFnwu27R0J3PjyJ1y5JjpEB9oONxLiho3bX9uF//psNT7PLE/qhUETouHUEoT65C8RDCexZ+I07Dr5LNRZnkxEPKoPfUvNgfhcCqaXeTG93Jf68mJ6mQ+z778TJetqYAoFy49fgufnn5p5jC2B5e82oDGULPqVa8oBqW0xoqMDcsKErNQi6n1kuSkUBEvGobZsMnajErveqTuk7XAH4lUFqst9mFHuy4zhGeU+VI31wutS8G5dD777Vh000848ZlVdCN94dQe+90+sT0S0r4G2w9X3JFE3QmO397idXubDtDIvQpqJ21/bhV1dWub722IGvvrH7bj3nFnM8iQaQHpLTd1hbIcbCrcqnHFb5svMm2eUezF1jBc/ebcWf929dweDLYGH32tAUziJGzhXzo6WINAr0yQXMGhCNExksBl/W/40Hp9xKjorU5OjbdHDft4KvwvTy1KTs/K9E7WJJe4B38g9453UT5e0sewfv0d1pB0PH/d5SLF3hfp3m9oQjCRxx5lcuaYsGWBbjLL14yFvixkucsIEdHtL8KPjL8Ub04+BrvYKSGzvOqznrvC59gY0UxdXM8p9mFQ68NhNO3VGOX58kQe3r9yFrsTeU3S2tcdx0yuf4MHzuHJNBACr60P4zfoW7OhIDNt2OAAo97kwvdybCYqkx/DkUs+gY3dSqQc/vWgevvPmHnzYGM7cHjds3LZyF+sTEaUkDAvPbGjF+/WhYdlS09tYr5qaLzvBzRkVzhieXOoZtDjzdcdUYM6ksXj0g6Y+GSz/t6kNQWZ5jr7U/BBv/THbLemDNU1oWBT7Ps2kaePHP/8T/uyvPqTHKwKYOsabyRZJv8lPL/dijPcgY5sDXIy+eczp+PbiL0Db54PpyIkBrlxnQbGPFwDwfve7cL/+er/bjXPPzWyLGQ0fb63DvW/sQZvv0FaBFQFMGePtu/KcGsdjfYe3LtEa1XH7yl3Y3a31ub3EreA758zC8UW0cs0xk5uy1S+mLfGLNc14dmPbIT+HIpztcOmV596ZX2WHMXZNW+KR1Y34w9aOfveNVn0ijpfcxH4BGkIa7n69Fnv2+Vw7GOmtrM5CRO+Max/KD2HspvvlvboQ7n9rT58sT4Bz5dGWnh/O2b42cxtrmhAVgOZwEt9+oxY7hxAw2XdLTfoCq2qsFx51mKLYAxwFfeJ11+LHrrJBVq6346Hzj8CsCq5c0+jpvS2mz+2dnaPy86WUeHlrBx75oBvmEAImg22HS2+pGQmTSz346cXz8J03a/FR496FgphhY9nKXfjmKdW4iPWJqMh0Jwzc/9Ye1DQPLZNz3+1w6VXokRq7LkXgvz47DVVlXvxsn5VrZnlSMXuntgcPvVOHuGEf+JsBeFSB6tQCYu+sr+oy34iM3VNmlOHHF83FHa/tQmecWZ7ZMtj8MNsYNCE6DO/Xh/DA3+v61SrxmjoWdtRhVqgV1VMqMPWKSzCj3IcJg2ypGXaVU5C8664+qxrzAfz88/P7rVy3RnV89ZXt+M65s3B8VfGsXFN2yQkDX+zL8eNH/Gdrpo3l79bjbzu7+91X7nNhZq9Mr/QF1mDb4UZaiUfFA+fNxk/eb8Qr2/ZOJGwJ/M+7zp7r/ziBe66pOGxpi+Ge12vREe9fgPlQt8ONBCEEli6chCljPP3qE72zJ4Q21ieiImLaEk/+oxnPbRo4M6zM53IyRsr21hqZXu7DpJLBt9QMi1RdtcnBINQpU5C87lrMr5yCn18yH7f1mysb+FqqPtEJRZTlmQ2DzQ+zjdtzaFgUW8qhZUv8qiaI36xv7XffzFArfvDOUzgi1HpQR5eOhIH6JaZbuPfNWvyjse8YUgVwM1euR0WxjZcBHeZRv4eqMZTEt1/f3W/LCwBcMncsvn7aEXCN5CTtEEkp8fzmdvz8w6Z+pwacPrMcd545Y8QyXnIBx0xuGq1+kVLiD1s78OgHTTD3qV0yIeDGt8+eiaMrS0e8HYfik454vyxPwMkkG6ksT46X3FSM/dIVN3DfW3uwPtg/M+yc2RX46klVqPBnIXh4gDlITLf6ZXkCzrY+ZnmOsFTfzO9V0yQXtueo9957b7bbMGTJZPLe9H+3RIbvqDg6fIlEAgF/caSs9Wgmvv16Lf66o3+RyDOn+PA/jX/HRK8Ca+FCaLfflrWACTBwv3hUBWcfUYHuhIHtHYnM7RLA+/VhJE0bn546BoIr1yOmmMbLoErHwDzlsxA9IciyslEZL+/VhfDfK3f1O+Lb71Zw11kzcN50H0oDgRH7+YdDCIEFk0swe5wf79eF0Ls8UV2PhrVNEXx2ehn8bjV7jRxBHDO5aTT6JWFY+MGqejyzoQ371no9prIUyy+Yg5k5vL10QsCNM4+oQE1TBN3a3sBJTLfw+s4uzJ8QwNSx3mH9mRwvuanY+mVzaxS3/KV/XS5VAF87eRr+84SpWfvM8v7vj+HasKHPbUokAtETgnX66fCoCs46ogIhzcQnHfHM96Tnypph49NVnCuPiNT8sHLK3sxjn8/3nSy2CAAzTWiYFEv0fFt7DPe8UYvWaN+LLkUAN5xYhaULJ+bUG+j++kVKif/b1IbHPmrut3J9xqxy3HFGYa9cZ1PWx0sOHPU7mixb4pdrg1ixoX9m2IxyH+47dxZmlPuy3y9DtK09httf243ufVauK1Mr17l8AXmo8qVvis1I90tjSMO3X68dMDPsqkWTcN0JU3MyM2wgg2V5jsTKNcdLbiqWfpFS4qWPO/DoB43Y92CcCQE37j1nJhZOzm5mmO8b34Br/fp+t5vHHgvt4Ycz/5ZS4oXN7fjZIFmed5w5g/WJRsjiXkcO50KmCXuZaAiklHhlawe+9scd/QIm4/wuPHzhXFyxaFJOBUwORAiBK4+ejPvOnQWv2rfdb9f24Buv7kB3ov++ccpzqbRH9+uvw7V+Pdyvv+4c7dYSzHbLRkRPwsCtf905YMDkrFnl+Pnn52FGuS8LLTt0R04swc8vmY9ZFX3b3RLV8ZU/7sCapvAgjyTKH6v29OA///BJv4BJwK3gvnNm4YbPVOVNwARw6hM9eN5sXHxk37pN6fpEj3/UBDuPFjKJBpIwLHz373X4yer+AZPFU0rxxKXzsx4wAYZeV00IgaWLJg04V35nTw9ufnUHugaosUSFh0ETogNImjYeeqceP3qvAcY+ucGLJpfg/y05EsdMyf4HwKE6bWY5fnzRXFT4+9aF3toex40vb8ee7sQgj6R85H3yF3328AKA2tQM75O/yFKLRs7HbTH8xx8+6XfKhiqAr5xUhW+fPROBPN3OUjnGOVnnhKoxfW6P6Rb++6+78Oono3MKEdFwM22Jxz9qwt2v1yK2zykbMyt8eOzz83H6rPIste7wuBSBb55SjRtPnIp9wz3PbmzDd97cg6Q5tJNFiHJNQ0jDja9sxxu7+hdZ/+LRk/A/F8zBuBwpfpy87lpYVVP73GZVTXUybwfgzJXnYdxAc+VXOFcuBgyaEO1HUziJm17ZjpUD1C9ZunAiHv7nuQVR/T69cj1zkJXrtU3cDlcosn3U72iQUuLlj9vx9T/tQHtsgMywf56LpQvzKzNsIKUeFQ+e33/l2pLAD1fV44l/NHPlmvJKd8LAsr/uxLMbKtqXgwAAIABJREFU+5+ycc7sCvzsknmYnmeZYftilicVondqncywPQNkht1/7iz854k5lhlWOQWJ5cthnHsutIULYZx77gEL0R85MYCfDZDl2RrV8ZVXtjPLs8CxECwNi0IsbvV+fQjL/roLrdG+f2s+l4I7z5yBKxZNzvljPg+mX0q9Ks6dMw7bO+Jo7jW+DEvijV1dmFjiwdwJuVkkM99kc7yoa9ZA3b273+3WwoWwTj89Cy0aXppp44er6rFisKKRF84Z9LSKfHwfU4TAydVj4XcrWLNPcHNTawx1PRpOnl6WW5PVQ5CPfVMMhrNftrTF8M0/78Surv5FI796UhX+88Sp8KiFs9Y3o9yHE6aNwXv1oT5HEnfEDbxd24Pjq8ag/BBPFeF4yU2F2C+mLfHER8346QdN/bKxZ1b48KML52DRvidbtQTh/d8fw/3ii1DXrIE1by5Q2jdrclSUjoF1+uloP+kkeM4/f0htSM+Vd+w7V7Yl3tjVjfEBN+ZxrjwsKsfsLZCdC4VgGTShYVFIHwTpopEPv9cIY58NmdPLvFh+4RwcOzULb+6H4GD7xaMqOHt2BbriBrZ39j1Z5736EAxL4tippXm/Qp9t2Rwv1ry5UFevhhLZe4FtVU11Tq7JxqRlGDWGkrj1rzuxpqn/0YZXLJqEO86cgVLP4Ntx8vV9TAiBhZNLMavCj/fr+56ss6dHQ01z/p+sk699U+iGo1/Sxwnf9+YeRHWrz30TAm48dP5snHlERUF+7kwo8eDMWRVY0xxBT6+TdaK6hb/t6saRh3iyDsdLbiq0fumKG7jzb7vx+gDbcc6ZXYEH/ukIjA94+t6Rqqvm2rABSksL1N27oa5eDfOUz2ZtDnKoc+XBTqHUOVceFgyaHAYGTXJXoXwQ7Pc44VnlePC82ZhY6hngkbnpUPpFEQInTx985bq+QFausymr4yULR/2OhvRxwvsWak4fJ7x04aQDZobl+/vYzAofjqsag/fr+q5ct8cMvLOnBydUjUX5Pvux80W+902hOtx+SRgWvv9OPZ7dmJ/HCQ+Hkcjy5HjJTYXUL0M5Ttg9QGbYgY76zYZDniunsjz33cJeSFme2ZRrQZP8nD1R0R0ZOhry7TjhkSSEwFVHT8aUMV587+97oPdaun6rtgdtMQPf+6dZB04d5t9pbqqcguRdd2W7FcPCsiWeWhvEbw9wnHDeOMwx86lJJfjZ5+fh9pW7sadn72Q2GNFx0x+34/5zZ+HTeZIpR4WtMaTh7tdrUVsAxwkfrlKPiofOn43/fa8Bf+pVxNmSwA9W1aMpnMS1x0/J+S3BVPgOdJzwd86ZhQWTSwZ9fCHVVUvPlaem5srJXi/I32t70BbT8b1/OgIV+TRXzqW25BgGTfJRKrWt9wkYytaPD1jAiAYmpcQft3Xip6sb++3HHOd34Z6zZ+X16TiH44xZ5ZhYMhd3vrYb3b1Sh7e0xXDTK9vx4PmzB78g5d8pjbCehIH73trT73QcwDlO+NbTp+fX6TjDNGamjPHipxfPxb1v7MHa5r0rYDHdwq1/2YlvnTYdF8wbv59nIBpZq/b04KG36/qdjhNwK7jt9Bl5ezrO4XApArecWo1pZV489lHfE85WbGhFcziJ286YAa+rcOq6UH5JGP+fvTuPk6wq7wb+O3evvbq7eqnqbbqHWZl92ARBYEZAJWBMorglUdDkNb7RiAvoCAiDYCISkhgjDiZRo8aor6JBGYZFRBAYZAZmY/aepfd9qaXr3nveP6qqp7qreq/l3qrn+/nwmZmqmp5Lnz73nPucc57HwFefO521Os6GoBt3XLVk1uo4cy31aydXJOfKn58yVz7QnahCef+1rdPvmLPSXNlK12JBdOe1oXIqGZpv0RIvJ5wLqZXrJVOCI+0jiWzhr7Znr6xDP6ckn0qxnHAu+4xHlfCV65bi7cszK+t85dlT2EGVdUgRlHI54VxIrVx/aUsLlCmVdZ4+MYhPPXYUg1RZhxRBrsoJz7fUr12smmauPFsVSivNla10LVZEQRMbKqWtbcV0djiGvymDcsK5kFq53hSaHEAaHTfwmV8fw68PZ/7s0c8pyYdSLiec6z4jCQyfubwRH70wlPHe9/Z24Z6nTyKmm1n+JiG5Vw7lhHPlLS1+/OM7lqFCm7whPLXLs20w80gTIfny25M5LCecVupX37hxTqV+7SI1V9485Qjs2LiBz/76KB57w9pzZStdixXR8RwbKsWtbYX2/Kkh3PtMG8amZOrXJAGfu6IJV7VWFOnKrMujSvj7687D1547jcfSgiS6yXH/s6fQPjKOD22qm3hYpZ/TLJJnRWs7OiAGg3RWdJ6iuomvPXcKO49mrnStq3PhzqtbbB3ozEefYYzhfetrEfIouPc3bZMqgj19fBA9o3Fsn0t+IkIWYX/3GO7cdQK94cmBTpEBH7u4Hu86v3xyhs3VdPmJUrs879naYptKfmXPpmO/bnI8srs9a6BzSYWGe7a2oNG3gEBnCeVVmyq1y/PB353G/2bJT9Q+HMOH0/ITWWmubKVrsSKqnmNDViwZapeM4LOVE/7a25dhQwlNQnLdLgJjuLTJC0ViGcci9naO4sxwDJc0eiEJzJI/p0WVVmZP6umxRJk9O5mxnPCaanz+yiUzlhOei2Lfx/LZZ5ZUOLJW1ulOVdZp8MKnWXcdpdhtQ7KbrV1SSSPvebr8ygnngkeVsGVpBd7oDaMjbd47bnDsOtqPGreCZVWZlXWov1iITcf+BZUTtql8zZU1SZiUVwwAXusaw6mhKN7U6LPcXNlK1wJYr3oOBU3syIIlQ+0wQJdaOeG5yEe7MMawrs6NZr+G508NTSoTeWIgij0do7i02QfN77Pcz2kxWbHMnl3MWE74ymb82dranFSVKPp9LM/39hqXgre0+PHymWEMxc49wI6MG9h1bACrqp0Ipk1SrKTobUOymqldqJxwbqiSgC1LK9E7FseRvsjE6xyJe6NhcmwMuicFnqi/WIcdx/6FlhO2q3zNldfWubGkIjFXTl+nPTkQxavto7isyQutwkJzZYs9X1otaMJ4gRLBMcauA/AQABHADs75/VPebwbwbQDVAPoBfIBzfib9M0NDQxMXu2ea5JOkOPr6+1FVWVnsy5jWwe5EOeHusfIqJ5zvdtnfNYYvPHEcg2nZwgEg5FXwlWuXLmzbZonSPvlJSHv2ZLyub9yI6IMPFuGKrK/Q5YStfh/LlZGYjjufPJGxW0wSGD795kZcZ8HKOuXSNnYzXbtQOeHc45zjB6914+GX2zPe27K0Ap+9vGmisg71F+uw09i/2HLCdpX3uXL3GL6wM8tc2aPMXIWyzKXv/Pf5fEUfMAoSJmSMiQC+DuBtAFYDeC9jbPWUj30VwHc45+sA3A3gvkJcGyltnHP8/GAv/vaXRzICJpUOCQ++fRnevdaeSSOt4PxaVyJ5n2/y6nT78Dg+9uhh7O3IPEpRruis6PwMRuL47K+PZQ2YXNXixzduXE4TjQXyqBK+cu1SvG355EliKj/Rt1/pQKEWVEjpSSWNnBowccoC7t7Sgr++eB5JI8mEVH6iu65eAnlKZZ0njw3g1l8dzXgoI8Vnl7E/Ejew/Zk2/NMLmQGTDUE3Hn7nipIMmBTC+TUufOPGLHPlWapQEmsp1N6qiwAc5Zwf55yPA/ghgBunfGY1gKeSv386y/uEzEuqnPCDVE44r0JeFV+/YTk2TvlejsQM3Pqro9iZ5ThUOSrVMnv5cLB7DB/92RsZZ4HtXE7YamRRwGcvb8ItF2Ruu/3Oq52495k2qqxD5oXKCRfGla0V+Me3L4N/Sg6ifV1j+Nijb+AUVdaxFDuM/bkqJ0ymF/Qk5srzqUJJrKUgx3MYY38K4DrO+S3JP38QwMWc84+nfeb7AF7knD/EGHsXgJ8ACHDOJ36K0o/nPLmvLe/XTeZueHgIXq+v2JcxoXM0jn94sQcnh+IZ711/ngcfXFNRFitdhWyXuMnxzT/04elTYxnvvXulD+9e5Sv7HT1iVxf8P/gB0N0N1NRg8L3vhVFbW+zLsgzOOXaeGMW39/ZDnzI0+VURn744gFWB/O0usdp9rFB+d2YM/7y7F1Oec7GySsXnLqmGVy1+gKpc28bqUu0yFDXw4Mu9eL0n84H9zQ1O/PWmKjik0smBYAWdY3F8+flunB2ZvLvELQv4m3VOXNRsrZ0M5czKY/+LZ8P451d6EZky6Dokhv+7OYCL6zMTDZeaQs+VH361D0+1Zc6V/3SFDzetprlyypY1zRO/t8LxHCsFTUIA/gVAC4BnAfwJgDWc88HUZyiniXVZ6fwslRM+p9DtwjnHf+3two7dHRnvbV1agc9e0QSlhJKHLZSV+otVRHUTD/7uNB7PsjOpUOWEy7ld9nWN4gtPnMBQlvxE91+zFE1FPgpVzm1jZX39/eiMq7jzSSonXAzT5idiwGeuaMK1y4oUOEmW2GW9veCBgG1K7Oable5jeSsnbEPFmCt/f28XvpVlrnx1qx+fu6J5Ij9ROSvLnCYAzgJoTPtzQ/K1CZzzds75uzjnGwF8IfnaIKZBZ67JVIbJsWN3Oz6/83hGwKTJp+KbN64oq4BJMTDG8IENdfjiVZlnrncdG8Ctj9GZa5LpzFAMf/PoG1kDJu9eU42vvX1Z3gMm5W5NrRv/esNyNGbJT/Q3v6Az1yQT5xyPHRvGJ/73SEbAJOCU8Y/vWIY/WUM5w/Jp2vxEHLjvN6fwyO52mIWeKydL7Mq7dkHaswfyrl1w3Hor0Jn5gEiKoz8cx2d+dTRrwGTr0gp844blZRMwKQbGGN6/oQ53XJU5V37q+GBirhzJ3ClPiqtQQZOXASxjjLUwxhQANwF4NP0DjLEAYyx1PbcjUUlnWt95tRP3PH2SzlwTAEBfOI7PPX4M39uTmTTyyhY//u3GFWiuoAGgULYsrcCDbz8Pvilnrl/vGsPHfv4G2ujMNUl6rm0Qf/XzN3Csf/LPhEMWcNfVS/CxSxrK4iidFdR7VfzrDcuxIUt+ok//6ih+RWeuSVIkbuDeZ9rwyN4B6FNyhqWSRq6to5xhhTBTfqLv7ukq+FxZ3fEIxLOTK/yIZ9uh7nikYNdApre/K5Ez7NUpifpFBvztmxrwhSub4aCcYQVx9TRz5X3dY/g/jx5GW5bqY6R4ChI04ZzrAD4O4HEABwH8iHO+nzF2N2PshuTHrgTwBmPsMIBaAPfO9nWfOj6ITz12FAMUjStbo+MGHtndjvf/6AB2n528EioktwbfefUSOBUaAApt2pXrZLbwV87SynU5O9Ibxmd/fRTbnjiRsTOs2a/h325YgStpZ1jBeVQJ/3DdUly7bPLKtcGBrzx7Cg+/XISVa2IZusnxy0O9+OD/HMSuLEkjb1pLSSOLIbXL845NPih88v306eOD+LvHjhRsrsx6e7O/3leEoGtnB9Tt26F98pNQt28v690uvWNxfO2JQ/jbRw9l3Rn2T9cvp6N0RTDdXLljZBwf+8Vh7D47XKQrI1MVJKdJrqTnNPHf/ezE63VuBfdf24olFY6iXBcp/HnAmG7i5wd78b09nRiOGRnvVzok3Hl1S9lXx7HC+dmRmI47dp3IuqrxqTc34R0ryi9ZnRXapVjODsfw7Vc6smbpBxLlhD9zeVNRAp3l3C5TzZSf6C0tftz+lmZoBTxzTW1TXJxzPHtyCDt2t+P0UCzjfacs4LYrmqk6TjElj8Xsj8m49cqbMaB5Jr1d51Zw37WtaMnzXFndvh3yrl0Zr8e3bkVs27a8/tuTJL8f6btejPoQIg88ULT8KsW4j43EdPzgtW785PUuxLJsONpQpeCOa5eXdaDTCuPLdPmJBAZ86rJGXL8ye+nqUma1nCbiXXfdVexrmLNYLHZX6vf3/+Zc9ZzRcQNPHO3HioATIa+a7a+SPItEInA68h+0MkyOx4/0445dJ/DMiUHEphaTR6Kc8NfevgwtlRREK1S7zESVBGxZWoG+sI4jfZGJ1zkSSXtjuolNIU9ZrW5YoV0KrS8cx8MvteMrz7ZlHMUBkkkjL6nH/7m4HkqREqCVY7tMhzGGdXVuNPs1vHBqCOm32rbBKHafHcGbmnwFK/1MbVM8r7aP4O6nT+J/9vVkXaRYUqHhgbedh3VlvkhRbOo/PgRp717UhoewpW0vXgquwIB2rk1Gxw3sOtqP5QEn6vM4VzaWL4P4wgsQRs7tJjXqQ4jefhvg9szwN3Mr9f1IJ4yMgA0OwbjiioJdR7pC3sdiuokf7+vGXU+dxCtnR5Bluow/3/8kto3uh7blyoJck1VZYXxJzJUr0TsWzzJXHkYkbmJzfXnNles85+5TmqZ9qYiXAsDGQZMnjvSjY2R84r24ybHr2AAqHDJWVJd+eSyryfcNh3OO59qGcNeTJ/G/b/RhbGptTAB+TcJHLwzhE5c2wk3HcQBYYyAAAFFguLTJC00S8MqUhJL7usZwYiCCNzX5yiZ3hVXapRBGxw1899VO3PN0G/Z1jyHb3sb1dW7cuWUJ3tJSUdQJQTm1y1y1VDiwud6D59uGEE3Li9AbjuM3JwawOeRBhSP/K5TUNoV3uDeM+3/Thm//oTNjOz8AyCLD9ed5cefWpQi4lCJcIUkn//SnEDo7AQDeeATXnXgFhyobcdZzboU6bnI8eWwAfoeMlfmaK7s90C+7FGxwCNzng7FmTSJgUuDdHenfj3Tc54N+3XUFvZaUQtzHdJPjsTf6cMeuE3j25BDGs0RLGkZ6cNfzP8C7D/8OrIjfD6uwyvgisMRc2SELGSkH9neP4Vh/BG9q8kIukyqUVguaSLN/xJq+ct1SPPT8afzi0LkzkiYHvva70zgzFMVfXVQPsUwewErd3o5RPPxyO/Z3Z9Y0BxLbgt+ztgZ/tqaGcpdYGGMM711fi3qvinufOTlpl9CzJ4fQ9csj+PI1rVQlpUTMdoQOAJZWOvDRC4O4qMFbVqsndrO6xoV/vXE5bt95HCfTEtN1jcbx8V8cxp1Xt+DiRm8Rr5Dk0pmhGB55pR1PH89ewFBgwHXLKvEXm4KQxkcLttuIzIwHJm/f98SjeOjph3H/H/8tfuZsnnjd5MCDybnyX+drrlwXLOxRnCymfj8mXq8qzSPBsx2hA4CqyDA+8trjuPHYi5DNxLhcqt8Pu2KM4aZ1tQh5MufKz7UN4RO/PIIvX7MUARfNlQvNtjtNukfH8aZGL5yykJFQcn93GMf6I7i0jKJxxZaPKO3RvjC+8uwp7HilAz1jWVa5BIZ3nV+NL21pwSVNPmrrLKwSPU/XXKHhwgYPnj81hEjaynVfOI6njw9gU8hd8mdrrdguuaLP4Qhd0KPgk5c24BOXNqDRp1kmYFLK7bJYHlXC1vMqcaQvjPbhybs8nzo+AK8mYVW1K2//PrVN/vWF4/jmS+34+2fbcHyaqg2XN/vwpS0teMfKANyKSO1iIdmOxfD6IDb/3YfgqvRnrFwf6A7jWF/prlxb5ZhQunz1lz8kj9D9eJojdC5ZwF8sc+HeRx/ChhP7ICbzWRb7+2EVVryPJebK3sy5ckTHU8cHsDHkLvlFRqvtNLFtItg9aVv8f3tyEPc+0zZp6zAALKty4MvXtKKato3mXS6TKLWnJYrM9tPJAFyzrBIf2hREnYfadiZWSG41na7Rcdz++LGMyblDFnDHVUvwpiZfcS6sAKzcLguVOkK3Y3fHtCWlKzQJH9xYhz9aWWXJSXoptkuu6SbHP79wBj8/mFkh40/Or8bHLs7PyjW1Tf6Mjhv44d4u/Hh/T8Y8KmV9nRsfvSiE82smB8aoXSymswPqjkdgdHZCrKtD7JabJ47F/K5tCPc8fTKjjc9LzpVrSnGunPx+sL4+8KqqSd+PYsh1fzncG8a3Xm7Hy9NUI5RFhj9eXY33r69NlLW12PfDKqx8H+seHcftO49l5ILTJAF3XL0El5bwXNlqiWBLImgCJG4cn995PGsZrfuuacWyQI7ObqZuOL294IEA3XCScnHD6Q/H8d09nfjFoT7oZvafy8uafLj5giBaKcnrnFh5IACA8LiBu58+id+fnlxSTWDAxy9pwLvOry7SleWX1dtlvvZ0jODhl9txoDuc9X2nLOCmdbX40zXVlt7KX2rtki+cc/xkfw++/vuzGYHtSxq9uOOq3Jd5p7bJvZhu4v8d6MH393bNcoQuhIsasicgpHaxpunaZaa58pevacXyXM2VSVa56i9zPUL3l5uCqHGXYDAsx6x+H5tprvyxi+vxJyVaKpqCJoswU9AEALrHxvH5ncdxNC3rMJCMxl21BJc2LzIaZ8HyZVaxmBvO2LiB/369Gz96vXvaVa61tS589MIQ1tZRdv75sPpAACRWrv/192fx0wM9Ge+9c3UAH7+koeQSxNqhXebiSF8YO17uwItnhrO+LwsM71wdwPs31MGvWT+FVqm0S6E83zaEu7OsXC+t1HDfNUtzOlmntskd3eTYeaQf//6H7EdfASDkUXDzBUFc1VoBYYbJOLWLNc3ULj3JufKRLHPlbVc1483NVDY6XxbbX/rCcfznHzrxv2/0Zq2GAySO0N18QRBL8lxaupTY4T6mmxzfePEsfrI/y1x5VQAff1PpzZWtFjSxbU6TzrTKOSkuRcTW8ypwYiAyKQmSnjxz7ZJFrK5xLjgaZ8XyZVaxkPOAMd3E/9vfgzuePIGXzoxk3V3SWqHhs1c04SMXhlDroXLS82XFc5pTCYzh4kYvvKqEl88OT1q5PtQTxhs9YVza5INiweMcC2WHdplJ+3AMDz1/Bg89fwZnhzMTzgkMuHZZJe55ayuuaq2AVqQSwvNl93YptEa/hosbvXjh1DDCaRXNBiI6njw2gPVBT86S1VHbLF56FbrHDvdNarOUCoeEv74ohM9e0YTzqmafL1G7WNNM7ZKaK58ciGbMlZ8+PgjnIufKZHoL7S8jMR3febUT9zx9Egd6wtNWobvj6iV4z7pa+AtQ0ayU2OE+NuNcuTeMQz1jJTdXppwmizDbTpMUw+T4xktn8eN9mdG4G1YG8LeXLiwap33yk5D27Ml4Xd+4EdEHH5z31ysl84nSGibHzqP9+I8/dKBrNPsqV51bwYc3B7FlaQVVQVoEO0TP0/3+9BC+9NRJRKZM5lsrNNx37VLUlsg2U7u1S0p/OI7v7OnELw5Ov8p1WbMPt1wQRIsNV7ns2i7F1jsWx+d3HsPhKSvXqsiw7aoluHzJ4leuqW0W59X2xBG6gz25PUJH7WJNc2kXw+T45ktn8aMsc+U/WlmFT1zaWHIr18U23/6SOkL3X3u7MDLNEbrzqhz4yAXTH6Ejs7PbfezF5Fx5auC7pSKxy7NU8j1abaeJ9fdLL4AoMHz8kgY0elU89MIZpG9gePRQLzpGYrhzSwvc8zxzXW7ly3KNc47nTw3jW7vbJ5WtTOfXJPz5xjpcv7KqpKKlZG4uafThX65fjtt3HkN32rbx4wNR/PXP38CX39qKVTX5q9BBspvLEbp1dYkjdGtq6QhduQm4ZDx0/TLc+0wbnmsbmng9ZnDcsesE/uqiEN6ztoYm9EVwpDeMb+1ux0tnpkkUKTD88eoA3meTI3Qkd0SB4WOXNKDep+Gh509Pmiv/4lAfOkbGcefVS+BR6eei0FJV6P4jB0foSOm5uNGHf/mjxFw5ffH5xEAU/+fnb+Dea1qxmubKOVeSO03SvXRmGF968gTGpkTjlvg13HdtK4LzOfJBOU2mNVuU9rXOUTz8Ujv2dY9lfd8hC3jP2hq8e01NzhMIljO7Rc9T+sJxfOGJ4zg0ZVVUERk+f2UzrmypKNKV5YZd2iWmm3j0YC++u6dzhkSRGj5yYQgXN3ht/1Bsl3axKpNzPPxSO374enfGe+9YUYW/u2zhK9fUNvNzNq0KXTapI3R/uSm4qB181C7WNN92efnMMO7K1VyZTGu2duGc47cnh7BjdztODWUefQUSR+j+YmMd3rHCmlXo7Miu97EZ58pvacaVrfaeK1ttp0nJB00A4Hh/BLfvPI6u0cl5UCo0Cduvac0ooTcjKteV1XQ3nGN9EXxrd3tGxucUWWC4YVUAH9xAZzDzwa4DAQBEdRNffqYNz57MzA7/kQuDeN+6Wts+pFu9XeZzhG7reaWzymX1drGLXx7qxdd+N3nlGgA2hdz40paWBa1cU9vMTV84ju++2olfHJr+CN2bk4kic3GEjtrFmhbSLicGIrjt8cy5sl+TcO9bW3F+La1cL9ZM7TLbETqXLOA9NqhCZ0d2vo9FdRP3/aYNvzmRZa58QRDvW2/fuTIFTRZhoUETIHEW/wtPHM+4Gckiw+1XNOPqpfaOxhXb1BtOx0hilWvX0YGsCasYgGuWVeIvN9XRCkYe2XkgABIr1zt2d+D7e7sy3nvb8kp86rJGW660WLVdOOf43akh7Hi5AycHZz5C90crS2+Vy6rtYke7zw7jzidPYmx88g6lJp+K+65dinrv/O771DYzGx038N+vdeF/9vVMe4RufZ0bH70wlNOHX2qXpNSCWm8veCBQ9AW1hbZLfziObbuOZ5SPl0WG265oxhaaKy9KtnY50hvGw7vb8fJ0R+hEhj9eRUfo8snu97GZ5srXLavErW+251yZgiaLsJigCZDYan7/b9rwdJZo3M2bg/jABvtG44otdcMZiMTx3Ve78Oih3qzVcADg0iYvbrkghNZK+yWKtBu7DwQpvzrch6/+9lTGyumGoBt3b2mB12YTCSu2y96OUTz8cjv2T3OEzpk8QvdnJXyEzortYmdtA1HctvMYOqZUu/NpErZvbZlXCXlqm+xiuomfH+zF92Y8QufARy8M4qI8HKGjdoElj24vpl1iuon7n23D08cz58of3hzEB2muvGDp7XJmKIZvv9KOp7J8n4HcHaEjsyuV+9h0c+X1dW7cs9V+c2UKmizCYoMmQCIa9+1XOvC9PZnRuGuT0ThKQDpTLvjhAAAgAElEQVR/p7t6setMHP89Q6LINbWJRJHr5jFRJotTKgMBkNi6+sVdJzA6ZeW60afivmuWosFnnx1LVmqXuRyhu3F1AB9YX/pH6KzULqViMBLHtidOZOSzkgWGz13RhK3nze37TW0zWeoI3b+/0jEpaXa6oEfBzZuDuHpp/o7QUbsA6vbtkHftyng9vnUrYtu2FeGKFt8uJuf491c68N0sc+VrzqvApy9vornyAvT19wOaB995tRO/nOUI3S0XBLHEhlXo7KiU7mOvto/gjidPZFRbavCquP/aVjT4tCJd2fxR0GQRchE0Sfn14T589bnTGbsh1te5cffWFvhsFo0rhqhu4vRQFK+2j+J7r3ZgeDx7sKSlIpEo8k2N9k8UaTelNBAAwKnBxMp1+/DklWuvKmL7W1ttE5ArdrtEdRNtg1H8z+vdePIYHaFLKXa7lKqYbuLvf3sqa1LSv9xUh7/YWDfr2EBtkxDTTbx0ZhiP7J7+CF2FJuGDBTpCR+0CaJ/8JKQ9ezJe1zduRPTBB4twRblrl8eP9OEffps5V15X58LdW1vpuMg8jMR0/MdLbfjfY6MzH6G7KDS/XItk0UrtPjbTXPmera1YH7THXJmCJouQy6AJAOzpGMEdu05kbGmtT0bjGm0UjcsXk3N0jY7j9FAMpwejiV+HYjg9FJ12dSul1p1Y5dqytALiAismkMUptYEAAAajOu7YdRyvdU5euZYEhs9e3oRrlmX5/y2R8+bzYXKO7tE4zgxFcSrZZ1N9d7rkrimXNSUSRZbbEbpS7C9WwTnHf/yhE//5amfGe1uXVuAzlzdBlaZ/wC+ntuGcoyccx+nBc/321FAUZ4Zi6BwZzxrkBBJH6G4qcKLIcmqX6ZTiTpN0eztG8cVdxzPmyiGvgvuvWYomP82VUzjn6A3HJ82VU/24c3Q8Izl2Sj6P0JHZleJ9bKa58mcub8S1y6qKdGVzR0GTRch10AQAzgxFcdvjx3FmeHJpL48q4p6tLdgQ9EzzN0vLSEyfdIM/NRTDmaEozgzHMD7d/sFp+DQJH9xQixtWBWj7ZpGV4kAAAOOGiX/47Sk8cTRz5fqDG2rxoc3Bc9vRS+y8+VSj40ZaQPPcr2eGYojNs++uTR6hm0+uiVJSqv3FSp442o+/f/YU4lOeHtbUurB9a8u0R8BKsW3C4wZOD59bkDiV7L9nhmLTrkRnIwsM71wdwPuLcISuFNtl3kp8jAGmnyu7lcRceWOoPObKKeG4gTPpgZHUwuJwDJH43PtuyJOoQpfPI3RkdqV6Hxs3THz1t6ewM8tc+QMbavHh9LmyBVHQZBHyETQBgOGoji/uOoG9naOTXpcEhlvf3Ii3Lbd+NG4udJOjffjcTf7U4LmHq4Govuiv75AFvHtNDd6ztnQTRdpNqQ4EQGJF57t7uvDtVzoy3ruq1Y/brmiGKgklsQqomxwdI7FJK8+ph6yByOL7Lh2hSyjl/mIlr3WO4ou7TmBoyrgT8ii479qlaM6ycm3XttHN1G7N1ILEucBmX3hxfVdgwDXnJRJF1nmKkyjSru2Sc6ndjH194FVVJbmbcbq5ssiAT1/eVDJz5RTDTNtpndZvTw3G0BueebfmbCo0CX++qQ7Xryi9KnR2VMr3sbnOla2IgiaLkK+gCQDEDRNffe40Hj/Sn/HeB9bX4sMXWDsal8I5R39ET0bAk9vyk6tY7SOxabcGLoTAgDq3gkafhiUehps2NaKixBNF2k0pDwQpTx4bwP3PtiE+ZVfF+TUubH9rC4K3f8YW58055xiMJnZ8nRqMTqxinRqKon04Nm3CuIVgAOo8Cpr9GrYsrcDVrXSEDiiP/mIVZ4djuO3xYzg9NHnl2qWIuHtLCzbXT165tnrbDEZ1nB5M7M48lXaUtX04lrGrZjEYgBq3grW1Lrx/Qy1aipwo0urtUq7y1S5xw8QDz53Gr7PMld+3vha32GSunG4kpk+aK6fmzmeHYxnzisWqdUl4x8rqgh6hI7Mrh/vYdHPl1TVObN/aikqn9Z7fKGiyCPkMmgCJh5bv7+3Ct3ZnRuOubPHj9rdYIxqnmxxDUR394TjODsem5CuIYWw8e9nBhfKqIpp8Ghp8Khr9Kpp8Ghp9KkJedeL4TTnccOyoXNplf9cYvvDEcQxOWbmucyt44OQTWPHrn2X8nWLsNOGcYyxu4vDZHgxDxenB2KSHrKmVgRbLo4po9Klo9GloSv7a4FNR71UtcS+zmnLpL1YxEtNx55Mn8If2zJXrv7usEdevDEy8ZoW2GTdMnB1O7vgaTuUqSIy/05X7XSiXIib7rIqGKf3XSn3XCu1CMuWzXWaaK1+xxI/PX9kMzUI/o0Ai2NM+cm7H18Si4lAsY8fbYjllAY3JeXKTX0uOwYl+PDY8SP3FgsrlPjbdXLnWreD+a1uLHoSfioImi5DvoEnKM8cH8OXftGXk8lhV7cS9b819NI5zjtFxA4NRHQORxH+DkTgGojoGI/q5XyNxDEb1nE/OgMSZ6Hpv4sbemHaTb/Rpc6okVC43HLspp3bpGInhtsePo21KRQmXxPDl3T/CZfuen3gtl+fNxw0TgxN9VMdgNJ7sw2l9N+21XK46A4ljhCGPgkb/5AerJp8KnyaV9XGb+Sqn/mIVusnxtedO47HDfRnv3bS2Bh+9KASBsby0zdSxN9VnByLxgoy9IgNC3nNjbfqvFQ579F3qM9ZUiHaZbq68MjlXrsrzynU8feyd0lcTY/G5MblnLJ7zndZBT6LvNk2aN2uonKHvUn+xpnJql46RGG5//HhG9TWXLOCuLS24sMGb92tILSAORuLonzRfTnv2jej4zUc3TfwdCprMU6GCJgBwoHsMX9h5PCPXR61bwX3XtM5aVSKmmxiKnvshmOmHYjCqZ5Rzy5eAUz43MfOfm6zVuZVFbc8vpxuOnZRbu4zEdHzpqZPYfXby/UFgwKcHX8e7zrw663lzk3OMxIyJYMfkCVlaUCQ5Icv17pDpVDqkxI4R/+TASJ1HhURHa3Ki3PqLVXDO8d+vd+ObL7VnVIa5vNmHL1y1ZM4rtFPH3vS+OlCksbdCk5LjbXL1Odl/Q177913qM9ZUqHY50J1YuZ6aW6vWLeO+a5bOqwIbT4696YsN6X01ffwt1Njr06RzgZGJebOGkEdZUC4S6i/WVG7tMjpu4K4nT2SdK3/i0kbcuCowzd+cXmoBcWLhf1K/zVyMmMsC4uAdV0z8noIm81TIoAmQjMbtPI6TA5OjcU5ZwC0XhABg4gdhYEpQZGwe2bNzTZOESTtFmvyJbYGNXjVvCVrL7YZjF+XYLrrJ8dDzp/GLQ5kr139yfjU213tmnJANRvSc5g+ZD1Vk57bi+zU0eNWJ/uum5Mp5V479xUqePTGIe585mVH1aXnAgQ+v8UF1urNPwiww9ioiQ4P33Ipz6hhrg0+FR519t6ZdUZ+xpkK2S+fIOG7feQwnssyVt125BK2VjozFhvTFw/4ij72ywFCfHhhJ+9U7h53W80H9xZrKsV1mmiv/2Zpq/NVF9RgbN849484QABmI6jlPDQHYOGjCGHsQwH9yzjMzKhZIoYMmQCIa96WnTuDlM4X59+aCIRH99jsk1Ljkc/kK/InVq2qnXPBtveV4w7GDcm0Xzjn+Z18PvvHi2YyV62JTRAa/KqK5wjFpx0ijX0O1S7ZdEr1SUq79xUoO9YTx+Z3H0J+DqlC5xgBUJ8fc9PxejT4NNe7y7LvUZ6yp0O0ylpwrv2ShufJUAac8sVMzPTBSu8id1vNB/cWayrVdZporM6Do82erBU3mE0IVATzOGOsB8F0A/8U5P5Ofy7IOtyLivmuW4p9fOIOfH+zN27/jkAVUJAMhFZqc/DX5Z4eECocMv5b4vVeVqNIFITNgjOHda2sQ8irY/nQbonr+Vp8FBvjUc3010U/lSb9P788OSUD/wEBZDtCEzGZltRP/duMK3L7zGI71R2f/C4s029jr1871ZZ9GYy8h2bgUEV++Zin+5YUz+Fke58rppht7U3Pl9LG3wiHBQdVqCJkkNVeu96q45+mTk+bK+Q6YaJKQ1m/Txtq0Mdhq5nU8hzEmAngbgPcDuB7AiwC+A+CnnPPRWf7udQAeQiL4soNzfv+U95sA/CcAf/Izt3HOH0v/zKSdJn84nJMkjnPFOcdP9vfg67+f28q1wJAx4Tr3w5C4kVcm3/c7JMtlGp+vco3SWh21C3C4N4zP7zyO3nB8zn/HKQsZD1FTg5ep1z0LCGJSu1gTtYt1hMcN3P30Sfz+9PC8/t5cxt7UhMyv0YPUYlGfsaZitQvnHD/d34Ovv3h2QYlXs429536VE/PmRYy9xUb9xZqoXRY2V04nMMwQAJEn5tHzGXtLpnoOY+x8AN8HsBZAGMAPAdzJOT+b5bMigMMA3grgDICXAbyXc34g7TMPA3iVc/4NxthqAI9xzpekf530oMkbV/1RzqpfzMcf2kfwswM9AJA1KlaR/MFwq2JZbdWlG441Ubsk9IyN45svtePUUPTcylT6LpApD1n5LulJ7WJN1C7WYpgc33m1E78+0g8BJgIuddoVqdRDlqfMxt5ioz5jTcVul9+fHsJDz59Bz1gcfm1qX00+RGXZmWmlctr5UOx2IdlRuyT0jI3j7qdO4vWuMQCJHWQVU/tvsr8WYuy1WtBkXntfGGNeAH8G4AMA1gH4CYCPATgF4FYAv0q+PtVFAI5yzo8nv84PAdwI4EDaZziAVJ0jH4D2ma5FPNsOdccjiG3bNp//hUXbFPJgU1ojEkKsr9qlYNtVS4p9GYSQeRAFhg9tDuJDm4M0qSXERi5p9OGS9/jAObdF6WxCSGKu/E/XL8PouAFVEqAsoEJUKZtz0IQx9mMA1wJ4FsC/AfgZ5zyW9v6nAAxN89frAZxO+/MZABdP+cxdAHYyxv4vABeArbNdk9HZib7+/rn+L5A8Gh6erulJMVG7WBO1izVRu1gXtY01UbtYE7WLNVG7WBO1S6bxYl8AAFhsk8J8dpr8HsDHOeed2d7knJuMsdpFXMt7AfwH5/wBxtibAHyXMbaGcz5tBkexro5WniyE2sKaqF2sidrFmqhdrIvaxpqoXayJ2sWaqF2sidqFzGbOQRPO+Vfn8JnwNG+dBdCY9ueG5GvpbgZwXfLrvMAY0wAEAHRn+4JGfQixW26e7ZIIIYQQQgghhBBCFqRQh5VeBrCMMdbCGFMA3ATg0SmfOQVgCwAwxlYB0AD0TPcFi5EElhBCCCGEEEIIIeWjIEETzrkO4OMAHgdwEMCPOOf7GWN3M8ZuSH7sVgAfYYztBfADAH/JZyrtQwETQgghhBBCCCGE5NG8qucsBuf8MQCPTXntjrTfHwBwWaGuhxBCCCGEEEIIIWQmVEuIEEIIIYQQQgghJAsKmhBCCCGEEEIIIYRkUbDjOYQQQgixic4OqDseAevtBQ8EEtXqKJcYIYQQQsoQBU0IIYQQck5nBxy33grxbPvES8LBA1S1jhBCCCFliY7nEEIIIWSCuuORSQETABDPtkPd8UiRrogQQgghpHhopwkhJSammzA4IAlAzDCLfTmEEJthvb3ZX+/rK/CVEEIIIYQUHwVNCLExw+SIGRyMAZokwCkLCHoU+B0yVEnAPn0Uo7oJTaJNZYSQueGBQPbXq6oKfCWEEEIIIcVHQRNCbIJzjnGDT+wicSoiKpwSKh0yXIoIgbGMv1PtlFDt0nC8LwqHTIETQsjsYrfcDOHggUlHdIz6UCIZLCGEEGJzUcOEyQGXLIAhsQCpipnzaEJSKGhCiEXpJse4ySGAwyGLcMoSGp0SvJoERZx7AKTWrcI0gZODUThoxwkhlqSbHOMTx+kYHBIDyxIILYi6ICIPPJContPXB15VRdVzCCGE2FZijOWQRQavKqLJr8GnSRAFhi4hjLAso3N0nObJZFoUNCHEAjhPRLkNzqGKApyKiCpFQKVTgVMWFv3wFPSq4ADaBiNwSGJuLpoQMme6yRE3THAAYAwSAxRRgCwyyKIApyzCrQrQJBGmaWJf1xhEBohC8QInsW3bivNvE0IIIYtgco6oziGyxM7sgEtBtStxdD2blkoHNEnAyQHamU2yo6AJIUWQWlUWGYMmC3CpEpodMjyqCHkeu0jmI5QMnJwejFKOE0JyLBUUMTnAhClBESERCHUrAjRZhCKyrMfpzhGwqd6LfZ2jGDfMee0sI4QQQspRqhCCUxbg1SQscytwK+KcFx6DXhWaLOCNnjGo4uIXLElpoaAJIXlmco6oYQKcQZUYnLKIgCqh0inBIRX2plzvVWFyjjNDMdqCSMg8ZNspIosClAUFRWYnCQzrg24c7g2jP6JTfyXEgtLHd0ViiOucVqkJKZDUAqQkCvCqIkJeBZVOBdIidmhWOGSsq3Pj9a4xyAIWPZaT0kFBE0JyLFHRJrGLxKGI8MgiWl0y3Iq0qBt5rjT6NIBznB0epx0nhKSJGSbCcQMAgyTkNygyF4wxrKh24fRgBGeGxulhjJCpOjsSuXd6e8EDgbzn3okbJuImnxjf3bKIVqcMt5oY33tGx3GkLwynTMdgCck1zjkiugmBAU5ZQq1bQsClwJHj/uZUJGwKefB65yh0k1ti7k6Kj4ImhORQ3DAhiwI21npyfhPPpUa/AxxAOwVOCElMxAyOBo+CZSEPVEmw1OpSo98BhyzicF8ETuqvhCR0dsBx662TqjwJBw8g8sADOQmccM4R1RO7y1QpkXeo2qWg0ilBm2aXaLVbgSQyHOwJU18lJAfGDRO6yaFKAjyqhJYqGV5VyvsYLYsCNoQ8ONg9htFxAyodky17FDQhJEeiugm/Q8KKgNMW5yCb/A6YHOgcocAJKV+6ycHBsTHoxnB/1LLBzoBLgSYL2N81BlkozE4XQqxM3fHIpIAJAIhn26HueGRBSYyn5hpzqxKWOGR4tPntEq1wyFhb68K+rlFKvE7IPKV2a0sCg0sRUefRUOWU85bvbyYCYzi/1o1j/RH0jNJcudxR0ISQHAjrBuq9Kpr9jmJfyrwsqXCAc6BrbBwaRdFJmYnqJryaiBUBF0SBYbjYFzQLd3LL8Gu0ZZgQsN7e7K/39c36d9N3kSiiAJeS21xjHlXC+jo3XuscgyoWsXw4IRbHU3mBwOCUBVS5ZNS4FUsdcVta6YAjWVnHScdkyxYFTQhZpHDcxLIqJ6rdSrEvZUFaKh0wAYqik7ISiZto8KuJHD82IosCNoY8ONQzhpGYCVWkhzFSnnggkP31qqqM1/T0XGNpFeu889xFMh9ORcKGoBuvdY5CooSShEwSN0xwxuBTJSxxJfqiaOGFgJBXhUMWcKh7zLI7Ukl+UdCEkAXinCNmcKytc8Gj2rsrLa10gHOOvrBOD2GkpJmcY9zgWF3rgk+zZ78VGMPqGjdO9EfQORqjIwCkLMVuuRnCwQOTjugY9SFEb/5wsvQohyomkjhXqSKqnHLBK9ZpsoiNIQ/2dIyCc27ph0JCCiWqm6hwSFgWcNoqmFjhkLE+GQhVRGvlPiP5Z88ZIyFFlsiDAGyq90ApkWMt51U5wXmivCkFTkgpGjdNKIKAzfXuopyPzrWWSgecioBjfRFLbWUmpCDqgog88ACkHY9gvH8IrKoCws0fgqupAc1OGR5VtEQ/l0WBjtURkhSOG2ipcCDoVYt9KQviVCRsrvdSfy5DFDQhZJ5ihgmnLGJ1javkVo2WBZw43DuGgYhOmcJJSYnoBqpdCpZWOkoqv0CtW4UmiTjYTbkTSPkJV9XAf9cXscLvgFMu7C6S+RAFhvVBN/Z1jiKmm5YI5hBSSIbJoXOOtXVu2+/OTh2TPdA1hrE4VdYpF9TKhMxDVDdR6ZCxprb0AiYpywMu+DUJMcMs9qUQsmicc0TiBs6rdOK8KntUtpovnyZhY8gDnSd2wRFS6lI5SlZWu7C6xg2XIlq+bwuMYW2dG25VpPGVlJWYYUIWGTbXe20fMElJVNZxocopI6JTfy4HFDQhZI4iuokGn4ZlNikpvBjLA074KHBCbE5PrmxtCHlsm6h5rlQpcQRAERn1W1LSInETXlXCBfVeVDrlYl/OvDDGsLLahQqHjCg9aJEyENYN1LgUrK1zl9xRFsYYzqtyosmvUeCkDFDQhJA5iMQNrAg40eCz5xnM+WKMYUXACa8qYtykgYDYT1Q34VQEbAp5yybTvSgkVrIr6YGMlKC4YSJumlhd68Lyaqdtd3syxrA84EStW6EHLVKyOOeI6AZWBFxoKbFjsVPVe1WsCDipP5c4CpoQMgOTJ7YArw+6bbeitVipFTG3QoETYi/huIF6n4rVNW7bPlgtFGMMywJONPo1hOPUb0lpCMcNVLoUbK732rbq1VQtlQ40eBVEdKPYl0JITiV2eQIbgx5UlcncudIpY22dCzHDhMnpmGwpoqAJIdNI5QbYFPLAqZTGJG2+GGNYVe2CSxYRpy3/xOJSQc7za91o9GnFvpyiqveqWFXjRFQ3wGkCR2wqZiRKB68LurG00lFyJT4b/Q4s8TtohZqUjKhhwqUI2FzvgVYmuzxT3IqETSEPTMovVpIoaEJIFjGDw6UI2BDylH2We8YYVte44KDACbGwmGFCYAybQp6SWYlerAqHjPVBD+Imh0ETOGIjnHOE4ybqPAo2hTxwl/DCRdCrYlmVA+E47Tgh9haOG2jwalhV4y65AOdcyaKATfUeaJJA+cVKTMGeBhlj1zHG3mCMHWWM3Zbl/QcZY3uS/x1mjA0W6toISReOG6hxyWV905+KJbOEa7JI0XNiORHdQJVTxvqgu+yDnFM5ZBGb6r0QBUZBT2ILMYODCQwbQ240+0s7F0JKwKVgdY0LYdpxQmwotctzTZ27bHL/zSRVWYfyi5WWgswuGWMigK8DeBuA1QDeyxhbnf4Zzvnfcc43cM43APhnAD8txLURki6iG1ha5UBLpaPYl2I5qcCJIjIKnBBLKIdywrkgCQzrg254NIkmcMSyzGR/rveq2BD0lE0C5xS/Q8baWhcicZOO1BHbSN/l6S2RcsK5kMov1uCjyjqlolBLchcBOMo5P845HwfwQwA3zvD59wL4QUGujBAkHr6iuonVNW7UuilKPh2BMaypc0OmwAkpMt3k0M3yKCecC6nEziEvVewg1hPRTUgCw+YGb1mvVHtUCRtCboybnAInxPIiuoGAS6FdnjNo8CUq69AuMvsr1E94PYDTaX8+k3wtA2OsGUALgKcKcF2EwDA5dM6xIeimXAhzILBEWVNJoMAJKY6Inkw011A+5YRzpcnvSOZPoAkcKT7DTCxYtFZqWBf0QKEHLzhkERtDiVxEVIWDWFH6Ls+lJV5OOBcqnTLWUWUd27PiE+JNAH7MOZ8xI1Zff3+BLofMxfDwULEvYUF0g0MWgRVVGob6o7Dn/8X0+vPYT2oYx4HBKEwTZVfWdbHs2l+sIKqbqHdLqFQV9HSP5fRr57O/WE2daOCNnhgkgdkidxP1GWtaTLvEDBNuWUSrXwHGoujKbXe2vZDIcbAvCg5AnGcfpf5iTaXQLobJwQGsrFRgjsVKot8WauwPiRyH+qLgnObNcxLyFPsKJilU0OQsgMa0PzckX8vmJgB/M9sXrKqszMFlkVyyW5tEdBOVDgnLA6WdC6G2tjaPX5tjb8cIDQALYLf+Umwm54ibHBdUu/K6Iyyf/cVqGoMmXuscBeeJvCdWR33GmubbLrrJYXCODVVOVDnlPF1VaQjWcbzeOQrd5PPuo9RfrMnO7RLVTXg1ESsCrpKb8xVq7A/VcRzoHkM4bkClnXW2UqjWehnAMsZYC2NMQSIw8ujUDzHGVgKoAPBCga6LlKlI3ESDV8GKaldJB0zyTRQY1gc9AAOVNCV5Q+WE80MWBWwMeeCQqTQiKYxw3IBbFXFBvZcCJnMgCgzrgm6okoBxk/ooKZ5w3ES9V8HqGnfJBUwKSRQY1tS6UEGVdWynIEETzrkO4OMAHgdwEMCPOOf7GWN3M8ZuSPvoTQB+yCn7FcmjiG5iWcCBRj9VyMmFVOCEgwInJPco0Vx+JUojulHtogSxJH/iholxw8TqGhdWVpfeKnU+CSzxkOVRJQpukoIzOUdMN7G6xknz5hxhjGF5wIl6n4oI5RezjYIt2XHOHwPw2JTX7pjy57sKdT2k/KS296+tc8Gt0Gp1LkkCw4aQB6+2j4BxboscCcTaUhWtzqtyUnWcAmitdMApCzgxEIFDouS6JHfCcRM1bhmtlQ4aGxaIMYZV1S4c6Q2jLxyHJlEAmeTfuGFCFgVsqqdFi3xo9GlwSAIO90bglOn7a3XUQqQs6CaHyYGNIQ8FTPJEEhg2BN0wKOM/WSQqJ1wcdR4Vq2vciMRNKndKFm3cNKHzxELFeVVOCpjkwLKAE7Vuhbb1k7yL6Cb8DhkbaJdnXgVcCtYFXYjqNO5aHfUCUvJihglNErCpnsoZ5pssCtgQ8sDgFDghC0PlhIvLp0nYGHJPBK4ImS/OOcJxA9VOBZtDHnhUWqjIpZZKBxp8GsL6jEUmCVmwcLIMeKkXSrAKtyJhU70HOgeNuxZGT5CkpEV1E1VOGefXumiVq0BkUcCGoAe6ySlqTuYlHDfQ6NOwqsZN/bWINFnEpnovFJFRDgUyLzHDBBiwIehGS6WDHrjypMGnYmmlg/IQkZzSTY5xw8SGOhdq3WqxL6esKKKATSEPFJFR0meLoqAJKVnhuIlGv4bzqihSXmipHSfjFDghc2Byjphh4vxaNxp8NFGzAlFgWFuXSBBLK9pkNpxzhHUTIY+CDUEPnHQMNu9q3SqWB5yUSJLkRMzgUCUBm+u91H+LJDXu+lQJUVqwsBwKmpCSk0ggaWBVjRP1XnoAKxYlWc40ZtA5TZKdyTnCcROySOWErYgxhtZKB5ZXORGJG9SPSVZR3YQgMGwOedDop90lhVTllLGqJtE/CVmocNxEnUfG2oveYF0AACAASURBVDoqJ1xsjDGsqHah3qNQQNRiaIZKSkqqQs76oIfyIViAkjyqs7dzFLIAOnJBAACx5JbyCoeM1bUaVYKwuIBLgUsRsa9zFIwlkj4TYiYrXK32awjSAkXR+B0y1gbd2Nc5BlVkFLQic5ZYZORYVeNEhUMu9uWQNI1+BzRJxJE+qqxjFdQKpGTEdBOMMWyupwSSVqLJIjaFPAAowVU5SyWH5OBortBwYaMXy6udFDCxCUcyz4lTEahyB0FYN6BKAtbXOChgYgFuRcL6oJuOxJI5ixsmTACbGzwUMLGoareCtXVUWccqaLZKbC31IGZyjka/hvVBN62CWlAqx4kmCZRYssyMGyaiugGnImJ90I2NIS/qPCrtOrIhUWBYXeNGvVehBJRlKmaYiJsmVle7cH6tG7JI/dgqHLKIjSEPdKpeR2YR0U14NQkbQ1RV0uo8aqKddJPDoIXHorLt8RyTc5p0lzHd5Bg3OSo0EcsCTrippKHlCYzh/FoXjvZF0BeO0w6DEsY5R0Q3oUoC6r0a6jwKnZMuIY1+BzyqhEM9YToOUCaMZFWNBp+KBp9GbW5RiVxiXjwzOIC4YUKmB2KSZtwwwQG0VmpUHcdGVEnApnov9nWNImaYUATq18Vg2ydNxhgNCGUoEjchCgx1Hhkhr0a7SmyGMYZlASccQzGcHozCQec0S0rcMKFzwE/BzJLnd8jYVO/B652jMGksLmlh3YBfk7Cuyk3tbAOSwHB+QMOgIGI4ZkKl3UBlL7VLIeRVUO/TaNHZhkSBYV2dG4d7wxiI6LTwWAS2ndFuCCZ/cKI6NBrES5phckQNEx5VxMpqJyqcdPbS7hp8KjSJ4XAvJbiyO845IgaHIjDUeRQEKZhZNlIVso7QJK4kxYzEIsXqahf8lPPAVgTGsKrGjbbBCNqHY3BIlOetHOkmh26aqHWraPJrtOPT5lKVddoGIzg7HIOT+nVB2TZokvrBOUMr1iUraphgSJTUW+vX6NxliQm4FKiSgP1dlPHfjnSTY9zg8GkiWqtU+DR6qCpHQnIsbh+O4eRABE5Kwm17hskRN000+Byo9yp0b7axZr8DDknE0b4w9c0yYpgcMZOjxiVjSYWDFjJKDPXr4rBt0CSlwafCrQh0trpEmMnyZ06ZobVCQ7WLJmylzKNK2BB04/WuUQgctApiA5G4CUlkqHHLCHlU2q5PAAAhrwqPKuJA9xgkxqgv21Q4bqDSIWEpHcUpGTVuBZos4AAtUJS8VBnwgFPBukqN+nAJo35deCXRm/wOOZkxnEqa2lVMNxHVTbgUCRuCLmwIeVHjVukmUAY0WcTGkBeikMhTRKxHNxNVqiSBYWWNExc2eNHsd9CEjEziUSVsrk/0ZaqSZS8xw4TBOdbUubGyhgImpcabqsBB8+SSlKok6ZAFbK73Ynm1k/pwGfAmFx51TpV1CsH2O01SVEnA5noPDvWMYYQSX9lCeoWNRr+GWjdV2ChXksCwPujGoZ4xSlxnIRHdhMCAapeCBp9KR+TIrFJ9+Vh/BD1j45RLweISR3E4GnwaHcUpcaokYFPIg/1do4m5F93PbS8xj+bwaiJW1rjgoKMaZSe18Livc5QKpORZyQRNgMTZ6tUTia/G4aCkdJaUKhfsV0UsDTjhpQobBIk8Ratq3DjRH0HnKPXfYplIvKyIWB5wotIh0YMUmRfGGM6rcsKnSjjSH4GDtg5bUjhuotIhYmkVrUqXC1FgWFvnxpG+CPrDcUrebGNh3YBbEbG+2gmXQvPocjax8NgbxhAlZc+bkuxlzX4HXLKII71haJJAkzWLSM+FUE8VNsg0Wiod0CQBJwaiVFmngKKGCQFApVPGGp8GlQZdskjVbgUuRcD+7jEwjoXd8zs7oO54BLUdHRCDQcRuuRmoC+b+YstI1DAhCwxr61zw0KJF2WGMYXnAmSikMBSlBQqbCesmnLKANbVuWnQkExhjWJWsrEMVs/KjZHtbwKXAKQvY1zUGkVGCyWKZWi7YT6vWZA6CXhWaLOBQ9xhtN80jk3NE4hwuhRIvk/xwKhI2hbw42D2Gsfg8j951dsBx660Qz7ZDBoD9+yEcPIDIAw9Q4GQBUkdxmvwagh7q6+WuwafCKQt4o4fGWTuI6CYUkWFVtRMVVAKcTKPZn1h4PNZH1exyraTDy05FwqZ6L2SRktIVWtQwETNM+BwSLmzwYl2dBxVOmSZpZM4qHDLWB92IGSZMTgmucsVMJowbNzncqoTNDR5KvEzyShQY1tS5UeeREYnPfSxWdzwC8Wz75K91th3qjkdyfYklLxw34VJFXNDgRchLfZ0kVDoT42xUN2ictaioYUI3OZYHnNhc76WACZlVrVvF+bVuRHUTnPp1zpTsTpMUKXl+M5GULk7bEPOIygWTXHMqiYz/r3WMwuScjnQtkG5yjBscqsTg0ySs8Ch0BpoUXLPfAa8q4Y2e8JxKJLLe3uyv9/Xl4/JKUszgkEXQURwyLaeSqHr1eucodJPGWauIGSYYGJYkCyXQfJrMh0+TsD7oxuudo3TiIkfKYgRNJaXzqDHarpQHMT2xq8SlSFhZrcBJD2MkhxRRwMZkxv+oYUIRKPA5F3HDRNzkcCoiqt0yat0qJQcjRVfhkLEx5MHrnaPALIFQHghkf72qKl+XVzJ0M1GCspGO4pA5kEUBG0IevEEV7Ipu3DDBATT6qO+SxXHIIjYlA6JUWWfxyurpttatwimLONA9BllgEOhGtGCJBzLArYhortDQKDsQqnYW+7JIiUpl/D/cG0Z/RKcdY9OI6SYMAG5ZRMirocYt0yBJLEeVBGyq9+BwbxiDUR3aND+jsVtuhnDwwKQjOkZ9KJEMlmSVKkEacMporXLQrgEyZ8KkCnaUSLLQUoHOkFdBvU+jZxSSE6nKOhQQXbyyCpoAgEeVsCm5ykVRt/nRTY6YYcKtiAh6NdR5lIkJWVeYOiHJL8YYViQzg58djsFJEzoAQEQ3wMDgVkSEKjVUORXahkksT2AMK6tdODscQ9vANDtA64KIPPAA1B2PwOjshFhXR9VzZhDVTagSw7qgC27a8UkWqKXSAadCiSQLRTc5dNNErVtFk1+j8ZvkXHpAtGMkRv16gcpyVE1tQzzSG8bADKtcJBko0TmcioBat4xajwqFvl+kiMo9M3hqJVkSAI8qosnvgt8h0aoUsaV6rwq3IuJQzzQ7QOuCiG3bhr7+flRVVhbnIoGJ0sestxc8ELBU8Ca1Qr2kQkOdRy3Iv8na2qBt346GtjZIzc2IbtsG3txckH+b5F/iOKeIg91jc8o/RObPMDliJkeNS8aSCtoVRvKvpdIBhyzgeH95zp8XqyyDJkAi6rai2oUzQzGcGozCKVMgICWR0NWEKgmocsoIeVWodByCWEi5TehSfVISBfhVCa1VMrwqle8mpcGnJXaA7usaw7hpvbxFens7pM/djnhHBwCAM4AfPoLx++4Dq6uDwBgEhoIHLtOP4iytchRshZq1tcH1zndCPHECCgC89BLE3bsx9rOfUeCkhPg0CRuCbrzeNQqB2zORZEQ3IIDBoYjgPBFc5EgELDgHTHBwMIBzAAxA4n0GTOrXuezfqfE84FSwrlKjHe+koOo8ifx2B3vGoIkCzSPnoWyDJikNPhVuRcDB7jA0qfQfvqaTuonLooAKh4RVXhUOikISC0tlBn+tcxSyUPgHlnxL7fLSZAY/VbwhJU4WBWwIunG0L4LecGEr3ZmcI25wxE0OgQEiY5BFBkUSIAsCKnf8K6pefxGaGU98Hgx6z0mMfeufMPLA16CbiTxfuslh8sRjl5H8vcnP/TqXBzWRMbA5PKhFdROaLGB90Fnw+4K2fTvEEycmvSaeOAFt+3ZEvvWtgl4LyS9NFrEp5LVVIva4YULniZx7ywMuVDpmXmBI9dFEn038XjdNGCYQN03EDcDgJuIGh2kmeqvJASPVt02e7POJr8V56jOJvs3AkEjtmui3DlnA+bVuWowkReN3yNgQ9JTs/DlfCjbSMsauA/AQABHADs75/Vk+824AdwHgAPZyzt9XiGvzO2RsDLnxetcYWBmVNU2tUokCUKHJWB5Q4KaShMRGHLI4kaOoFEolTq14U+emXV6kfDDGsCzghHc0hmN9udsBynkiIBI3Ew8wAkskx1MkAarIoIgCPKoIhyxClYSM+4jrzDFI42MZX9fVcQquBR6HmelBbdwwZw3EFPIozlRCcsdNxuudnQW+ElIIqUTsR/oSiditeKTdMDliBodDFjJy7s0mFaCc/PnFLxqmAqXpAZYBOYLGGveivzYhi+WQRSo1Pk8FeUJmjIkAvg7grQDOAHiZMfYo5/xA2meWAbgdwGWc8wHGWE0hri1Fk0VsrvfgYPcYRsdLO7twRDchAPA7JLRWKbTNn9haKkdRou8aUC04oZtJTDdhAnBRxRtCACSO33kUEfu6xiAyNqdjAbrJMW6YAJI7NgQGVRKgiAJkMZEo2aUkgiKyML9dpWYwe+4Ss65uzl9jqnw9qBVCPr4fxNoYY1gecOH0UBRnBmNwWOBIO+ccUYNDFBgqHRIafBo0Cy0yCIxBmPIsMUZjO7EQqqwzP4XaVnARgKOc8+MAwBj7IYAbARxI+8xHAHydcz4AAJzz7gJd2wSBMZxf60bbYATtw+MlVdY0apgAB7yqiGa/E/5ZtisSYicCY1hd48LRvgj6wnFLTZymSh2Fi+omVbwhZBpORcLm+sSxgIhuwkj2G4MndotIQiJgqogMsiDAqYhwqwI0SYQiZkkouwjRbdsg7t496UiK0dKC6LZtOfs37IS+H+Wr0afB9f/bu9cgue7yzuPfpy9z0ehiy8K62rIoiw0mYbkYhxe5UKRgSQpsiNkq2GR3vbuhNlVxIJsEYoKL3QKlaiFbbN4kIcUGcKUIZEM2WidRYjZkEyg28foS21iWjYWNsbz22GiwsWRZmsuzL84Z0xqfGY1mpO5zer6fqi5Nnz7d55nz00z3PP3//7vb5v7vPMe6AT3PnpwpJrtsGmvz0otG2TTWHUgd0jCY/2Sdh6ZOMHls8H/79k5prZt+NU12Ao/2XD8C/PCCfV4GEBFfo3i75T9l5l/1p7zT7b5gnIlumwePnmCswYtMnpyZYy6TDaMdLt80zuZ1XeetaWjND+0ff+Ykjz79/MDfCctMTs0ms1msk9BttxjrtBjrdpi4cIS9l2z051FaQrsVvHL7Bo48c5LO8232bFnHWLfFaLvV1yZj7t7N8f37Gdu3j9YTTzC3bdua/rSY3vMx8+1v07n00jV9Ptaazeu6vHLbBAcnF/nEq/NgfiTZ+pEOezaPsWVixOdP6Rx66eZxxjstvvXds3v9nPni9bvmKEZ8zq/ZRQQtoBXFa/VOuY5KRNAu1+5qt6JnTbEWIzUceFmnBSw6wF7gDcAu4CsR8UOZ+XTVzpOTk+e9oO2tWe7/zilarSLEJpgu/0ib6LbYMt5h83ibdgSzx47z1LHzd9ypqanz9+BasbWYSxfYNDfDw0+e6tuIk+nZZGYugWSk3WK0E4y2W2zotlg/2jr9E36mYeq57/HUk3X69StYmz8vTdAF1s0cY/rZKaaBZwdRxNgY7Nt3+rY+vA6prfJ8TE1NsXn+o6DX8vmomX78LtvZTg4dfZ65XDjN7NyYy+Tk7Bxj7RYXjrW5dKJLtxXkcXjqxUsMNYLPMfVkLoUWcBEzHH7yFEnZ5KBsasR8o6PY3m6VjZBW0G3BaCvotIqGSKfVKvf//n2XHICQwGzP9eliE+u3nr9vdgX69ar9MeCSnuu7ym29jgC3ZuY08HBEfIOiiXJb1QNu3dqfE7lrR3JfOTy4rmslzHfgJ0babFk3wtazWADrXOpXJjo7azGXrcAlJ2e4b/I4I+dwtNj07Byn5oonkW47GOsU73pvHGuzcazDWKe17He/1mIuTWAu9WU29WQu9dSPXHZsz3O+ntiJ6TlaLbhwvMvOjcP3qXH+vNSTuRS2AnsvLabGNHWmxfnSr99EtwF7I2IPRbPkXcDCT8bZD7wb+ExEbKGYrvNQn+pbVKdcNfybUyd46nh/PwYRTl9hfzaz/PCy8j8zxQK2W9d32bZh1MUjpR4bRju8ascG7nn82Re64svVu6hkp1xQcqzT5uL1I2wc6zDe6e/0AEmS6mZ+LcDVrocwvyC66+5Jg+fPXrW+NE0ycyYirgduoViv5NOZeTAiPgLcnpk3l7e9OSLuoxik8/7MPNqP+s4kIrj8onWsHznJQ1MnWNdd/kSrpZoeRNAu/qHdCtoRtMrhTfNDmbo9H4vYbUcx5GnBPpKqjXZavHrnRu594hjTs3MvaizOziUn54pFktsRjHWLdUfWjbTZNNpm3UjHj2GTJGkJ8+shPPzd5b9Gnpkrpt+sH2lz6YVjXDzhguiS6qtvY94y8wBwYMG2D/d8ncAvl5da2rZhlImRNgcnjzGXnLawzVJNj2IBSJse0iDMf6Ta/d95jqPPTdONcuRIt8V4t8WmsQ4T3bYjtSRJWqHtG0cZ77a4/6nnTl/Hq0dmcmJmjpFOi4vWddmxcZTRGn/anSTNG66Jgn2wYbTD63ZtYi6zXOnXpodUdxHBy18ywanZOUZsjkiSdM5dMN7lVdvX8/XJY7Ty+9NiT8zM0iK4YLzL3i0jrB/1zw9JzeJvrRVot4I2NkukprFhIknS+TPWbfPqHRs5OHmM49NzbBxp87ItE2x2nRJJDWbTRJIkSdI50WkFr9y2ntnz9HHEktRvNk0kSZIknTMRQcd+iaQh4Vh1SZIkSZKkCjZNJEmSJEmSKtg0kSRJaoB45BHG3/MeJt76Vsbf8x7ikUcGXZIkSUPPNU0kSZJqLh55hIm3v532ww+/sK19++0c37+f3L17gJVJkjTcHGkiSZJUc2P79p3WMAFoP/wwY/v2DagiSZLWBpsmkiRJNdd6/PHq7U880edKJElaW2yaSJIk1dzc9u3V27dt63MlkiStLTZNJEmSau75G29kds+e07bN7tnD8zfeOKCKJElaG1wIVpIkqeZy926O79/P2L59tJ54grlt23j+xhtdBFaSpPPMpokkSVID5O7dnPjUpwZdhiRJa4rTcyRJkiRJkirYNJEkSZIkSapg00SSJEmSJKmCTRNJkiRJkqQKNk0kSZIkSZIq2DSRJEmSJEmqYNNEkiRJkiSpgk0TSZIkSZKkCjZNJEmSJEmSKtg0kSRJkiRJqmDTRJIkSZIkqYJNE0mSJEmSpAp9a5pExFsi4oGIOBwRN1Tcfl1EPBURd5WXn+tXbZIkSZIkSQt1+nGQiGgDvw28CTgC3BYRN2fmfQt2/aPMvL4fNUmSJEmSJC2lXyNNrgIOZ+ZDmXkK+AJwTZ+OLUmSJEmSdNb61TTZCTzac/1IuW2hayPinoj4YkRc0p/SJEmSJEmSXqwv03OW6c+Az2fmyYj498BNwBsX23lycrJvhenMpqamBl2CKphLPZlLPZlLfZlNPZlLPZlLPZlLPZlLPW3dunXQJZymX02Tx4DekSO7ym0vyMyjPVf/G/DxpR6wbidSZlJX5lJP5lJP5lJfZlNP5lJP5lJP5lJP5qIz6df0nNuAvRGxJyJGgHcBN/fuEBHbe65eDRzqU22SJEmSJEkv0peRJpk5ExHXA7cAbeDTmXkwIj4C3J6ZNwPvjYirgRlgCriuH7VJkiRJkiRV6duaJpl5ADiwYNuHe77+IPDBftUjSZIkSZK0lH5Nz5EkSZIkSWoUmyaSJEmSJEkVbJpIkiRJkiRVsGkiSZIkSZJUwaaJJEmSJElSBZsmkiRJkiRJFWyaSJIkSZIkVbBpIkmSJEmSVMGmiSRJkiRJUgWbJpIkSZIkSRVsmkiSJEmSJFWwaSJJkiRJklTBpokkSZIkSVIFmyaSJEmSJEkVbJpIkiRJkiRVsGkiSZIkSZJUwaaJJEmSJElSBZsmkiRJkiRJFWyaSJIkSZIkVbBpIkmSJEmSVMGmiSRJkiRJUgWbJpIkSZIkSRVsmkiSJEmSJFWwaSJJkiRJklTBpokkSZIkSVIFmyaSJEmSJEkV+tY0iYi3RMQDEXE4Im5YYr9rIyIj4sp+1SZJkiRJkrRQX5omEdEGfhv4SeAK4N0RcUXFfhuA9wG39qMuSZIkSZKkxfRrpMlVwOHMfCgzTwFfAK6p2O+jwMeA5/tUlyRJkiRJUqV+NU12Ao/2XD9SbntBRLwGuCQz/6JPNUmSJEmSJC2qM+gCACKiBXwCuG6595mcnDxv9ejsTU1NDboEVTCXejKXejKX+jKbejKXejKXejKXejKXetq6deugSzhNv5omjwGX9FzfVW6btwH4QeBvIwJgG3BzRFydmbdXPWDdTqTMpK7MpZ7MpZ7Mpb7Mpp7MpZ7MpZ7MpZ7MRWfSr+k5twF7I2JPRIwA7wJunr8xM5/JzC2ZeVlmXgb8A7Bow0SSJEmSJOl860vTJDNngOuBW4BDwH/PzIMR8ZGIuLofNUiSJEmSJJ2Nvq1pkpkHgAMLtn14kX3f0I+aJEmSJEmSFtOv6TmSJEmSJEmNYtNEkiRJkiSpgk0TSZIkSZKkCjZNJEmSJEmSKkRmDrqGZXvmmWeaU6wkSZIkSVqxTZs2xaBrcKSJJEmSJElSBZsmkiRJkiRJFRo1PUeSJEmSJKlfHGkiSZIkSZJUYVVNk4i4JCL+d0TcFxEHI+J95fbNEfG/IuLB8t8Ly+0/EBF/HxEnI+JXFzzW+yLi3vJxfmmJY346Ip6MiHsXbP/NiLg/Iu6JiD+NiAsWuf9Z19ZEw5RNz+2vi4iZiHjnSs/LoA1TLhHx/oi4q7zcGxGzEbF5tedoEBqayz8vjzEXEVcuuO2DEXE4Ih6IiH+20vMyaMOUS0Rc1fPzcndEvGM152aQhimX8rZXlvUdjIivR8TYSs/NoA1TNhExEhGfKTO5OyLesIpTM1ANzaVyv4h4U0TcUeZyR0S8cbXnZ1CGLJfLIuJEfP955pOrPT+DMmS5dCPipvLn5VBEfHC152dQGprLR8t97oqIL0XEjjPVtqjMXPEF2A68pvx6A/AN4Arg48AN5fYbgI+VX18MvA74DeBXex7nB4F7gXVAB/hr4PJFjvljwGuAexdsfzPQKb/+2PwxK+5/VrU19TJM2ZTX28DfAAeAdw76/JrLi/Z5G/A3gz6/ayyXlwP/BPhb4Mqe7VcAdwOjwB7gm0B70OfYXIpj93xfT85fb9plyHLpAPcA/7S8flFTf16GMJtfAD7TU+cdQGvQ53gN5VK5H/BqYEdPPY8N+vyaSwJctvAxm3oZslz+BfCF8ut1wLeAywZ9jtdQLht7vn4v8MmlalvqsqqRJpn5eGbeWX79LHAI2AlcA9xU7nYT8PZynycz8zZgesFDvRy4NTOfy8wZ4O+An17kmF8Bpiq2f6m8L8A/ALsWKftsa2ukYcqm9IvAn1D8odFYQ5jLvHcDn1/k/rXXxFwy81BmPlBx0zUUT9AnM/Nh4DBwVfV3Xm/DlEvPsQHGgMYuKDZMuVC88LonM+8u9zuambPV33n9DVk2V1C8WUJmPgk8DVxZsV/tNTSXyv0y8x8z8/+V2w8C4xExutT3X1fDlMswGbJcEpiIiA4wDpwCvrfEt19bDc2l91xPUL72Wsnf/edsTZOIuIyi+3wrsDUzHy9vegLYeoa73wv8aERcFBHrgJ8CLllFOf8W+MtFbjvb2hqv6dlExE7gHcDvruK4tdP0XOaVx38LRVOr8RqUy2J2Ao/2XD9Sbmu0IciFiPjhiDgIfB34+Z4n/MYaglxeBmRE3BIRd0bEB1Zx/FoZgmzuBq6OiE5E7AFeu8oaaqGhuSy237XAnZl5chU11MKQ5LInIv4xIv4uIn50FcevjSHI5YvAceBx4NvAf8nMFzUBmqZJuUTEb0TEo8DPAB9e6UE6K73jgmLWU/zB9EuZ+b2IeOG2zMyIWPIdtcw8FBEfA75E8R/rLmBF7/RExIeAGeBzZ9p3ObU13ZBk81vAr2XmXG/9TTYkucx7G/C1IXkSaGQuw25YcsnMW4FXRMTLgZsi4i8z8/mV1FEHQ5JLB/gRimG6zwFfjog7MvPLK6mjLoYkm09TvCN5O/AI8H9WWkNdNDGXxfaLiFdQDIt/80qOXydDksvjwKWZeTQiXgvsj4hXLHinvVGGJJerymPuAC4EvhoRf52ZD62kjjpoWi6Z+SHgQ1GsJ3M98B9XcqxVjzSJiC7FiftcZv6PcvNkRGwvb5+fu72kzPz9zHxtZv4Y8F3gG1EsODO/oNHPL6OW64C3Aj+TWUxYimIRsbsi4sBKa2uqIcrmSuALEfEt4J3A70RE1RSRRhiiXOa9iwZPzZnXwFwW8xind+x3ldsaaYhy6a3lEHCMYl5vIw1RLkeAr2TmdzLzOYp1s15zpmPW2bBkk5kzmfkfMvNVmXkNcAHFHPpGamIuVfuV23cBfwr8q8z85nK+/7oallyymJJ7tPz6Dor1zF62vLNQP8OSC8WaJn+VmdNZTDP8Gg2dZgjNzKXH5yhGx63IqkaaREQAvw8cysxP9Nx0M/Cvgf9c/vs/l/FYF2fmkxFxKcW8ptdn5tPAq5ZZy1uADwA/Xr7wASAz/82CXc+6tiYapmwyc0/PY30W+PPM3L+cY9fNMOVSPsYm4MeBn13OMeuqobks5mbgDyPiExTvbOwF/u8y71srw5RLFNMLHs3MmYjYDfwAxYJwjTNMuQC3AB+IYojwKYrfZ/91mfetnWHKpswkMvN4RLwJmMnM+5Zz37ppYi6L7RfFp1T8BcXCj19bzjHrashyeQkwlZmzEfFSiuf+Ro5mGKZcKKbkvBH4g4iYAF5PMYK+cRqay97MfLC8eg1w/3Iev1KubhXdH6FYUOUeiqE1d1HMS7oI+DLwIMWKuJvL/bdRvKvzPYoFvY5QrmoLfBW4j2IO608scczPUwxBmy7v/+/KD6V5PAAAAnlJREFU7Ycp5vHP1/HJRe5/1rU18TJM2SzY57M0+9NzhioX4DrKVcGbfGloLu8o73cSmARu6bntQxTvMj0A/OSgz6+5JMC/pFg08S7gTuDtgz6/5vLCbT9bZnMv8PFBn1+zeeFn5jKK32GHypp3D/r8rrFcKvcDbuT7Q+rnLxcP+hybC9dy+nPM2wZ9fs0lAdYDf1xmcx/w/kGf3zWWy59QPLffA/wZsPNMtS12ifKOkiRJkiRJ6nHOPj1HkiRJkiRpmNg0kSRJkiRJqmDTRJIkSZIkqYJNE0mSJEmSpAo2TSRJkiRJkirYNJEkSbUUEZ+NiH2DrkOSJK1dNk0kSZIkSZIq2DSRJEmSJEmqYNNEkiTVQkS8OiLujIhnI+KPgLFy+5aI+POIeDoipiLiqxHhaxhJknTe+YJDkiQNXESMAPuBPwA2A38MXFve/CvAEeAlwFbg14EcQJmSJGmNsWkiSZLq4PVAF/itzJzOzC8Ct5W3TQPbgd3lbV/NTJsmkiTpvLNpIkmS6mAH8NiCZsgj5b+/CRwGvhQRD0XEDX2vTpIkrUk2TSRJUh08DuyMiOjZdilAZj6bmb+SmS8FrgZ+OSJ+YhBFSpKktcWmiSRJqoO/B2aA90ZENyJ+GrgKICLeGhGXlw2VZ4BZYG5wpUqSpLUinBIsSZLqICKuBD4FXA4cKDc/CBwF3kexEOx3gd/LzI8OpEhJkrSm2DSRJEmSJEmq4PQcSZIkSZKkCjZNJEmSJEmSKtg0kSRJkiRJqmDTRJIkSZIkqYJNE0mSJEmSpAo2TSRJkiRJkirYNJEkSZIkSapg00SSJEmSJKmCTRNJkiRJkqQK/x8IICEeyJTLQgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "f, ax = plt.subplots(1)\n", + "f.set_figheight(5)\n", + "f.set_figwidth(15)\n", + "ax.scatter(test.index, test['occ_rate'], color='r')\n", + "fig = model_simple.plot(forecast_simple, ax=ax)\n", + "ax.set_xbound(lower='2019-12-01',\n", + " upper='2019-12-31')\n", + "plot = plt.suptitle('December 2019 Forecast vs Actual')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The MSE is 0.016715338827504696\n" + ] + } + ], + "source": [ + "print('The MSE is {}'. format(mean_squared_error(y_true=test['occ_rate'], y_pred=forecast_simple['yhat'])))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The MAE is 0.09879151191670789\n" + ] + } + ], + "source": [ + "print('The MAE is {}'. format(mean_absolute_error(y_true=test['occ_rate'], y_pred=forecast_simple['yhat'])))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### A more sophisticated model: Adding public holiday as an indicator, remove a couple of outliers" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "from pandas.tseries.holiday import USFederalHolidayCalendar as calendar\n", + "\n", + "cal = calendar()\n", + "train_holidays = cal.holidays(start=train.index.min(),\n", + " end=train.index.max())\n", + "test_holidays = cal.holidays(start=test.index.min(),\n", + " end=test.index.max())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we have all US public holidays in 2019" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/tljh/user/lib/python3.6/site-packages/ipykernel_launcher.py:1: SettingWithCopyWarning:\n", + "\n", + "\n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + "\n", + "/opt/tljh/user/lib/python3.6/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning:\n", + "\n", + "\n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
dsholiday
02019-01-01USFederalHoliday
12019-01-21USFederalHoliday
22019-02-18USFederalHoliday
32019-05-27USFederalHoliday
42019-07-04USFederalHoliday
52019-09-02USFederalHoliday
62019-10-14USFederalHoliday
72019-11-11USFederalHoliday
82019-11-28USFederalHoliday
92019-12-25USFederalHoliday
\n", + "
" + ], + "text/plain": [ + " ds holiday\n", + "0 2019-01-01 USFederalHoliday\n", + "1 2019-01-21 USFederalHoliday\n", + "2 2019-02-18 USFederalHoliday\n", + "3 2019-05-27 USFederalHoliday\n", + "4 2019-07-04 USFederalHoliday\n", + "5 2019-09-02 USFederalHoliday\n", + "6 2019-10-14 USFederalHoliday\n", + "7 2019-11-11 USFederalHoliday\n", + "8 2019-11-28 USFederalHoliday\n", + "9 2019-12-25 USFederalHoliday" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['date'] = df.index.date\n", + "df['is_holiday'] = df.date.isin([d.date() for d in cal.holidays()])\n", + "holiday_df = df.loc[df['is_holiday']] \\\n", + " .reset_index() \\\n", + " .rename(columns={'date':'ds'})\n", + "holiday_df['holiday'] = 'USFederalHoliday'\n", + "holiday_df.drop(['occ_rate','Date','is_holiday'], axis=1, inplace=True)\n", + "holiday_df" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "holiday_df['ds'] = pd.to_datetime(holiday_df['ds'])" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "train = train.reset_index().rename(columns={'Date':'ds', 'occ_rate':'y'})\n", + "\n", + "train.loc[(train['ds'] >= '2019-01-13') & (train['ds'] <= '2019-01-15'), 'y'] = None\n", + "train.loc[(train['ds'] >= '2019-01-28') & (train['ds'] <= '2019-01-30'), 'y'] = None\n", + "train.loc[(train['ds'] >= '2019-02-11') & (train['ds'] <= '2019-02-12'), 'y'] = None" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:fbprophet:Disabling yearly seasonality. Run prophet with yearly_seasonality=True to override this.\n", + "INFO:fbprophet:Disabling daily seasonality. Run prophet with daily_seasonality=True to override this.\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model_with_holidays = Prophet(holidays=holiday_df)\n", + "model_with_holidays.fit(train)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "forecast_with_holidays = \\\n", + " model_with_holidays.predict(df=test.reset_index() \\\n", + " .rename(columns={'Date':'ds'}))" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAKACAYAAAAMzckjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde3xU9Z0//teZMzO5JxAkCLloYywkIQGEFCnFPlAMlHWzq1IKtQhBqQ+bfay2Vmu3LdKtLdSWRgv72Pa7ZaVVgX2w2sZampZL19oWiKhUKNjiT5BcNCW3mWRmzsy5fH5/nJkhkxsBJjOTOa/n48GDzMyZnM8bkvDic5WEEAJEREREZBm2eDeAiIiIiGKLAZCIiIjIYhgAiYiIiCyGAZCIiIjIYuzxbkC8uVyueDeBiIiIaEzl5OREPGYPIBEREZHFMAASERERWQwDYAJpb2+PdxNiymr1AtarmfUmP6vVbLV6AevVbJV6GQCJiIiILIYBkIiIiMhiGACJiIiILIYBkIiIiMhiGACJiIiILIYBkIiIiChGfKqOFpcfPT41ru2w/EkgRERERGNBCAFPQEenT0WvX4c3oEMzBBw2CbkZTkxIc8StbQyARERERFHS59fwd4+KvoAZ+AwATpsEu02CU7bBKZvBMN4YAImIiIiukGYIdHkD6AiGPtUQSJVtkG0SUu2JO9OOAZCIiIholELDun/3qHApGnyqAVkCUuy2cA/feMAASERERDQCQwi4fBo+7POj12/28qXZbbBJEtIdidvLNxIGQCIiIqIBNEOg0xPAheDQrgGBNHl89fKNhAGQiIiILM8QAj7VQGtvAO1GHzyqDhvMod1Enst3pRgAiYiIyFICuoE+v44eRYNP1eFTDQQMASGAPq+OKenmEG8yS5jqGhsbMX36dJSUlGDLli2DXj9//jwWL16MOXPmoLKyEvv27QMAqKqKtWvXoqKiAqWlpdi8eXP4PfX19SgvL8fMmTOxevVqKIoSs3qIiIgoMWiGQJvbj7c/6MPR8y4ca+nFXy940ONToeoCdpuEdLsNGQ4b7DYp3s2NiYQIgLquo66uDr/+9a9x6tQp7N69G6dOnYq45sknn8TKlSvx1ltvYc+ePfjCF74AANi7dy/8fj9OnDiBN954Az/+8Y9x7tw5tLa24oc//CGOHTuGkydPQtd17NmzJx7lERERUYypuoEWlx9//qAXTc1utLgUGEIgxW5DusOGNIcMm2SNsDeUhBgCbmpqQklJCYqLiwEAq1atQkNDA8rKysLXSJIEt9sNAHC5XJg2bVr4eY/HA03T4PP54HQ6kZ2dDZ/PF37O4XDA6/WG30NERETJJ6AbaO/1o9OnwRvQ4bBJcMi2cbtSdywlRABsbW1FYWFh+HFBQQGOHj0acc2mTZtQXV2Nbdu2wePx4MCBAwCAFStWoKGhAVOnToXX60V9fT1yc3MBAF/+8pdRVFSEtLQ0VFdXo7q6OnZFERER0ZgyhIDbr+HvvSr6VB2KqsMpm8O46Y4kWKo7hhIiAI7G7t27sW7dOjzyyCM4fPgw1qxZg5MnT6KpqQmyLKOtrQ3d3d1YtGgRlixZgokTJ6KhoQFnz57FhAkT8OlPfxrPP/88Pve5zw17j/b29hhWNFhXV1dc7x9rVqsXsF7NrDf5Wa1mq9ULJFbNQgh4VQOdPh29AQM+zQAApMgSpOBwru8q7+F2u67yM1yaEAKBFBmZqnNM7zNlypRhX0uIAJifn4/m5ubw45aWFuTn50dcs2PHDjQ2NgIAFixYAEVR0NHRgV27dmHZsmVwOBzIy8vDwoULcezYMUiShI985COYPHkyAOCuu+7Cn/70pxED4Eh/ULGSCG2IJavVC1ivZtab/KxWs9XqBeJXsxACPs1ApycAt19HX0CHJgRS023IzRy7+XuTgiOJY0UIgew0B6bkpo3pfUaSEIPiVVVVOHPmDM6ePYtAIIA9e/agpqYm4pqioiIcPHgQAHD69GkoioLJkyejqKgIhw4dAgB4PB4cOXIEM2bMQFFREY4cOQKv1wshBA4ePIjS0tKY10ZERESjYwgBt6LivS4f3v6wD03NbrzV1ov2PnO1bordhgyHDNkiK3XHUkL0ANrtdmzfvh1Lly6FrutYv349ysvLsXHjRsybNw81NTXYunUrNmzYgPr6ekiShJ07d0KSJNTV1aG2thbl5eUQQqC2thaVlZUAzPmBN910E+x2O+bMmYPPf/7zca6UiIiIQkJz+C54VHj8OnyqDgEJqXYJNklCit2GlHg3MklJQggR70bEk8s19mP9o9Xe3m6poQWr1QtYr2bWm/ysVrPV6gWiW7MQAp6AjgseFW6/uQmzIYA0uy08hy/eOru6YjYEfEMMh4BzcnIiHidEDyARERElJ5+qo8MTgMuvw+PXoQNIsUmQbRJS7VypGy8MgERERBQ1fs1Ap1dFt0+FJ6CH5+7ZbeaQLiUGBkAiIiK6YqpuoNunotOrojdgQNUEnDLgkG1wyjY42cmXkBgAiYiIaNT8moEun4purwqPakDVDcjBBRtOmwSnMzHm8tHIGACJiIhoWIpmoLnHB7dfhyegQzMAuw1wyjbzqDUbu/jGIwZAIiIiChNCwOXX0N4bgEvRcKHThykiA3abxCHdJMIASEREZHGGEOj2aWjv9aPXb27Nkmo3A1+qXYadGy8nHQZAIiIiCwroBrq9Ki54VPQFNAgAaXaZK3UtggGQiIjIAhTNQJdXhUvR4Ano8OsG7MHFG9yPz3oYAImIiJKMEAI+zUCHJwC3X4c3oEMzhLloQzb35LNz8YalMQASERGNc0II9AV0dHhU9AWCgU8IpATDHhdv0EAMgEREROOMbgh4Aho6vBp6/Rp8qgFdAKmyecRait2GlHg3khIaAyAREVECU3UDnoCObp8Gr6rDpxoIGAIIrtS1SRJSuXCDLhMDIBERUYLQDYFev4YLXhU+1YCi6lANARuAFLsNNkkKzt/jtix0dRgAiYiI4qR/4Ovz6/BpBiQIpMo2SBLn7tHYSZg+48bGRkyfPh0lJSXYsmXLoNfPnz+PxYsXY86cOaisrMS+ffsAAKqqYu3ataioqEBpaSk2b94MAPjrX/+K2bNnh39lZ2fj6aefjmlNRERE/am6gR6finc7vfjzB71oanHj1AUP+hQNEoB0uw1pdhmSxB4+GlsJ0QOo6zrq6uqwf/9+FBQUoKqqCjU1NSgrKwtf8+STT2LlypV48MEHcerUKSxfvhznzp3D3r174ff7ceLECXi9XpSVlWH16tWYPn06jh8/Hv78+fn5uPPOO+NVIhERWUxAN9Dn19HlM4dzfaq5FYuEi8O5aZy7R3GSEAGwqakJJSUlKC4uBgCsWrUKDQ0NEQFQkiS43W4AgMvlwrRp08LPezweaJoGn88Hp9OJ7OzsiM9/8OBB3HDDDbjuuutiVBEREVmJIQT6/OaqXE9AD4Y9wCYBKbLE4VxKOAkRAFtbW1FYWBh+XFBQgKNHj0Zcs2nTJlRXV2Pbtm3weDw4cOAAAGDFihVoaGjA1KlT4fV6UV9fj9zc3Ij37tmzB6tXr75kO9rb26NQzZXr6uqK6/1jzWr1AtarmfUmP6vVHKpX1QXcAR0uxZy359PMVbnO4Krc/jzxaGgUud2ueDchpmJRrxACgRQZmapzTO8zZcqUYV9LiAA4Grt378a6devwyCOP4PDhw1izZg1OnjyJpqYmyLKMtrY2dHd3Y9GiRViyZEm4NzEQCODll18Ozw0cyUh/ULGSCG2IJavVC1ivZtab/JK95tCpGl1eDR3ww6OmIaAbsNkkpGZJSLPAfL1JAzpWkt1Y1yuEQHaaA1Ny08b0PiNJiACYn5+P5ubm8OOWlhbk5+dHXLNjxw40NjYCABYsWABFUdDR0YFdu3Zh2bJlcDgcyMvLw8KFC3Hs2LFwAPz1r3+Nm266Kel/QBERUXSouoFev45OnwpvwNx3zxACTtmGgC6QxWPUKAkkxOzTqqoqnDlzBmfPnkUgEMCePXtQU1MTcU1RUREOHjwIADh9+jQURcHkyZNRVFSEQ4cOAQA8Hg+OHDmCGTNmhN+3e/fuUQ3/EhGRNflUHS0uP0793YPXW9x4vcWNv3V40adoEAJItduQ7pC59x4llYToAbTb7di+fTuWLl0KXdexfv16lJeXY+PGjZg3bx5qamqwdetWbNiwAfX19ZAkCTt37oQkSairq0NtbS3Ky8shhEBtbS0qKysBmIFw//79+PGPfxznComIKBEYQsAz4MxcPdi7Z7dJcNgkONi7RxYgCSFEvBsRTy5X4kxubW9vt9RQtdXqBaxXM+tNfolec0A34FY0dPk0+FRzda4hJKQEz8y9XJ1dXZabD2e1mmNRb2gO4A0xnAOYk5MT8TghegCJiIiuVqh3r8tnnqrhCZjHqNklCc7gViypdvbuEQEMgERENE5phoBb0dDhUeFRdSiaASEQ7t3jvntEw2MAJCKicUHVDXT7VHT7zM2WFc2ATZLCGy3zVA2i0WMAJCKihBQKfJ1eFX0BA6puQJak8DFq6Q527xFdKQZAIiJKCKpuoEfR0OU1V+j6tYuBj6tziaKLAZCIiOLCrxlwKSq6fTo8AQ1Kv8Ans4ePaEwxABIR0ZjTDYHegIYurzl/z6fq0AxAlsAhXaI4YAAkIqKo82vm/L0eRYM3oEPRBCAJpMpm2OMKXaL4YgAkIqKrIoSAVzXQ6Q2gN7j/nmYAdhvglEO9ezxGjSiRMAASEdGoCSHg1wXciooen46WCwrO+t3QhUBK8Dg19u4RJT4GQCIiGpIR7Nnr8WnoC2hQVAOKZsAQAnLwdA0BIJX77xGNOwyAREQEwDw316WYCzW8/U7WcMoS7MFzcxn2iJIDAyARkQUJIeDTDHR6AugNGOa5uboIr8qVAJ6sQZTEGACJiJJcQDfg8evoUTT4NAOKqiOgG9AFwvP2HMFfRGQNDIBEREmk/3m5PtWAXzOgGYBNEuH99myShFQ7V2kQWVnC9O83NjZi+vTpKCkpwZYtWwa9fv78eSxevBhz5sxBZWUl9u3bBwBQVRVr165FRUUFSktLsXnz5vB7enp6sGLFCsyYMQOlpaU4fPhwzOohIooF3RDo9qr42wUv3mh14/UWN852KfCpBgBzODfDaUOaQ4ZNYg8fEZkSogdQ13XU1dVh//79KCgoQFVVFWpqalBWVha+5sknn8TKlSvx4IMP4tSpU1i+fDnOnTuHvXv3wu/348SJE/B6vSgrK8Pq1atx/fXX46GHHsKyZcvwv//7vwgEAvB6vXGskojo6hlCoM+vocOrodevwasaEBBIk3l8GhGNXkIEwKamJpSUlKC4uBgAsGrVKjQ0NEQEQEmS4Ha7AQAulwvTpk0LP+/xeKBpGnw+H5xOJ7Kzs+FyufD73/8eO3fuBAA4nU44nc7YFkZEdJX6n5fbf2Vuqt0cyuVCDSK6EgkRAFtbW1FYWBh+XFBQgKNHj0Zcs2nTJlRXV2Pbtm3weDw4cOAAAGDFihVoaGjA1KlT4fV6UV9fj9zcXBw/fhyTJ09GbW0t/vznP2Pu3Ll45plnkJGRMWw72tvbx6bAUerq6orr/WPNavUC1quZ9V4eVRfwaTpcfgMe1YBPNefvyTZzz73+fFd1p+hxu13xbkJMWa1ewHo1x6JeIQQCKTIy1bHtmJoyZcqwryVEAByN3bt3Y926dXjkkUdw+PBhrFmzBidPnkRTUxNkWUZbWxu6u7uxaNEiLFmyBJqm4c0338S2bdswf/58PPTQQ9iyZQu+9a1vDXuPkf6gYiUR2hBLVqsXsF7NrHcwzRDwBjS4FHMIV9EMKKoBTQhIEpCSZkNOhoScGLQ3Gibl5sa7CTFltXoB69U81vUKIZCd5sCU3LQxvc9IEiIA5ufno7m5Ofy4paUF+fn5Edfs2LEDjY2NAIAFCxZAURR0dHRg165dWLZsGRwOB/Ly8rBw4UIcO3YMt9xyCwoKCjB//nwAZk/hUItLiIjGgm4I+HUDfX4NfQFzNa5fMxDQDWiGAGCekxvaYDnFbkNKPBtMRJaSEJNHqqqqcObMGZw9exaBQAB79uxBTU1NxDVFRUU4ePAgAOD06dNQFAWTJ09GUVERDh06BADweDw4cuQIZsyYgWuvvRaFhYX461//CgA4ePBgxJxCIqJoUXUDHZ4A3u3243hbL5qaXTja7MZbbb0426Wgx6fCr5mrcp2yDekOGekOORz+iIhiLSF6AO12O7Zv346lS5dC13WsX78e5eXl2LhxI+bNm4eamhps3boVGzZsQH19PSRJws6dOyFJEurq6lBbW4vy8nIIIVBbW4vKykoAwLZt23DPPfcgEAiguLgYzz77bJwrJaJkoAaPTOv0qugLmAsz7JIERRPIgBnynFyMS0QJTBJCiCt9c6jn7VJuvfXWK73FmHO5Emdya3t7u6XmS1mtXsB6NSdLvYpmoMenwqVoEYEvZcAK3M6uLsvNlbJazVarF7BezbGoNzQH8IYYzgHMyYmcVXxVPYD33XdfxOPW1lZIkoRJkyahs7MTQggUFBTgvffeu5rbEBHFTEA34FY0dCsavAEdimpAFwJ2mwRncK+9DO61R0Tj3FUFwLNnz4Y//s53voPOzk5861vfQnp6OrxeLzZu3IhJkyZddSOJiMaCEAJe1UCHN4Bevw5vQDe3XZEApyxBGqKXj4goGURtDmB9fT3a2trgcDgAAOnp6di8eTOmTZuGr371q9G6DRHRFTOEgCego8OjojegwxfQoQmBlOBqXM7dIyKriFoAzMjIQFNTExYuXBh+7vXXX0d6enq0bkFEdFk0Q8CtaOj0qfAGdPhUHYaQkCJLkG0St14hIsuKWgD81re+hWXLluEf//EfUVhYiObmZrzyyiv4j//4j2jdgohoWKHh3C5vAL0BA96AjoBuQAKQardBkiSk2tm9R0QERDEArlmzBnPnzsWLL76ItrY2zJgxA1//+te59x4RjYnQYo0urwafpsMXXKwRGs41fzHwERENJar7AJaVlTHwEVHU6YZAX8AMex516MUaqVysQUQxIISATzPgDRjhn0fm7/0fGxefVw14Ajq8qg5PwIBX1TEvPwublhTHtY6oBcCuri58//vfx/Hjx9HX1xfx2u9///to3YaIkpghBBTNPD7N5df7HZ8mIIRAqt0Gm8TFGkR0+cwzuM1AZoaxyFDmCb7W2euBYesNhzivGhnszLnEV9eWDo8anaKuQtQC4Gc/+1n4/X6sXLmSCz+IaESaYQY9t6Khz6/DrxtQNAOqYQY9uySFe/ZkSUKanUemEVmREAIBXQwZ1EIBznuJ3rbQ9UrwOMZE4Ano8W5C9ALgn/70J1y4cAEpKVxTR0Qmv2agy2ueoKGEe/MMaIaAAOC0SXDI5tCtwybBwbNxiZKCIQSUcM/ZgKHRIUJc5OPIa7Sr7W5LQB41iQJgZWUlWlpacMMNN0TrUxLROCGEgF8XcPlUuBQdPs08QePvnT5M1r1wyhJskhnuOHxLlLhCw6T9g9uHXT7I3d3hUOZTh5nr1i/oeVUDyRfbLkq125DusCHDKSPdISPDaUO6Q0a6w4b0fs9lOEIfyxHXZzrjP2c5agHw1ltvxbJly1BbW4trr7024rX169dH6zZEFGd6cPjWpWjo9etQtIvHpcn9Ts5IsZs/ELk4g2hshYZJw71pw4SyIZ8fcI1fT97YJgHhgJbhkJEeCmhOGRn9gpuk+TE5JzMi2PUPemkOGfarHK0QIv5/zlELgK+99hoKCgqwf//+iOclSWIAJBqHQgsy3IoGtzJwnh7gtCE8fMvj0ogunyHEiL1p3kFz2oaf45bEuQ12mxTRg5YR0dN2McRFvB4R7szHoUVkl9LZ1YVJubkxqCy+ohYAf/e730XrUxFRjOmGgCegoVvR4AmYq9z8wZW3obl5kiRxnh4RzGHS8AKEfj1pwy1SGGnxQjILDZOGetAie9Mie9/SHDIynUP3yjll/gdzLER1H8DOzk7s27cPH374IR599FG0tbXBMAwUFBRc8r2NjY146KGHoOs67r//fjz++OMRr58/fx5r165FT08PdF3Hli1bsHz5cqiqivvvvx9vvvkmNE3DvffeGz57+Prrr0dWVhZkWYbdbsexY8eiWS7RuKTq5j9AXT4NPtWczxPQBQBzE2XZZq68TefKW0oioXmqQ4ey/itJLzF8GtARMN6PdzljRgIGDIna4ISBCRmpQwyJ2gbNbQs9jsYwKY2tqAXAV199FXfffTfmzZuHP/7xj3j00Udx5swZfP/738cvf/nLEd+r6zrq6uqwf/9+FBQUoKqqCjU1NRGbSj/55JNYuXIlHnzwQZw6dQrLly/HuXPnsHfvXvj9fpw4cQJerxdlZWVYvXo1rr/+egBmz+Q111wTrTKJxg3RbwjXpehQdAOKqkMzBCSYw7Y2SQqfmkGUiHQjuOnuJRYdjPh8MOgl4WLSMIcsmQGs3xy3NIfN7FUbIrilB4dFw71zwcdpwWMT+7PKkKjVRC0APvzww/if//kf3HbbbZg4cSIAYP78+Whqarrke5uamlBSUoLiYnNX7FWrVqGhoSEiAEqSBLfbDQBwuVyYNm1a+HmPxwNN0+Dz+eB0OpGdnR2tsojGBVU3/8FzKRq8ASO45Yr5D57cb089rsClWDG/JodfITqqodJgD3UyS7XbRhgaHXpINDQHLsN5ce4bh0npckUtAJ47dw633XYbAIT/9+B0OqFp2iXf29raisLCwvDjgoICHD16NOKaTZs2obq6Gtu2bYPH48GBAwcAACtWrEBDQwOmTp0Kr9eL+vp65Ab/pyJJEqqrqyFJEh544AF8/vOfH7Ed7e3toy94DHR1dcX1/rFmtXqBq69ZN8xhrN6Ajr6AAb8m4NeN8ARwh2wO3yYKt9sV7ybE1HivNzRM6tPMxQlezQj+3v+xCD/v0wTcPj9UfAivGuypC76WzLnNBiDNYUOaXTKHO+02pDskpNkvfhx6Ps0hId0e+XGqw4YMuw2pdgnyZfe+68FfADRA14DeKNc30Hj/ur5csahXCIFAioxM1Tmm95kyZcqwr0UtAJaVleE3v/kNli5dGn7uwIEDqKioiMrn3717N9atW4dHHnkEhw8fxpo1a3Dy5Ek0NTVBlmW0tbWhu7sbixYtwpIlS1BcXIw//OEPyM/Px9///nfcfvvtmDFjBm655ZZh7zHSH1SsJEIbYslq9QKXrtkQAn7N7Dlx+3Uowc2T/ZoBzYC5gbIDSE+1YTycuWO1oaN41BseJr3k0OjwW4GEet+ubJj00v/RTwSO0GrSiP3ZQvu39VtFOsS8ttB1Sp8L0yZPGjRMmuz4fRxdQghkpzkwJTdtTO8zkqgFwK1bt+KOO+7AP/zDP8Dn8+GBBx7AL3/5SzQ0NFzyvfn5+Whubg4/bmlpQX5+fsQ1O3bsQGNjIwBgwYIFUBQFHR0d2LVrF5YtWwaHw4G8vDwsXLgQx44dQ3Fxcfhz5OXl4c4770RTU9OIAZAollTdXG3r9ptDYP5gyFMNAQT31HNwA+WkFtCNyGOsRjGnbdDwqUWGSTMHhbLBc9pCQS3NMXj4NFrDpJ3K4DlyRONR1ALgzTffjLfffhvPP/881q9fj8LCQjQ1NY1qBXBVVRXOnDmDs2fPIj8/H3v27MGuXbsirikqKsLBgwexbt06nD59GoqiYPLkySgqKsKhQ4ewZs0aeDweHDlyBA8//DA8Hg8Mw0BWVhY8Hg9++9vfYuPGjdEql2jUQqtuu30amjsVtOm9CGgGNGEuxnDKtvAiDG6zkvhCi2uGmrvW3t0H2wfDHzI/MNypSbwqwSZh6Dlt4XlsQyxWGGLeW5rddgXDpER0KVEJgLqu47bbbsNvfvMbPPbYY5ffCLsd27dvx9KlS6HrOtavX4/y8nJs3LgR8+bNQ01NDbZu3YoNGzagvr4ekiRh586dkCQJdXV1qK2tRXl5OYQQqK2tRWVlJd577z3ceeedAABN0/DZz34Wy5Yti0a5REMaadUtAKTINqgGwitweWp2bGmGgO8Sh8UPel7V4YvaMOn44JSlUWyse3GLEN3vw7W5OYN65VKCC4+IKDFJIkrnkVx33XV45513kJYWv/HsK+FyJc7k1vb2dkvNiRuv9YaCniego0fR4NeCJ2ToxqBVtwNZbTuFaNQb0EfYn23Y4dPB4U7RknuYtP8w6MWPh9qz7eIw6cBh1XSHLXy6y2jxazr5Wa3mWNQbmgN4QwznAObk5EQ8jtoQ8BNPPIEHH3wQ3/zmN1FQUBDxj5/NxuXpNP6E5uj1BQz0BfTwQoyAZh5y3j/oyZIE2c4JeiFCmIsSunwa+nqUS89xC/a+DXUsljWGSSN71S72ug3Y+mPg4oV+Q6ijOeKKiCgkagHw/vvvBwA899xz4eeEEJAkCbquR+s2RFGlGReHbfsCOtTQQgxdQBfCXHEb3Cg5FPTSHMkb9ELDpANPSQg9Hm6YdKhgdzG2tcaxorGRIktDzleTDQ25mWnDB7d+c+IynPKwPcVERGMtagHwu9/9LlauXBnxnBACL774YrRuQXRFQnubeQPmRsnmJsnm1iqaMTjk2SQJKePoGDQhBAJ6MLiNYkWpJ/h4cNCz3jDpcCtKBz0/IMQNd3KK1YbKiGj8itocwOzs7PBJHf3l5uYm9Ia/nAMYP9GsN7R3nk810BvQoATDTEAX0EJz82zmkG08h8r6BwRDCCjhIc/BR1cNN0w61OIFLYmHSeXgMOnAUDZw7lrENQN639JjNExqxQBotZqtVi9gvZo5B3CUDh06BMBcafu73/0O/fPke++9h6ysrKu9BRGAiz15iqrD5Y8MeaG982ySuY2KHLGtSnSHbC81TDrclh8eVYfbp8JvtIX3c0ve2GYOk6baJWSlOC59nNUIvW8cJiUiir6rDoD33XcfAMDv92P9+vXh5yVJwrXXXott27Zd7S3IQkLDmYqmo9dvBie/bg7XhlbZhvbOky9j77zQ5w2HtQFDpSPNZRv4vF9P3tgmAUNu/zGoV63fx5HDpxdXmNptkuV6DoiIxourDoBnz54FANx777342c9+dtUNouSnGwIB3cfZbKoAACAASURBVIDLryHQ44NXNR9fDHkSAAGnbINNwojDpIP3bxt+qDSJcxvsNqlf79kQvWoDet/SHDZkhl7vF/RS7VxNSkRkBVFbBMLwRyGqbsCjGmjv9eOCR0W3osKl6HArGnoVDX3BnrWuXg8kuws+zRh2Q16vBY64Gn4u29DDppGnJpi9bRwmJSKiyxG1AEjjX2jvtj6/jl6/jl6/BrdfR29ACz4OPqdo6FF0uBQV3YqGXkVHXyC4ujQY3KwwTDrUQoPBQ6K2iGFRzdeHadfkRgyTEhERxRoDYBIwhEBf4GJA6/+7O+K5/mFuqNe1pB8mzRiiN22o3raBq077n5qQar/yw+A7uwKYlOWMcmVERESXhwEwjgK62dvmDgaw8x96YXd1ojcwfIDrG9AbZ4a65N5oO9VuG7xP25BnlfZ/bfA1zss84oqIiChZMQDGyHdffR+/+mtnRG9bMg+T2iQM2kg3bcAxVtACmJyTOeKGvOkOObzal4iIiKKDATBGWt1+vP1hX7ybcUmh1aTp/QJY+sDtP4JDp+HXnTakO+wR16fYzUUJZsQ1V/VKwvzQJkmQAHR1d2NS7kRIMLcNMn9H+DERERGNDQbAGElzjO3wY6ZTRlaKOU8tO8WOzBTzcVaKHVnO0MfmY/Ma8+Ps/tel2JFij2xn/429Rfi5gY/FoNf7v2YEH5sfCwgB6AL4UOvDpAmpMATMa4QBA4BumFvFiOAnFRDQhTnX0RCAYYiLHwc/nwEBEdw+BpAg+kVPWZIgBYOnLfg7ERGRlTEAxsjENMeg52wSgsHLDGQpkoFJmWnh5y4Gs+DHTns4uA0MdGM1TNq/J04a9MGwT4yKlmHHlKyUK3rvUAwhoBsXg6EuAN0woBvmfEvVENCCp4aIcKAMhktDQA++P/SaGVolmF2XZpAMBUhZYi8lERGNXwkTABsbG/HQQw9B13Xcf//9ePzxxyNeP3/+PNauXYuenh7ouo4tW7Zg+fLlUFUV999/P958801omoZ7770XX/3qV8Pv03Ud8+bNQ35+Pl555ZVYlxX2udlTsPTG3IhQlzZgNanVzgKONpskwSYPDGVXdgxcqOcyFAp1AWi6YZ5KohkIGICuCxi4+Lrev2fSEOFez/7D4L7gHoihHkmp35C4jaGSiIhiJCECoK7rqKurw/79+1FQUICqqirU1NSgrKwsfM2TTz6JlStX4sEHH8SpU6ewfPlynDt3Dnv37oXf78eJEyfg9XpRVlaG1atX4/rrrwcAPPPMMygtLYXb7Y5TdaaCnFQU5KTGtQ00elKwl0+G1C9DXn6Y7B8kDQF8KPtwTV5WuGdSNQxohtlTqYaGvoWAZpi/9ODvoWFywBzktkFAtkmQJYmLZIiI6LIlRABsampCSUkJiouLAQCrVq1CQ0NDRACUJCkc4lwuF6ZNmxZ+3uPxQNM0+Hw+OJ1OZGdnAwBaWlrwq1/9Cl/72tfwgx/8IMZVEQ0IkkD4FI8rCZOhMKgZAqpuQNGCPZL6xaDYPzCK4PxIIDgH05xQCSFJwYmc5iIdWQr+skmcH0lEZBEJEQBbW1tRWFgYflxQUICjR49GXLNp0yZUV1dj27Zt8Hg8OHDgAABgxYoVaGhowNSpU+H1elFfX4/c4OHzDz/8MJ566in09vaOqh3t7e1RqujKdHV1xfX+sWa1eoHo1iwBSA3+CrMFfw1DhOc2mr2SWrAXUlEF/JqA3zDnSBrBIW3VEDCC14fCpE0CbDYJ9lEMWbvdrqspcdyxWr2A9Wq2Wr2A9WqORb1CCARSZGSqY3swwEjTyhIiAI7G7t27sW7dOjzyyCM4fPgw1qxZg5MnT6KpqQmyLKOtrQ3d3d1YtGgRlixZglOnTiEvLw9z587F//3f/43qHokw/y4R2hBLVqsXGJ81h3oWVUMgoJm9jz7NCC6qMX8P6EZwDqTZs2iXzJA5KfgfMquwWr2A9Wq2Wr2A9Woe63qFEMhOc2BKbtqY3mckCREA8/Pz0dzcHH7c0tKC/Pz8iGt27NiBxsZGAMCCBQugKAo6Ojqwa9cuLFu2DA6HA3l5eVi4cCGOHTuGt956Cy+//DL27dsHRVHgdrvxuc99Ds8//3xMayNKBrLNnGuYAgDO4YevhTBDoqoL+FQd5wNupDvk4FxHERyuNoJbA5m9iOZcRi6AISKKpYQ4G6uqqgpnzpzB2bNnEQgEsGfPHtTU1ERcU1RUhIMHDwIATp8+DUVRMHnyZBQVFeHQoUMAAI/HgyNHjmDGjBnYvHkzWlpacO7cOezZswe33norwx/RGJMkCU7ZPNnlmgwn8rOc+OjkdJRPycSsqVmoKsjG/MIcVBVkY/bUTNwwKQ1TMh3ITnMg3SEj1WGDQ5ZgCy5s0YXZs+jXDHg1A17VQF9Ah1fV4dfMUElERJcvIXoA7XY7tm/fjqVLl0LXdaxfvx7l5eXYuHEj5s2bh5qaGmzduhUbNmxAfX09JEnCzp07IUkS6urqUFtbi/LycgghUFtbi8rKyniXRETDkCQJDlmCQwYyRuhNHMgQkYtg/Jr5S9HMPRxV/eJr5kbi5obgdkmC3cbV0kRE/Umi/1EPFuRyJc7kVqvtA2i1egHr1RyvekND0QFdQFF1eFQdimr2JgZ0A6ougtvqCDhsZkCMxhB0Z1eX5eZKWa1mq9ULWK/mWNQbmgN4QwznAObk5EQ8TogeQCKiaDKHoiU4ZfOYxGuGuCagG1BUHX0BAx5VR0Azg6FqhOYpmoFQlsAeRCJKOgyARGRJTtkGp2xD9hD7sw9czBLqQdSCi1lCey6GjhKUAEAAft183c6wSEQJjgGQiGiA/j2IGcP0IAJmUNQFoAaDXzM8yMp0wKddnI+oBc+g1oNDzgDCJ7hw9TMRxQsDIBHRFZIkcysbu81czDIpzY4pE4ae02MIc05iaAGLT9XhD57iogZ7FNXgYx0AhIAEwCHb2KNIRFHHAEhEFAM2SUKqXUKq3YaslJGvDYXF0BxFb0CHahjhAKkZZu+jFJyf6IjSIhYisg4GQCKiBNM/LA7VoRjqNfRrOnyquT+iGjwXOrwVjjCDpD04nM2ASET9MQASEY0zoZNZUu025AyxiAUww5+iGejza3D5zY2zFdVAwBAQwtz+hj2HRNbFAEhElIRskoR0h4x0h4y8zIvPh4KhW9HgVnT4dfNsZ9UQEAJw2sx5h0SU3BgAiYgspH8wvDbr4vO6YQZDl6Khz69DCe6TqBkIn6jCoWSi5MEASEREkG0SMpzyoOP5dEPAr5tDye7gULJfM+cbGgLwBR9zWxui8YUBkIiIhiXbJKTbBg8li+BK5WapD9m5qWYwDG1jIxDeLFszBAzj4j6IAoCd+yASxR0DIBERXTZJkpBil5CVYkde5iX2tQHCYVA1zO1tFE1A0fTwySr+4FF8ugFIkoCT+x8SjSkGQCIiGnOhlcspMM9nHkroCD6fqsOtaPCq5vCzeU6zAQPmsXsMh0RXjwGQiIgSwsUj+GzISXVEvBYacvZpOvr85ubYASMUDgV0ISBgDivbObxMdEkMgERElPBCQ84pdhsmDLH3YWgjbL9mbmvj0wxourm9jaZfPG7PCM5FdNgkbndDlpYwX/2NjY2YPn06SkpKsGXLlkGvnz9/HosXL8acOXNQWVmJffv2AQBUVcXatWtRUVGB0tJSbN68GQCgKAo+9rGPYdasWSgvL8cTTzwR03qIiCh2HLINGU4ZuekOTMtOwQ25aZg+OQMzp2Ri9rQsVBVkY35hNuYVZGHmlAzk56Qi3SnDIUsQAPyaAa+qw6Oaq5p1MykSJa2E6AHUdR11dXXYv38/CgoKUFVVhZqaGpSVlYWvefLJJ7Fy5Uo8+OCDOHXqFJYvX45z585h79698Pv9OHHiBLxeL8rKyrB69Wpcd911OHToEDIzM6GqKj7xiU/gU5/6FG6++eY4VkpERPHSf4g5e4hexNBiFJ+qw6PqUFQB1TCHmFXdgCYAn6ZD0Qw4ZQk2DjHTOJYQAbCpqQklJSUoLi4GAKxatQoNDQ0RAVCSJLjdbgCAy+XCtGnTws97PB5omgafzwen04ns7GxIkoTMTHPPAlVVoaoq54MQEdGw7DYJ9uBeiNcM8bohBFpkLzInpqNH0eBT9eCeiAYMAcjcLJvGkYQIgK2trSgsLAw/LigowNGjRyOu2bRpE6qrq7Ft2zZ4PB4cOHAAALBixQo0NDRg6tSp8Hq9qK+vR25uLgCzZ3Hu3Ll49913UVdXh/nz54/Yjvb29ihXdnm6urriev9Ys1q9gPVqZr3Jz2o1e9w9SLHbkAEgAwDsgJAF/LpAX8BAr88IrlwWUIWAYQCSBDhkCfI4DYZutyveTYipWNQrhEAgRUam6hzT+0yZMmXY1xIiAI7G7t27sW7dOjzyyCM4fPgw1qxZg5MnT6KpqQmyLKOtrQ3d3d1YtGgRlixZguLiYsiyjOPHj6Onpwd33nknTp48iZkzZw57j5H+oGIlEdoQS1arF7Bezaw3+Vmt5tHWG165rOpw+TX4gvML/ZoRccSePbhFTiKbFOxYsYqxrlcIgew0B6bkpo3pfUaSEAEwPz8fzc3N4cctLS3Iz8+PuGbHjh1obGwEACxYsACKoqCjowO7du3CsmXL4HA4kJeXh4ULF+LYsWPh4WQAmDBhAhYvXozGxsYRAyAREVG0RKxcTovc1iZ0xJ43EJpvaJ6kEtAMaIYBQ0iQYG6InejhkManhFgFXFVVhTNnzuDs2bMIBALYs2cPampqIq4pKirCwYMHAQCnT5+GoiiYPHkyioqKcOjQIQCAx+PBkSNHMGPGDFy4cAE9PT0AAJ/Ph/3792PGjBmxLYyIiGgIsk1CukPGNRlOXDfBXLFceW0m5hVkY35hDubmZ6E0LwO56Q6k2M1/qs2VyuZqZa5SpquVED2Adrsd27dvx9KlS6HrOtavX4/y8nJs3LgR8+bNQ01NDbZu3YoNGzagvr4ekiRh586dkCQJdXV1qK2tRXl5OYQQqK2tRWVlJd5++22sXbsWuq7DMAysXLkSd9xxR7xLJSIiGtFIPYcB3QyALkWDN2CuWPbr5v6GKbLEE1Jo1CQhhKX/G+FyJc7k1vb2dkvNpbFavYD1ama9yc9qNSdivYYQ8KkGurwB9A0IhU4brnrD686uLkvNAYxFvaE5gDfEcA5gTk5OxOOE6AEkIiKiK2OTJGQ4ZWQ4L4YJQwh4Ajp6/Tr6/DoU3Vx8ohoCQgRPQrFxyxorYwAkIiJKMjZJQlaKHVkpkf/MG0JA0Qy4FQ29AXPxiTegQweQMg5WI1P0MAASERFZhE0yF5+kO2RcG3xOBHsLL3hU9AZ0eAM6DAGk2nnaSTJjACQiIrIwSZKQmWJHZrC3UAiBXr+GDq+GXr8GRTPgUQ0uMkkyDIBEREQUJkkSslMdyE41VyBPkTzInJiBTp+KPr8Or2qejyxL4NF34xgDIBEREQ1rYA8hYG5H41Y0dHrNM5EVTYcuAKdNuupVxxQbDIBERER0WZyyDddkOHFNhnmWrRACPs1Aj0+DO3jsnaLqEJIEp41Dx4mIAZCIiIiuitRvcck0pAC4uD9ht8+cS+gJ6PDrBuySFD7dhOKHAZCIiIii7uL+hDIQDIUB3UCPT0W3zwyEPs2ADUCq3ca5hDHGAEhEREQx4ZRtyMtMQV6mGQg1Q8CtaOjwqPBpOvyaAc0ABKJzigkNjwGQiIiI4sJuk5Cb7kBu+sUzj3XD3KzapWjo85vDxn7NQKDfKSZOBsOrxgBIRERECUO29R86vqj/KSZuxTzeTlF1aIYAYPYucrHJ6DEAEhERUcKLOMUk6+LzmiHgDWhwKRo8qgFFNXsMdQHYgnsV8kSTwRgAiYiIaNyy2yI3rg7xawY8AR0uRYNPM3sLA7oBQ0gAzKFku826G1knzCB6Y2Mjpk+fjpKSEmzZsmXQ6+fPn8fixYsxZ84cVFZWYt++fQAAVVWxdu1aVFRUoLS0FJs3bwYANDc3Y/HixSgrK0N5eTmeeeaZmNZDRERE8ZNityE33YGP5KahLC8DN+VnY35hDubmZ2HmlAzk56QiK9WOFLsNkgSohoBP1eFTDfhUHXpwaDlZJUQPoK7rqKurw/79+1FQUICqqirU1NSgrKwsfM2TTz6JlStX4sEHH8SpU6ewfPlynDt3Dnv37oXf78eJEyfg9XpRVlaG1atXIyUlBVu3bsVNN92E3t5ezJ07F7fffnvE5yQiIiLrkCQJKXZzH8Ls1MGvCyHQ4vAha2IGXMENrf2aEVydLIKrk5PjtJOECIBNTU0oKSlBcXExAGDVqlVoaGiICGuSJMHtdgMAXC4Xpk2bFn7e4/FA0zT4fD44nU5kZ2cjNzcXU6dOBQBkZWWhtLQUra2tDIBEREQ0JEkyVxhPSHNgQlrkkLIW7CHs9Zu/lPC2NeNzEUpCBMDW1lYUFhaGHxcUFODo0aMR12zatAnV1dXYtm0bPB4PDhw4AABYsWIFGhoaMHXqVHi9XtTX1yM3NzfivefOncNbb72F+fPnj9iO9vb2KFV0Zbq6uuJ6/1izWr2A9WpmvcnPajVbrV7AejVfql4ZwATAnETnDAVDA25FR58qENAN+HUB3QCkYRahCCEQSJGRqTrHqgwAwJQpU4Z9LSEC4Gjs3r0b69atwyOPPILDhw9jzZo1OHnyJJqamiDLMtra2tDd3Y1FixZhyZIl4d7Evr4+3H333Xj66aeRnZ094j1G+oOKlURoQyxZrV7AejWz3uRntZqtVi9gvZqjUW9AN+Dx6+gZtAgFkCUJ12Q6MSU3LQqtvTIJEQDz8/PR3NwcftzS0oL8/PyIa3bs2IHGxkYAwIIFC6AoCjo6OrBr1y4sW7YMDocDeXl5WLhwIY4dO4bi4mKoqoq7774b99xzD+66666Y1kRERETW5ZRtcKbbMLHfJtciuJdhr19DmkMe4d1jLyFmMVZVVeHMmTM4e/YsAoEA9uzZg5qamohrioqKcPDgQQDA6dOnoSgKJk+ejKKiIhw6dAgA4PF4cOTIEcyYMQNCCNx3330oLS3Fl770pZjXRERERNSfJElIc8jIy0xBVkp8++ASIgDa7XZs374dS5cuRWlpKVauXIny8nJs3LgRL7/8MgBg69at+K//+i/MmjULq1evxs6dOyFJEurq6tDX14fy8nJUVVWhtrYWlZWV+OMf/4jnnnsOhw4dwuzZszF79uzw1jFEREREViYJIZJ7o5tLcLlc8W5CWHt7u6XmWVitXsB6NbPe5Ge1mq1WL2C9mpO13pycnIjHCdEDSERERESxwwBIREREZDEcAk6gIWAiIiKiscAhYCIiIiKLYwAkIiIispiE2Ag6UQzsHiUiIiIar0aa5mb5OYBEREREVsMhYCIiIiKLYQAcQXNzMxYvXoyysjKUl5fjmWeeAQB0dXXh9ttvx4033ojbb78d3d3dAIB33nkHCxYsQEpKCr7//e9HfK5nnnkGM2fORHl5OZ5++ulh77l+/Xrk5eVh5syZEc/v3bsX5eXlsNlsOHbs2LDvH65tL7zwAiorK1FRUYGPf/zj+POf/5zU9XZ3d+POO+9EZWUlPvaxj+HkyZNJUe9I17399ttYsGABysvLUVFRAUVRkqLmRx99FDNmzEBlZSXuvPNO9PT0AACamprCp/zMmjULP//5z5Oi3m984xuorKzE7NmzUV1djba2NgDmGaL/+q//ipKSElRWVuLNN98c8v2JVPNwf3cDDde2733ve+G/45kzZ0KWZXR1dY37ei/1tXD+/HlkZmYOat94rXe46zo7O7F48WJkZmbiX/7lX4a9fzLVrKoq1q5di4qKCpSWlmLz5s3DtmHMCRpWW1ubeOONN4QQQrjdbnHjjTeKv/zlL+LRRx8VmzdvFkIIsXnzZvHYY48JIYRob28XTU1N4t/+7d/E9773vfDnOXHihCgvLxcej0eoqipuu+02cebMmSHv+eqrr4o33nhDlJeXRzx/6tQp8c4774hPfvKT4vXXXx+2zcO17Y9//KPo6uoSQgixb98+8bGPfSyp6/3yl78sNm3aJIQQ4vTp0+LWW29NinqHu05VVVFRUSGOHz8uhBCio6NDaJqWFDX/5je/EaqqCiGEeOyxx8JtC907VNfkyZPDj8dzvS6XK/zxM888Ix544AEhhBC/+tWvxLJly4RhGOLw4cNDfg8nWs3D/d0NNFzb+nv55ZfF4sWLk6LeS30t3H333WLFihUR7RvP9Q53XV9fn3jttdfEf/7nf4q6uroh35tsNb/wwgviM5/5jBDC/Bl23XXXibNnzw5b+1hiD+AIpk6diptuugkAkJWVhdLSUrS2tqKhoQFr164FAKxduxa/+MUvAAB5eXmoqqqCw+GI+DynT5/G/PnzkZ6eDrvdjk9+8pN46aWXhrznLbfcgtzc3EHPl5aWYvr06Zds83Bt+/jHP46JEycCAG6++Wa0tLQkdb2nTp3CrbfeCgCYMWMGzp07h/b29nFf73DX/fa3v0VlZSVmzZoFAJg0aRJkWR503Xisubq6Gna7uV6t/9du6N4AoCgKJElKinqzs7PDH3s8nnBdDQ0NuPfeeyFJEm6++Wb09PTggw8+SOiah/u7G2i4tvW3e/durF69OinqHelr4Re/+AU+8pGPoLy8fMjXx2O9w12XkZGBT3ziE0hNTR3yfclYsyRJ8Hg80DQNPp8PTqcz4ns+lhgAR+ncuXN46623MH/+fLS3t2Pq1KkAgGuvvXZQsBho5syZeO2119DZ2Qmv14t9+/ahubl5TNo5mrbt2LEDn/rUp0b8POO93lmzZoW/sZuamvD+++8P+40KjJ96h/O3v/0NkiRh6dKluOmmm/DUU09d8j3jseb//u//jvjaPXr0aHjI+0c/+lH4B+5QxlO9X/va11BYWIgXXngB//7v/w4AaG1tRWFhYfiagoICtLa2jvh5EqnmgX93/V2qbV6vF42Njbj77rtHvMd4qXc4fX19+O53v4snnnhiVNePx3qv5M+lv/Fe84oVK5CRkYGpU6eiqKgIX/7yl4cMmrHAbWBGoa+vD3fffTeefvrpQUldkqQhex76Ky0txVe+8hVUV1cjIyMDs2fPHrJ3JtqGatvvfvc77NixA3/4wx+GfV8y1Pv444/joYcewuzZs1FRUYE5c+YM24bxWm9/mqbhD3/4A15//XWkp6fjtttuw9y5c3HbbbcNef14rPnb3/427HY77rnnnvBz8+fPx1/+8hecPn0aa9euxac+9akhexPGW73f/va38e1vfxubN2/G9u3b8c1vfvOyP0ci1TzU391whmrbL3/5SyxcuHDEfyjHa739bdq0CV/84heRmZl5yWvHY71X+ucSkgw1NzU1QZZltLW1obu7G4sWLcKSJUtQXFx8Re24GuwBvARVVXH33XfjnnvuwV133QUAmDJlSnjo5YMPPkBeXt4lP899992HN954A7///e8xceJEfPSjH0Vzc3N4gvOPfvSjK2pfbW0tZs+ejeXLl1+ybW+//Tbuv/9+NDQ0YNKkSUldb3Z2Np599lkcP34cP/vZz3DhwoUhv8HGW73DKSgowC233IJrrrkG6enpWL58+bCLBMZjzTt37sQrr7yCF154Ycgf8qWlpcjMzBxysc94rDfknnvuwYsvvggAyM/Pj+itaGlpQX5+/pCfM5FqHurv7nJ+bgHAnj17hhz+Ha/1Dufo0aN47LHHcP311+Ppp5/Gd77zHWzfvj0p6r3U9/ClJEvNu3btwrJly+BwOJCXl4eFCxeOuChsLLEHcARCCNx3330oLS3Fl770pfDzNTU1+OlPf4rHH38cP/3pT/FP//RPl/xcf//735GXl4fz58/jpZdewpEjRzBhwgQcP378qtr47LPPRjwerm3nz5/HXXfdheeeew4f/ehHh/xcyVRvT08P0tPT4XQ68ZOf/AS33HLLoP8xjsd6h7N06VI89dRT8Hq9cDqdePXVV/HFL35x0HXjsebGxkY89dRTePXVV5Genh5+/uzZsygsLITdbsf777+Pd955B9dff/24r/fMmTO48cYbAZhz42bMmBFu8/bt27Fq1SocPXoUOTk54eGv/hKp5uH+7kb7fQyYG9m++uqreP7554e8x3isdzivvfZa+ONNmzYNuTp2PNY73HWjlUw1FxUV4dChQ1izZg08Hg+OHDmChx9+eFT3jrq4LD0ZJ1577TUBQFRUVIhZs2aJWbNmiV/96leio6ND3HrrraKkpETcdtttorOzUwghxAcffCDy8/NFVlaWyMnJEfn5+eEVfZ/4xCdEaWmpqKysFAcOHBj2nqtWrRLXXnutsNvtIj8/X/zkJz8RQgjx0ksvifz8fOF0OkVeXp6orq4e8v3Dte2+++4TEyZMCNcxd+7cpK73T3/6k7jxxhvFRz/6UXHnnXeGV0CP93pHuu65554TZWVlory8XDz66KNDvn881nzDDTeIgoKCcHtDq2J/9rOfibKyMjFr1iwxZ84c8fOf/zwp6r3rrrtEeXm5qKioEHfccYdoaWkRQghhGIb4whe+IIqLi8XMmTOHXUmcSDUP93c30HBtE0KIZ599NrxqMlnqHc3XwhNPPDHkKuDxWO9I11133XVi4sSJIiMjQ+Tn54u//OUvSV1zb2+vWLFihSgrKxOlpaXiqaeeGrYNY40ngRARERFZDOcAEhEREVkMAyARERGRxTAAEhEREVkMAyARERGRxTAAEhEREVkMAyARUYysW7cOX//61+PdDCIiBkAiIiIiq2EAJCIiIrIYBkAiojHy1ltv4aabbkJWVhY+85nPQFEUAEBHRwfuuOMOTJgwAbm5uVi0aBEMw4hza4nIShgAiYjGQCAQwD//8z9jzZo16Orqwqc//Wm8+OKLAICtW7eioKAAFy5cQHt7O77zne+ED4snIooFBkAiojFw5MgRqKqKhx9+GA6HAytWRNj9pAAAIABJREFUrEBVVRUAwOFw4IMPPsD7778Ph8OBRYsWMQASUUwxABIRjYG2tjbk5+dHBLvrrrsOAPDoo4+ipKQE1dXVKC4uxpYtW+LVTCKyKAZAIqIxMHXqVLS2tkIIEX7u/PnzAICsrCxs3boV7733Hl5++WX84Ac/wMGDB+PVVCKyIAZAIqIxsGDBAtjtdvzwhz+Eqqp46aWX0NTUBAB45ZVX8O6770IIgZycHMiyDJuNP46JKHYk0f+/p0REFDXHjh3Dhg0b8O6772L58uUAgBtvvBGTJk3CM888gwsXLmDixIl44IEH8I1vfCPOrSUiK2EAJCIiIrIYjjkQERERWQwDIBEREZHFMAASERERWQwDIBEREZHFMAASERERWQwDIBEREZHFMAASERERWQwDIBEREZHFMAASERERWQwDIBEREZHFMAASERERWYw93g2IN5fLFe8mEBEREY2pnJyciMfsASQiIiKyGAZAIiIiIothAEwg7e3t8W5CTFmtXsB6NbPe5Ge1mq1WL2C9mq1SLwMgERERkcUwABIRERFZDAMgjVs9ioZfnLqAdy544t0UGufebO1Fw+kLUDQj3k0hogGEEDj4bhcOvtsFIUS8m5M0LL8NDI1PXlXHJ378BlpcfjhsEl68pwK3fGRCvJtF49D/vN2OB37xVwDAnGmZOHTfHEiSFOdWEVHIV37z/+H/NbUBADZUTcP3PlUS5xYlB/YA0rj0u/e60eLyAwBUQ2DP29aYtEvR9/zxD8Mfv9XWhxPt7FEmShSGEHj+rYvfo8+99SF0g72A0cAASOPShT414nGHRx3mSqKRXfAM/FoKxKklRDSQJ6DDq16cmqFoBvoCehxblDzGRQBsbGzE9OnTUVJSgi1btgx63e/34zOf+QxKSkowf/58nDt3DgCgqirWrl2LiooKlJaWYvPmzTFuOY2VXr824mOi0Rr8tcR/XIgSxVDfj/x5Hx0JHwB1XUddXR1+/etf49SpU9i9ezdOnToVcc2OHTswceJEvPvuu/jiF7+Ir3zlKwCAvXv3wu/348SJE3jjjTfw4x//OBwOaXxzDfihMPAx0Wi5lYFfS/zHhShRuIf4fnTz531UJHwAbGpqQklJCYqLi+F0OrFq1So0NDREXNPQ0IC1a9cCAFasWIGDB/9/9u48MIry/h/4e7ObzZ2QwwTYBCUsxLAEohCBWrECEok2ikSJIIdQqxW+WqyKv2oRqQdqK7WN1e+3RQUNBEE0XiAUW8RWEi8UEtCkJpIEDJCQkDt7zO+PyJI9s9fMzmbfr3+SmX1253lmZ2c+81yzF4IgQKFQoKOjAwaDAV1dXVCr1YiNjfVHMcjHWANIvmASBLRZNSexBpBIPlgDKB7ZjwJuaGhAWlqaeTk1NRVlZWUO06hUKsTFxaGpqQkFBQUoLS3FsGHD0NnZifXr1yMhIcHhtvw9+3dzc7Nfty81b8p7qqXdYvlst97v358r+B3Li72+RD80taKxMdSjz5N7ecUQbGUOtvIC/i3zsR9sB2Ud+6EJF6m7RdvmYPqOU1JSHL4m+wDQG+Xl5VAqlTh+/DjOnDmDK664AjNnzkR6errd9M52lFTkkAcpeVpefUiTxXJ7rwnJyckBMX0Hv2P5MJztAVBtsc4UGu5VnuVcXrEEW5mDrbyA/8qsajpluy4yBikpF4i63WD4jmXfBKzRaFBXV2derq+vh0ajcZjGYDCgtbUViYmJ2Lx5M6655hqEhoYiOTkZl19+OT777DNJ80/isG4CMApAFyfxJTfZa0piEzCRfNjr78cmYN+QfQCYk5ODqqoq1NTUoLe3FyUlJcjPz7dIk5+fj40bNwIAtm/fjunTp0OhUGDEiBH48MMPAQAdHR04cOAALr74YsnLQL5n76RwtpsnBXKP9QAQwH6ncyLyD3u/Rw768w3ZB4AqlQpFRUXIzc1FZmYmbr75Zuh0OqxevRpvv/02AGDZsmVoamqCVqvFs88+a54qZvny5Whvb4dOp0NOTg5uu+02jB8/3p/FIR9hzQ35Ao8jInnjIBDxBEQfwLy8POTl5VmsW7t2rfn/8PBwbNu2zeZ90dHRdtdT4LN/UuCFm9xjPQIY4HFEJCe8SROP7GsAieyxf1LgXSG5x17zEo8jIvlgDaB4GABSwDGaBHTobQd8nOXjgchNrEkmkjf+RsXDAJACjqO7Pw4CIXfZO2Y4CIRIPuw/CYS/UV9gAEgBx9FjgHhXSO5yVLtgEgQ/5IaIrLEGUDwMACngOPrxs18IucveIBABQAe7ExDJAgeBiIcBIAUcR4EeTwrkLh5LRPLGQSDiYQBIAcdhDSBrbchNjmuTeSwRyYH9kfr8ffoCA0AKOI46APOukNzlaOAQO5kT+Z8gCPZrAHvZT9cXGABSwHF092fvsV5EzjiqNebNBJH/tfca4SjMYy2g9xgAUsBx3G+LF21yD/sAEsmXs98hz/feYwBIAcfRNDCcCJrc5bA2mQEgkd85DwD5G/UWA0AKOGy2I18wOehfBPBYIpIDZ79DBoDeYwBIAcdRx32eEMgdzvoXsQaQyP/YBCwuBoAUcBwPAjFA4MgwchEvLkTy5mw0Pm/SvMcAkAKOo4uzUQC6DCaJc0OBis1LRPLmLMjjTZr3GABSwGHHYPIFHkdE8uYsyGMNoPcYAFLAaet1VnPDu0JyjfMaQB5HRP7GbhriYgBIAcfZhM+suSFXOatBYO0Ckf+xll5cDAAp4DhtFnAwQpjImrMO5qxdIPI/54NA+Bv1FgNACihGk4AOveOBHpwMmlzF2gUieeNvVFwMACmgOJoE2vw67wrJRc4uIKxdIPI/jtQXFwNACigDBXg8KZCrBrq4cE5JIv/iIBBxMQCkgDJQgMcAkFzl7FgRAKddDYhIfE5nfGB3H68xAKSAMtAgD94VkqsGaublgCIi/+JE0OJiAEgBZaAaPk7fQa5ibTKRvDm7CXM2HRi5hgEgBRRnTQIA7wrJdQMHgDyWiPxFEATnfQB7jTCxn65XGABSQLE+IVwQFer0dSJHrAM8HktE8tGhN6F/eBcZGoKoUMuQpZ39AL3CAJACinUT7/DYMKvXWWtDrrEO8GyOpQFqm4lIPNY3aDFhKsSEqazSMAD0BgNACijWfUKGx1hetHlCIFdZ3yxYH0vsY0TkP9bn8pgwJWLClFZpeJPmjYAIAHft2oWMjAxotVqsW7fO5vWenh7MmzcPWq0WkydPRm1trfm1r7/+GlOnToVOp0NWVha6u7slzDn5mvXQf02s2mKZNYDkCpOd/kXDrY4lXlyI/Mf6Zr8vAFRZpeFNmjdkHwAajUYsX74cO3fuRGVlJbZs2YLKykqLNBs2bEB8fDyqq6uxcuVKrFq1CgBgMBhw66234sUXX0RFRQX+9a9/ITQ01N5mKEBYX5Stm+1YA0iu6Og12vQvig9n8xKRXNjUAKpVrAH0MdkHgOXl5dBqtUhPT4darUZhYSFKS0st0pSWlmLx4sUAgIKCAuzduxeCIGD37t0YP348JkyYAABITEyEUqm02QYFjoH6bfEJDuQK2+Yl9i8ikhPrPrh2m4A5CMQrqoGT+FdDQwPS0tLMy6mpqSgrK3OYRqVSIS4uDk1NTfj222+hUCiQm5uLU6dOobCwEA888IDDbTU2NopTCBc1Nzf7dftS86S8TW2dFsuq3g6olQr0GvuCPoNJwLHjPyBcJc97G37H8lB7psdiOVIFoNfy2DrZ0ub2OUGu5RVTsJU52MoL+KfMDSdbLZbVgh4Kq3v7+lPNaGz0/RN7BtN3nJKS4vA12QeA3jAYDPj444/x6aefIjIyEjNmzMDEiRMxY8YMu+md7SipyCEPUnK3vN2m4xbLI1KSEBvWiNOdevO6iLhEJEerrd8qG/yO/e+Y/qzFcnxkGDQXxAM4H/DpQ9Qe5V2O5RVbsJU52MoLSF9mRa3VNE1DoqEAAJz/7SrCokTLVzB8x/KsJulHo9Ggrq7OvFxfXw+NRuMwjcFgQGtrKxITE5Gamopp06YhKSkJkZGRyMvLwxdffCFp/sm3rCeCttcswIEgNBDbKSaUiFGzfxGRXFgPAolV2xsEwt+oN2QfAObk5KCqqgo1NTXo7e1FSUkJ8vPzLdLk5+dj48aNAIDt27dj+vTp5qbfQ4cOobOzEwaDAfv27cPYsWP9UQzyEftTA7DvFrmHxxGRvNnrpxtrMwiEv1FvyL4JWKVSoaioCLm5uTAajVi6dCl0Oh1Wr16NSZMmIT8/H8uWLcPChQuh1WqRkJCAkpISAEB8fDzuvfde5OTkQKFQIC8vD9dee62fS0TesN95nzWA5B7rCcXtHUcDPXaQiMRjr7VHobBOwwDQG7IPAAEgLy8PeXl5FuvWrl1r/j88PBzbtm2z+95bb70Vt956q6j5I2kYTYLNo39iwpSIZc0Nucm6eTc2TIlYq2lgrINEIpKO9Xk8NlwFhU0a3qR5IyACQCLA9m4vRq1EiEJhZ24oXrjJOXs1gNbNS+xfROQ/Nv101UoorKoAea73DgNAChj2Ou4DsNMvhBducs5eDWC0zSCQvjklrS86RCQ+e919bJqAGQB6RfaDQIjOsXdC6P/3HDbd0UDsDQIJVYYgot/8kQKADr3v5xgjooFZ9+XmjA++xwCQAoajGkA+Hojc5fhmgscSkRzYdtOwN1Kfv09vMACkgGHTKfjHkwEHgZC7bJuAfzyW+DxgIlmwd76PY39vn2IfQAoY9poE+v89h3eFNBB7tQv9/5rTcSAIkeQEQbDb4mNvEIhJEBDCfroeYQ0gBQx7/bb6/rIPILnHYXcCNWsAifytU2+Cqd9zfyNUIQhVhkAVokBkqFU/Xc4F6DEGgBQw7E3d0feXHYPJPa72ATzLyaCJJOeotafvf97w+4okAWBlZSUaG/sest7e3o5HHnkEjz76KDo7O6XYPA0Srg8C4QmBnLO+wMTyWCKSDUc3aH3/s8uPr0gSAN5yyy1oaWkBANx333346KOPcODAAdxxxx1SbJ4GCUeDQOI4CITc0Ne/yP4FhoNAiPzP0c0+wEF/viTJIJDa2lpkZGRAEATs2LEDlZWViIiIwMiRI6XYPA0Srtfa8I6QHGvvNaJf9yJEhvb1LQKAWDUHgRD5m6ObfYDne1+SJAAMDw9HW1sbKisrMWLECCQlJcFgMKC7u1uKzdMg4epE0HyCAznjvHmJtQtE/uZolL71/wB/o96QJACcP38+pk+fjra2NqxYsQIA8MUXX7AGkNziqFkgTBUCtVKBXmNfvY7eJKDbYEJEqNLmM4gcjSa3/h8A2jgIhEhy7gwCaWUNoMckCQDXr1+P3bt3IzQ0FFdddRUAICQkBOvXr5di8zRIOL9wq9DUqbdIywCQ7HHWv4g1gET+594gEP5GPSVJAFhaWoprr70WKtX5zU2aNEmKTdMgMtBJwToATI6WLGsUQGyOIzX7FxHJie2TevoNAlEzAPQVSUYBr169GsOGDcOKFStQVlYmxSZpEHI0CKTvfz4jklxjcxyFOz6Oznbz4kIkNWc3+7Yj9Xmu95QkAeBXX32Ff/zjH4iIiMDcuXORkZGBxx57DLW1tVJsngYJd5oFODkoOeJoQvG+/9kHkMjfnNUAsgnYdyR7EsiECRPwzDPPoK6uDs8//zy2bduGUaNGYdq0aSguLobJZJIqKxSAjCYB7VaP/IlWs/M+uc95H0DeSBD5G0fqS0OSPoDn/Pe//8Vrr72G1157DSEhIVi7di1GjBiBoqIivPHGG9ixY4eU2aEAYi/4U4acn+aFTXfkKps5xtScZJZITpyOAraeq5NNwB6TJAB8/vnn8eqrr6Kqqgrz5s3Dq6++iilTpphfnzt3LpKTk6XICgUoZ7U29pbZL4QccfcxU5xTkkhaA8344CwtuU6SAHDnzp34zW9+g/z8fISFhdm8HhkZydo/csrZzPD2lnlSIEesuwf0HwQSqgxBhCoEXYa+LikmAejUmxCl5pRCRFJx1k+3/+8V4M2+NyQJAN99990B08yaNUuCnFCgctYkYG+ZASA5Yt09wLpGISZMaQ4Agb5jjwEgkXScDwLhzb6vSNYH8O2338a+fftw+vRpCML5J3Fu2rRJqixQAHPWJNC3bHVS4CAQcsCmO4Ha9lg62WE5p+SwGEmyRkRw3uITazNQi+d6T0kyCvjRRx/FHXfcAZPJhG3btiExMREffPABhgwZIsXmaRBw1m+rb9nqpNDNkwLZ5+6xxCYmIukIgmDzm4vu95uMtjMRtKlfpRK5TpIA8KWXXsKePXuwfv16qNVqrF+/Hu+88w7nASSXuTsIhNN3kCPWtcPsTkAkH516E4z94rlwVQjUyvOhyrl+uucIADp6+Rv1hCQBYEtLC8aNGwcAUKvV0Ov1uOyyy7Bv3z4pNk+DgHVAx0Eg5CmbYync+bHEmwki6Qx0sw/YexoIf6OekKQP4KhRo1BRUQGdTodx48bhhRdeQHx8POLj46XYPA0Cbg8CYR9AcsC6e4B1nyLb2mQeS0RSGai/97l1je2O30OukSQAfOyxx9DU1AQAePLJJ7FgwQK0t7fjr3/9qxSbp0FgoH5brAEkV/T1L3L8RBmAowyJ/GmgKb8A9tP1FUmagPPy8jBt2jQAwOTJk1FdXY0ffvgBN954o0vv37VrFzIyMqDVarFu3Tqb13t6ejBv3jxotVpMnjzZpm/hsWPHEB0djT/84Q9el4X8w9m0AAAHgZBrOvQm9O8uHqEKQajS8jRofWzx4kIknYFaewAgRm3dTYO/UU+IVgP43XffuZQuPT3d6etGoxHLly/Hnj17kJqaipycHOTn52Ps2LHmNBs2bEB8fDyqq6tRUlKCVatWYevWrebX7733XsyePduzgpAsuD0NTI+RT3AgG670L2INIJH/OJsE+vw6DtTyBdECQK1WC4VCYXMRtl42Gp1/ceXl5dBqteZAsbCwEKWlpRYBYGlpKdasWQMAKCgowIoVK8zbeeuttzBy5EhERUX5sHQktYGaBfpGiinQ++PwMb1JQI9RQLiKASCdZ3MchdueAlkDSOQ/ngwC4UAtz4jWBGwymWA0GmEymfD3v/8dhYWFOHr0KLq7u3H06FHMnz8fGzZsGPBzGhoakJaWZl5OTU1FQ0ODwzQqlQpxcXFoampCe3s7nnrqKTzyyCO+LRxJzqVmAZuaG164yZJ11wBXjiNeXIikwz6A0pFkEMjvfvc7VFVVISIiAgAwevRo/O///i/GjBmDJUuWiLbdNWvWYOXKlYiOjnYpfWNjo2h5cUVzc7Nfty81d8p7pqPHYrm3vRWNjd0W6yJVQFO/5ZqGRpji1N5k0ef4HfvXscYOi+UwmGx+98audovl02c7XT43yK28Ugi2MgdbeQFpy3yiudViWWnotvn9hegtz/0nmlvR2BjqszwMpu84JSXF4WuSBIAmkwm1tbXIzMw0r/v+++8HbP4FAI1Gg7q6OvNyfX09NBqN3TSpqakwGAxobW1FYmIiysrKsH37djzwwANoaWlBSEgIwsPDsWLFCrvbcrajpCKHPEjJ1fJ2GWssli8anoyUuHCLdUMi61F39vwjvNQxQ5CSIr9nePE79h9l8ymL5cSYCJv8pXWHATjfytALpVtlkFN5pRJsZQ628gLSlVlQWd6kDU2Is9n2sIReAM393mP7O/ZWMHzHkgSAK1euxPTp03HbbbchLS0NdXV1eOWVV7By5coB35uTk4OqqirU1NRAo9GgpKQEmzdvtkiTn5+PjRs3YurUqdi+fTumT58OhUKB/fv3m9OsWbMG0dHRDoM/kreBpoEB7IwM62bTHVlybY4xNgET+Ytr3X04V6cvSBIA3n///cjKysK2bdvw5ZdfYtiwYXjppZdwzTXXDPhelUqFoqIi5Obmwmg0YunSpdDpdFi9ejUmTZqE/Px8LFu2DAsXLoRWq0VCQgJKSkokKBVJxSQIaLN61E+MeuCTAieDJmuu3EhwEAiR/3hyk8ZRwJ6RJAAEgGuuucalgM+evLw85OXlWaxbu3at+f/w8HBs27bN6WecGyVMgcfexL3KENvRvXF8PBANwHoQSJy9EYasASTyG5sAUM2bNLGIFgA+/vjjeOihhwAAq1evdpiufyBHZI8r0wLYW88AkKy5UgMYbefiwjkliaTBuTqlI1oAWF9fb/6//yAOIne50iQA2N4p8q6QrFl3C7B3LKmVIQhXhaDbYAIAmASgU29ClJ1uB0TkW2d7B56rk919fEO0APCFF14w///yyy+LtRkKAq40CQD2HgfHu0Ky5EoNYN96pTkA7HufgQEgkQSsu2lYN/cCPNf7iuwfBUfkcRMw7wrJijvH0qmO81MKtfUYMVR+MwoRDTquDdTis4B9QZJHwTmiUChcmguQgpt1J3x7TQL21rNfCFmzrimw95QBe+t5gSESnyAINjdp0a7M+MBnv3tEtADQZDINnIjIBZ7WAPKiTdZc6QNobz1vJojE12UwwdivzihMqUCYyvaJtaHKEESoQtD1YzcNAUCH3mQ3WCTHRHsWsD3Hjh3DJ598wkEh5BbrGkCH/bZsBoHwok2WbI8lRwEgp4IhkprNc4AdtPYAfB6wL0gSAJ44cQJXXnkltFotbrzxRowaNQrTpk3D8ePHpdg8BTibGkAHd3nWnYVZA0jWXHnQPMCLC5E/WA8AcXSD1vcan/zkLUkCwF/96leYMGECzpw5gxMnTuDMmTO45JJLcOedd0qxeQpwthdt12ptWANI/dnrX+ToAmMdGPJYIhKfq6P0+17jTZq3JHkSyMcff4wTJ04gNDQUABAVFYWnn34aGo1Gis1TgLOuyXM8CIT9tsixDr0Jpn79iyJUIQhV2r8HZm0ykfRcbe0BeJPmC5LUAMbHx6OystJi3TfffIMhQ4ZIsXkKcC5PBG1zQuBFm85ztfav7zVeXIikZj0JtDs1gGc57ZfbJKkBfOCBBzBz5kwsW7YMF154IWpra/HKK6/g97//vRSbpwDn6kTQYUoFQkMU0P9YzdNrFNBjMNkdRUbBh81LRPLm3k0aW3y8JUkAePvtt0Or1aK4uBiHDh3C8OHDsWXLFkyfPl2KzVOAc/WkoFAoEBOmRHPX+fRtPQaEqdSi5o8CAy8uRPJm/TuLczoKmLX03pKkaqS3txdVVVUIDQ1FQkICenp68Morr2DRokVSbJ4CXJtbzQKcvoPsc7UrAcAphYj8wWYUsNM+gNaPg2MtvbskqQFcvHgxvvrqK/z85z/H0KFDpdgkDSLWNTfWgz2cvcbO+3SOzRNlnNxI2A4o4nFEJDZ3btI4CMR7kgSAu3btQk1NDQd9kEes53dyWgPImhtywPpmwJ1BIK08johE515rD5/97i1JmoBHjBiBnp4eKTZFg4xJEGxPCk6aBdh3ixxxZxCIdfMSawCJxMeR+tISrQbwww8/NP+/aNEiXH/99bjnnnuQkpJikY4DQciZdqvgLyo0BMoQxw/85oWbHLHpSsCLC5GsuPqkHoAj9X1BtABw2bJlNut++9vfWiwrFAp89913YmWBBgF3am3svc5BIHSOO8eS9UPl23oMEAQBCoXjmw8i8o57j4KzHgTCc727RAsAa2pqxPpoCiLuNAnYe513hXSOO8dSmCoEYUoFeox9c0oaBaDLYEJkqPPjj4g8595E0Fa19OwD6DbOkEuyZn1X56xJwN7rbLqjc9wZBQzYPnKQ00wQicudbhq2j2vkud5dDABJ1lgDSL7i/bHECwyRmDgNjLQYAJKsuTMtgL3XeVdI57hzcel7nRcYIqkIguBeP107N/uCIIiSt8GKASDJmjtzt9l7nRNB0znWNwMD3kzYGQhCROLoMphgMJ0P4MKUCqfPcVcrQxDe73WTAHToTaLmcbBhAEiy5n6tDZvtyD53+hcBdmqTe3ksEYnF3Rkf+tLwJs0bDABJ1qw73g/UcT+OzXbkgPuDQPisUSKpuNtHF2A/QG8xACRZs50Y1N1+W7xo07n+RZbHgnUfImu8uBBJhzWA0mMASLLm/iAQNgGTrU69Cf26FyFcFQK10vnpj30AiaTjbn9ve2l4vncPA0CSNU4DQ77gSfMSLy5E0nHnMXDncNYH7wREALhr1y5kZGRAq9Vi3bp1Nq/39PRg3rx50Gq1mDx5MmprawEAe/bswcSJE5GVlYWJEydaPJ+YAoO7zQLhqhCo+j0ruMcooMfAkWHBzt3BRH1prJ80wIsLkVh8UQPIWR/cI/sA0Gg0Yvny5di5cycqKyuxZcsWVFZWWqTZsGED4uPjUV1djZUrV2LVqlUAgKSkJLzzzjs4dOgQNm7ciIULF/qjCOQF20Egzk8KCoXCJg1rAcn6wuBK7QIHgRBJx93+3n1p2E/XG7IPAMvLy6HVapGeng61Wo3CwkKUlpZapCktLcXixYsBAAUFBdi7dy8EQcAll1yC4cOHAwB0Oh26urrQ09MjeRnIc+72AbSXhicF8qgGUM3jiEgqngwC4c2+dwbew37W0NCAtLQ083JqairKysocplGpVIiLi0NTUxOSkpLMad544w1ceumlCAsLc7itxsZGH+fePc3NzX7dvtRcKW9LZ6/Fck/bGTSi3el7IpSWs8HXnjiJSH24+xkUAb9j/6hrbLNYVsM44O/d0NlpsdzU3jXge+RSXikFW5mDrbyANGX+ofmsxbJCP/DvDfoum8/wxXV8MH3HKSkpDl+TfQDoCxUVFVi1ahV2797tNJ2zHSUVOeRBSgOVt9NQbbGcrknBkIhQp++JjzoBNJ2v6Q2NikNKyhDPM+lj/I6lF3LC8qYgKTZywHyNMLUDqDMvdwshLpVFDuWVWrCVOdjKC4hfZpPKMgAcljhkwG0OTzQCON3vM8J8ls9g+I5l3wSs0WhQV3f+JFxfXw+NRuMwjcFgQGtrKxITE83p58yZg02bNmHUqFHSZZy8ZrLzbMhol5oFODKClCzoAAAgAElEQVSMLHkywpDNS0TSse2n68kgEJ7r3SH7ADAnJwdVVVWoqalBb28vSkpKkJ+fb5EmPz8fGzduBABs374d06dPh0KhQEtLC6699lqsW7cOl19+uT+yT15o7zWif71NVKjlCF9HeOEma55cXGLDrW4kunlxIRKLZ30AOfG/N2QfAKpUKhQVFSE3NxeZmZm4+eabodPpsHr1arz99tsAgGXLlqGpqQlarRbPPvuseaqYoqIiVFdXY+3atcjOzkZ2djZOnjzpz+KQGzw5IdhLx8775MmxFG1nImhBEBykJiJvcCJo6QVEH8C8vDzk5eVZrFu7dq35//DwcGzbts3mfQ8//DAefvhh0fNH4vBk8l576XhXSJ4cS2GqEIQpFegx9gV9RgHoMpgQGeracUhErvPFXJ1sAnaP7GsAKXixBpB8xZOLS186HktEUmA/XekxACTZ8lUNIGeHJ5sAUO3qzQQvMERS8GwQCGsAvcEAkGTL+sfseQDIk0Kw86R/UV86DgQhEptgZ8YH1yb9Zz9dbzAAJNny5PFd9tKx2Y6sbwKsR/g6wiYmIvF1G0wwmM4HbmqlAmGqgcMTtTIE4f3SmQSgU89nv7uKASDJluf9tnjRJkvWx4ArzUuAnRrAXt5MEPmap/29+9LyfO8pBoAkW56eFGxqAHnRDnqeDyjixYVIbJ7e7NtLyxYf1zEAJNnyvNaGF206r69/keUxYD3HnyO2TcC8uBD5mqcD/vrSssuPpxgAkmx5PgiEHffpvE69CcZ+/cLDXOxfBNg7lngzQeRrrR729waAGDVnffAUA0CSLdsaQHbcJ/fZHEcuDgABWANIJAVvmoBtHtnI36jLGACSbHnabytcZfnM4B6jgB4DR4YFK+/6F7E/KZHYPJkE+hx2+fEcA0CSLU8v3AqFwiZtOy/cQYsjDInkzZs+gJz2y3MMAEm2vOsYzAs39bE5jlwcAAKwgzmRFDx9Uk9fWp7rPcUAkGTLu5oby7StHAgStKzn7vOmBpAdzIl8z2bS/3DPb/bZB9B1DABJtqxPCnFuNQvwrpD6WI/cdefiYt28xIsLke95c7NvPQiE53rXMQAkWTLZeTZktDsnBTbd0Y+86WDOGwki8fm2uw/P9a5iAEiy1NFrRP9HekeGWo7sHYjNSaGXF+5g5V0fQF5ciMTm6ZyvgG1/Qf5GXccAkGTJmyYBe+l5UghePp0GpscIQRAcpCYiT3g1CIS19B5jAEiy5M1FG7AzOzyf4BC0rOfuc+dmIkwVArXyfM2zwSSgm3NKEvmUzSAQL27SWnmz7zIGgCRLticE92oAbTsG86QQrLwZBAJwIAiR2Gz66brxtJ64cNYAeooBIMmSN52C7aXnExyClzfNSwCbmIjE5t0gEN7se4oBIMmS103AnL+NfuT9zQQvMERiEezM+OBON41oOxNBs5+uaxgAkizZjgrjIBDyjDcTQfel580EkVh6jAL0pvMBW2iIAmFK12d8CFOFWKQ3CkAX++m6hAEgyZK3tTaxfDwQ/cj6u3engznAqWCIxGTvXK9QuB4A9r2HN/yeYABIsmRdA2gd0A3E+oTAjvvB62y3d90JbAeB8GaCyFesf5/uDAA5x6aWnrM+uIQBIMmSTa2NmycF65GerAEMTn39i6xrGNw8llgDSCQab1t7AM764CkGgCRL3g8C4QmB+voCGfv1Bw9TKhCmcu+0x2OJSDw2/b3dHKXf9x7e8HuCASDJkvdPAmGtDXl/HPW9hxcXIrFYP6bTkxpAmy4/nPbLJQwASZa8eX4rAESoQtB/IFm3wYReI0eGBRtfNC+xBpBIPDaTQHv0G+VNmicYAJIseTsNjEKh4IWb7AwA8UEHc15ciHzGesCGJ79R66DR+ndP9gVEALhr1y5kZGRAq9Vi3bp1Nq/39PRg3rx50Gq1mDx5Mmpra82vPfnkk9BqtcjIyMAHH3wgYa7JG7aDQDzpGMy7wmDn7RQwfe/hjQSRWGxrAD0JAK1/ozzXu8L9PS0xo9GI5cuXY8+ePUhNTUVOTg7y8/MxduxYc5oNGzYgPj4e1dXVKCkpwapVq7B161ZUVlaipKQEFRUVOH78OGbOnIlvv/0WSqX7FwFvPbXve7x68AenaUxGI0KUtdJkSAaclffE2R6LZc9qblQAzn9O7stfIdSNCUbFwO9YWl16y2Z/X9QA/uu7Mxj3XJndtP4urz8EW5mDrbyAuGW2rQH0vgn4L5/UY+OXzq+3zkjxHU9Ji8Xfb8wUdRsDkX0AWF5eDq1Wi/T0dABAYWEhSktLLQLA0tJSrFmzBgBQUFCAFStWQBAElJaWorCwEGFhYRg5ciS0Wi3Ky8sxdepUycvR0m1AfWvPwAkRbHcurpXXo5obq36Dje29bn+GOPgd+4svLi49RmGA37J8yiudYCtzsJUXkKrMPhkE0mP0wdyv4pb3VIJe1M93hewDwIaGBqSlpZmXU1NTUVZW5jCNSqVCXFwcmpqa0NDQgClTpli8t6GhweG2GhsbfZz789raO0T77MEuLiwEXS1N6D3rXu1dcrhIGaKAlRRqdPt3HtZjQIgCMPHxokSii0O327/ROHSLlBvxNLd345vvj2OIB92b3JGSkuLwNdkHgFJytqO8FRPdDqBFtM8frMKUCqy9ehSGDxvq9nsfnBGNzxoPoeGsXGr+yJ8yL4jEimlapMSGufW+FAD3XaHHH/cfs5hTkIh8a/aYRMyZOBJqpXvDE65PMqG0pgvvHm0SKWe+lxAdjowLh/s1D7IPADUaDerq6szL9fX10Gg0dtOkpqbCYDCgtbUViYmJLr1XKg9MG4FfTXa+7dOnTyMpKUmiHPmfK+W9ICoUEaGe3SFlJkfh0D2Tcfxsj2xqb/gd+0eoUoGh0Wq3nzF6zm9/dhH+Z2oqznQ5bxaSS3mlFGxlDrbyAtKUOUqtRGJkqEfvVStD8NrNOjR36tHugzkApShvuJsT0otB9gFgTk4OqqqqUFNTA41Gg5KSEmzevNkiTX5+PjZu3IipU6di+/btmD59OhQKBfLz8zF//nzce++9OH78OKqqqnDZZZf5pRzxEaGIj3B+cIf1hCJlSPC0W0pR3hCFAqlx8tmn/I4DV0yYasBBJIOpvK4KtjIHW3mBwClzQmQoEjwMIvsLlPJ6S/YBoEqlQlFREXJzc2E0GrF06VLodDqsXr0akyZNQn5+PpYtW4aFCxdCq9UiISEBJSUlAACdToebb74ZY8eOhUqlwvPPP++XEcBEREREcqIQBEEmjWP+0dra6u8smDU2NoraD1Fugq28QPCVmeUd/IKtzMFWXiD4yjxYyxsXF2ex7P9GaCIiIiKSFGsAZVQDSERERCQG1gASERERBTkGgERERERBJuibgImIiIiCDWsAiYiIiIIMA0An6urqcNVVV2Hs2LHQ6XR47rnnAADNzc24+uqrMXr0aFx99dU4c+YMAODo0aOYOnUqwsLC8Ic//MHis5577jmMGzcOOp0Of/rTnxxuc+nSpUhOTsa4ceMs1m/btg06nQ4hISH47LPPHL7fUd6Ki4sxfvx4ZGVl4Sc/+Qm++uqrQV3eM2fOYM6cORg/fjwuu+wyHD58eFCU11m6r7/+GlOnToVOp0NWVha6u22fjxmIZb7//vtx8cUXY/z48ZgzZw5aWvoeqVheXo7s7GxkZ2djwoQJePPNNwdFeX/3u99h/PjxyM7OxqxZs3D8+HEAgCAIuPvuu6HVajF+/Hh88cUXdt8vpzI7+u6sOcrbM888Y/6Ox40bB6VSiebm5oAv70DHwrFjxxAdHW2Tv0Atr6N0TU1NuOqqqxAdHY0VK1Y43P5gKrNer8fixYuRlZWFzMxMPPnkkw7zIDqBHDp+/Ljw+eefC4IgCGfPnhVGjx4tVFRUCPfff7/w5JNPCoIgCE8++aTwwAMPCIIgCI2NjUJ5ebnw29/+VnjmmWfMn3Po0CFBp9MJHR0dgl6vF2bMmCFUVVXZ3ea+ffuEzz//XNDpdBbrKysrhaNHjwpXXnml8OmnnzrMs6O8/fvf/xaam5sFQRCE999/X7jssssGdXnvu+8+Yc2aNYIgCMKRI0eE6dOnD4ryOkqn1+uFrKws4eDBg4IgCMLp06cFg8EwKMr8wQcfCHq9XhAEQXjggQfMeTu37XPluuCCC8zLgVze1tZW8//PPfeccMcddwiCIAjvvfeecM011wgmk0n45JNP7P6G5VZmR9+dNUd56+/tt98WrrrqqkFR3oGOhblz5woFBQUW+Qvk8jpK197eLuzfv1944YUXhOXLl9t972Arc3FxsTBv3jxBEPrOYRdeeKFQU1PjsOxiYg2gE8OGDcOll14KAIiJiUFmZiYaGhpQWlqKxYsXAwAWL16Mt956CwCQnJyMnJwchIZaPormyJEjmDx5MiIjI6FSqXDllVdix44ddrc5bdo0JCQk2KzPzMxERkbGgHl2lLef/OQniI+PBwBMmTIF9fX1g7q8lZWVmD59OgDg4osvRm1tLRobGwO+vI7S7d69G+PHj8eECRMAAImJiXafehOIZZ41axZUqr6HFvU/ds9tGwC6u7vtPuc3EMsbGxtr/r+jo8NcrtLSUixatAgKhQJTpkxBS0sLTpw4IesyO/rurDnKW39btmzBLbfcMijK6+xYeOuttzBy5EjodDq7rwdieR2li4qKwk9/+lOEhzt/7NpgKrNCoUBHRwcMBgO6urqgVqstfvNSYgDootraWnz55ZeYPHkyGhsbMWzYMADA0KFDbQILa+PGjcP+/fvR1NSEzs5OvP/++6irqxMln67kbcOGDZg9e7bTzwn08k6YMMH8wy4vL8f333/v8IcKBE55Hfn222+hUCiQm5uLSy+9FE8//fSA7wnEMr/00ksWx25ZWZm5yfvFF180n3DtCaTyPvTQQ0hLS0NxcTHWrl0LAGhoaEBaWpo5TWpqKhoaGpx+jpzKbP3d9TdQ3jo7O7Fr1y7MnTvX6TYCpbyOtLe346mnnsIjjzziUvpALK8n+6W/QC9zQUEBoqKiMGzYMIwYMQL33Xef3UBTCrJ/FrActLe3Y+7cufjTn/5kE6krFAq7NQ/9ZWZmYtWqVZg1axaioqKQnZ0tyTOJ7eXtn//8JzZs2ICPP/7Y4fsGQ3kffPBB3HPPPcjOzkZWVhYuueQSh3kI1PL2ZzAY8PHHH+PTTz9FZGQkZsyYgYkTJ2LGjBl20wdimR9//HGoVCosWLDAvG7y5MmoqKjAkSNHsHjxYsyePdtubUKglffxxx/H448/jieffBJFRUV49NFH3f4MOZXZ3nfniL28vfPOO7j88sudXigDtbz9rVmzBitXrkR0dPSAaQOxvJ7ul3MGQ5nLy8uhVCpx/PhxnDlzBldccQVmzpyJ9PR0j/LhDdYADkCv12Pu3LlYsGABbrzxRgBASkqKuenlxIkTSE5OHvBzli1bhs8//xwfffQR4uPjMWbMGNTV1Zk7OL/44ose5e+2225DdnY28vLyBszb119/jV/84hcoLS1FYmLioC5vbGwsXn75ZRw8eBCbNm3CqVOn7P7AAq28jqSmpmLatGlISkpCZGQk8vLyHA4SCMQyv/LKK3j33XdRXFxs9ySfmZmJ6Ohou4N9ArG85yxYsABvvPEGAECj0VjUVtTX10Oj0dj9TDmV2d535855CwBKSkrsNv8GankdKSsrwwMPPICLLroIf/rTn/DEE0+gqKhoUJR3oN/wQAZLmTdv3oxrrrkGoaGhSE5OxuWXX+50UJiYWAPohCAIWLZsGTIzM3Hvvfea1+fn52Pjxo148MEHsXHjRlx//fUDftbJkyeRnJyMY8eOYceOHThw4ACGDBmCgwcPepXHl19+2WLZUd6OHTuGG2+8Ea+++irGjBlj97MGU3lbWloQGRkJtVqNv//975g2bZrNHWMglteR3NxcPP300+js7IRarca+ffuwcuVKm3SBWOZdu3bh6aefxr59+xAZGWleX1NTg7S0NKhUKnz//fc4evQoLrroooAvb1VVFUaPHg2gr2/cxRdfbM5zUVERCgsLUVZWhri4OHPzV39yKrOj787V3zHQ97jOffv24bXXXrO7jUAsryP79+83/79mzRq7o2MDsbyO0rlqMJV5xIgR+PDDD7Fw4UJ0dHTgwIED+PWvf+3Stn3OL0NPAsT+/fsFAEJWVpYwYcIEYcKECcJ7770nnD59Wpg+fbqg1WqFGTNmCE1NTYIgCMKJEycEjUYjxMTECHFxcYJGozGP6PvpT38qZGZmCuPHjxf+8Y9/ONxmYWGhMHToUEGlUgkajUb4+9//LgiCIOzYsUPQaDSCWq0WkpOThVmzZtl9v6O8LVu2TBgyZIi5HBMnThzU5f3Pf/4jjB49WhgzZowwZ84c8wjoQC+vs3SvvvqqMHbsWEGn0wn333+/3fcHYplHjRolpKammvN7blTspk2bhLFjxwoTJkwQLrnkEuHNN98cFOW98cYbBZ1OJ2RlZQnXXXedUF9fLwiCIJhMJuGuu+4S0tPThXHjxjkcSSynMjv67qw5ypsgCMLLL79sHjU5WMrryrHwyCOP2B0FHIjldZbuwgsvFOLj44WoqChBo9EIFRUVg7rMbW1tQkFBgTB27FghMzNTePrppx3mQWx8EggRERFRkGEfQCIiIqIgwwCQiIiIKMgwACQiIiIKMgwAiYiIiIIMA0AiIiKiIMMAkIhIIkuWLMHDDz/s72wQETEAJCIiIgo2DACJiIiIggwDQCIikXz55Ze49NJLERMTg3nz5qG7uxsAcPr0aVx33XUYMmQIEhIScMUVV8BkMvk5t0QUTBgAEhGJoLe3FzfccAMWLlyI5uZm3HTTTXjjjTcAAH/84x+RmpqKU6dOobGxEU888YT5YfFERFJgAEhEJIIDBw5Ar9fj17/+NUJDQ1FQUICcnBwAQGhoKE6cOIHvv/8eoaGhuOKKKxgAEpGkGAASEYng+PHj0Gg0FoHdhRdeCAC4//77odVqMWvWLKSnp2PdunX+yiYRBSkGgEREIhg2bBgaGhogCIJ53bFjxwAAMTEx+OMf/4jvvvsOb7/9Np599lns3bvXX1kloiDEAJCISARTp06FSqXCn//8Z+j1euzYsQPl5eUAgHfffRfV1dUQBAFxcXFQKpUICeHpmIikoxD6354SEZHPfPbZZ7j99ttRXV2NvLw8AMDo0aORmJiI5557DqdOnUJ8fDzuuOMO/O53v/NzbokomDAAJCIiIgoybHMgIiIiCjIMAImIiIiCDANAIiIioiDDAJCIiIgoyDAAJCIiIgoyDACJiIiIggwDQCIiIqIgwwCQiIiIKMgwACQiIiIKMgwAiYiIiIIMA0AiIiKiIKPydwb8rbW11d9ZICIiIhJVXFycxTJrAImIiIiCDANAIiIioiDDAFAijY2N/s7CoMV9Kw7uV3Fwv4qD+1U83Lfi8Pd+ZQBIREREFGQYABIREREFGQaAREREREEm6KeBISIiIhKDSRBwrKUbFSc7UNnY0ff3ZAduzR6KeaPUfs0bA0AiIiIiLzV36s0BXuWPAd+RU51o7zXapP36h3bMG5Xgh1yexwCQiIiIyEU9BhO+Od2JypMdqGg8H/CdaOt1+TM+a2jDme44pIiYz4EwACQiIiKycq75tvJkpznIq2jsQHVTJ4yCd5/d0NqDqFD/DsNgAEhERERBraWrr/n2fI1eJ46c7ECbneZbdw0JV2FschR0KVEYmxwJXXI0Lk6ORFdLkw9y7jkGgERERBQUegwmfHvaskav8mQHjrvRfOtIaIgCYy6IhC45CrrkKIxNjsLYlCgMj1FDoVDYpO/yeoveYQBIREREg4ogCKhr7bHoo1d5sgNVTV0wmLxsvwWQFhfWV6tnrtmLgjYxAqHKwJldjwEgERERBayWbgMqfwz0Ksyjbztwtsf75tvYMKVFkDc2OQqZyVGICw/88CnwS0BERESDXq+xX/Nt44+jcE+2o+Gsb5pvRydFQpcc+WN/vWiMTY6EJjbMbvPtYMAAkIiIiGRDEATUn+2xmDi58mQHvj3tm+bb1Ngwixq9sclRGJ0UAXUANd/6AgNAIiIi8ovWboNFH71zffZ81Xx7LsA7F/BlJkdhyCBovvUF2eyFXbt24Z577oHRaMQvfvELPPjggxav9/T0YNGiRfj888+RmJiIrVu34qKLLkJxcTGeeeYZc7qvv/4aX3zxBbKzs/Gzn/0MJ06cQEREBABg9+7dSE5OlrRcREREwa7XaELV6S7LYO9kB+pbe7z+bFWIAmOSIixq9HQpUUgdxM23viCLANBoNGL58uXYs2cPUlNTkZOTg/z8fIwdO9acZsOGDYiPj0d1dTVKSkqwatUqbN26FQsWLMCCBQsAAIcOHcINN9yA7Oxs8/uKi4sxadIkyctEREQUbARBQMPZHvPkyRWN7ag42Ymq053Q+6D5VhOrtqnVG5MUGXTNt74giwCwvLwcWq0W6enpAIDCwkKUlpZaBIClpaVYs2YNAKCgoAArVqyAIAgW0f2WLVtQWFgoad6JiIiCUWu3AUesm29PdaK12+D1Z8eoleZ59PoCvr759YZEhPog5wTIJABsaGhAWlqaeTk1NRVlZWUO06hUKsTFxaGpqQlJSUnmNFu3bkVpaanF+2677TYolUrMnTsXDz/8MKuDiYiI3KA3CjjSb4qVcwMz6nzQfKtUAKOTIs1z6p0L+kbEsflWbLIIAH2hrKwMkZGRGDdunHldcXExNBoN2traMHfuXLz66qtYtGiRw89obGwULX/Nzc2ifXaw474VB/erOLhfxcH96lsmQUBxRQveONqK6jM90Ju8/8zkSBUyEsMwJkGNMQlhyEgIw6h4tVXzrQHoacXJk95vT+6kOGZTUlIcviaLAFCj0aCurs68XF9fD41GYzdNamoqDAYDWltbkZiYaH69pKQEt9xyi817ACAmJgbz589HeXm50wDQ2Y7yBbE/P5hx34qD+1Uc3K/i4H71jW6DCXe8eRSlR0579P5otRKZF0RibMr5Wj1dShTi2Xxrw5/HrCwCwJycHFRVVaGmpgYajQYlJSXYvHmzRZr8/Hxs3LgRU6dOxfbt2zF9+nRz9bDJZMLrr7+O/fv3m9MbDAa0tLQgKSkJer0e7777LmbOnClpuYiIiALJmS495m+twCfHzg6YNkQBaBMjoEvumzT5XMA3Ykg4Qth8K3uyCABVKhWKioqQm5sLo9GIpUuXQqfTYfXq1Zg0aRLy8/OxbNkyLFy4EFqtFgkJCSgpKTG//6OPPkJaWpp5EAnQN21Mbm4u9Ho9jEYjZs6cidtvv90fxSMiIpK9Yy3duGnzYXxzutPmtaHRtqNvMy6IRLiKo28DlUIQBO/HZQew1tZWSbbT2NjI5gmRcN+Kg/tVHNyv4uB+9c7XP7Tj5s2H8UO75WPVMpIi8ZeZKbhsTJqDd5KnpD5m4+LiLJZlUQNIRERE/vHP/57Bom2VaOu1fPrG1LRYbC7UofcsB9gMRqy7JSIiClIlXzfipi2HbYK//MwkvLlwPAduDGKsASQiIgoygiDgT/+uw6Mf1tq8dsdlw/HErFFQhnAgx2DGAJCIiCiIGE0CHthVjQ2fnbB57fdXp2PFFA0nYQ4CDACJiIiCRKfeiF/sOIr3v2myWK9WKvDC9RmYOy7ZTzkjqTEAJCIiCgJNnXoUbjmMTxvaLNbHhilRPE+HKy4a4qeckT8wACQiIhrkas90YW7xYfy3uctivSZWjW3zszA2OcpPOSN/YQBIREQ0iH15vA03bzmMUx16i/Vjk6Owbf44aGLD/JQz8icGgERERIPUnqpmLNleiQ69yWL9FRfF4bWbdYgLZxgQrPjNExERDUKbvjyBle9WwWj1vK+CcRfg+fwMhPExbkGNASAREdEgIggC1u37Hk99dMzmtXt+kopHZoxECKd5CXoMAImIiAYJvdGEe9+vxqtf/mCxXgHgqWtG4ZeXafyTMZIdBoBERESDQHuvEbdtr8Se6jMW68NVIfi/ORcjPzPJTzkjOWIASEREFOBOtvfi5i2HcfBEu8X6+AgVtszTYcqIOD/ljOSKASAREVEAq27qxNziw/i+pdti/YghYdg+PwtjkiL9lDOSMwaAREREAaq87iwKSw6juctgsX780Ghsmz8OKdFqP+WM5E42Y8B37dqFjIwMaLVarFu3zub1np4ezJs3D1qtFpMnT0ZtbS0AoLa2FhEREcjOzkZ2djbuvPNO83s+//xzZGVlQavV4u6774YgCDafS0REFIje++Y08l/92ib4mzEqHu8tHs/gj5ySRQBoNBqxfPly7Ny5E5WVldiyZQsqKyst0mzYsAHx8fGorq7GypUrsWrVKvNro0aNwsGDB3Hw4EG8+OKL5vW/+tWv8Le//Q1VVVWoqqrCrl27JCsTERGRWDZ8dhwLX69Et8Fyguf5E1JQUqhDTBgb+Mg5WQSA5eXl0Gq1SE9Ph1qtRmFhIUpLSy3SlJaWYvHixQCAgoIC7N2712mN3okTJ3D27FlMmTIFCoUCixYtwltvvSVqOYiIiMQkCAIe3VuD37xfDZPVJfD+K0bg+fwxCFXK4tJOMieLW4SGhgakpaWZl1NTU1FWVuYwjUqlQlxcHJqamgAANTU1uOSSSxAbG4vHHnsMV1xxBRoaGpCammrxmQ0NDU7z0djY6Ksi2Whubhbts4Md9604uF/Fwf0qjmDYr71GAQ/t+wFvV521WB+iANb8NAXzxkbg5MmTPt9uMOxbf5Biv6akpDh8TRYBoDeGDRuGY8eOITExEZ9//jluuOEGVFRUePRZznaUL4j9+cGM+1Yc3K/i4H4Vx2Der2d7DLjj9Ur8q8Yy+IsMDcFLczNxzZhEUbc/mPetP/lzv8oiANRoNKirqzMv19fXQ6PR2E2TmpoKg8GA1tZWJCYmQqFQICwsDAAwceJEjBo1CrsohVYAACAASURBVN9++y00Gg3q6+udfiYREZHcnWjrwU2bD+NwY4fF+qTIUGy9RYeJmlg/5YwCmSw6CuTk5KCqqgo1NTXo7e1FSUkJ8vPzLdLk5+dj48aNAIDt27dj+vTpUCgUOHXqFIxGIwDgu+++Q1VVFdLT0zFs2DDExsbiwIEDEAQBmzZtwvXXXy952YiIiDx19FQHrn7poE3wl54Qjt1Lsxn8kcdkUQOoUqlQVFSE3NxcGI1GLF26FDqdDqtXr8akSZOQn5+PZcuWYeHChdBqtUhISEBJSQkA4KOPPsLq1asRGhqKkJAQvPjii0hISAAA/PWvf8WSJUvQ1dWF2bNnY/bs2f4sJhERkcv+830rbtlagdZuy2leJg6PwdZbdEiK4jQv5DmFEOST47W2tkqyncbGRvahEAn3rTi4X8XB/SqOwbZfSytP4ZdvHkWP0fISnTs6AS/NzUSUWilZXgbbvpULqfdrXJzl4wBlUQNIREREff56oB4P7f4O1rUzt00chmdma6EKUfglXzS4MAAkIiKSAZMg4Hd7vsPzB2ynLHv4qovwm5+mQaFg8Ee+wQCQiIjIz3oMJvyq9BvsqDhlsV4VosCffz4a8ycM9VPOaLBiAEhERORHLV16LHi9Ev/+3rJPerRaiU03ZWL6qAQ/5YwGMwaAREREflLf2o2bNh/GkVOdFutTotV4/ZZxmDAs2k85o8GOASAREZEfHG5sx02bD+NEW6/F+jFJEdg2PwsXDgn3U84oGDAAJCIikti+mjNY+HolzvYYLdZPSYvFlkId4iNC/ZQzChYMAImIiCS07dBJ3FX6DfQmy4lefn5xEv5vTgYiQqWb44+CFwNAIiIiCQiCgOf+U481e2tsXrvjsuF4YtYoKDnHH0mEASAREZHIjCYBD37wX/zt0+M2r/1+5kismJrKOf5IUgwAiYiIRNSlN+L2N4/i3aNNFutDQxR44YYMFIxL9lPOKJgxACQiIhJJc6cehSUVKK8/a7E+JkyJ4pt1mDZyiJ9yRsGOASAREZEIas90oWDzYVQ3dVmsHx6jxrb5WdClRPkpZ0QMAImIiHzu4PE23LzlME526C3WZ14QiW3zxyE1jnP8kX8xACQiIvKhf1Q3Y/G2SnToTRbrf3phHF6bp8OQcF56yf94FBIREflI8cEfcPc738JoOcUf5uouwF+vz0CYKsQ/GSOyIpsjcdeuXcjIyIBWq8W6detsXu/p6cG8efOg1WoxefJk1NbWAgD27NmDiRMnIisrCxMnTsSHH35ofs/PfvYzZGRkIDs7G9nZ2Th58qRUxSEioiAiCAKe/uh7LH/bNvj7n6mp+NuNFzP4I1lx+WhcuXIlDh48KEomjEYjli9fjp07d6KyshJbtmxBZWWlRZoNGzYgPj4e1dXVWLlyJVatWgUASEpKwjvvvINDhw5h48aNWLhwocX7iouLcfDgQRw8eBDJyRxqT0REvmUwCfj1e1V44l/fW6xXAFiXOwq/vzodIZzjj2TG5QDQaDQiNzcX48aNw1NPPYX6+nqfZaK8vBxarRbp6elQq9UoLCxEaWmpRZrS0lIsXrwYAFBQUIC9e/dCEARccsklGD58OABAp9Ohq6sLPT09PssbERGRIx29RizYWoGNX/xgsT5MqcArN2XizskaP+WMyDmX+wD++c9/xvr167Fz504UFxfjsccew+TJk7Fo0SLceOONiI6O9jgTDQ0NSEtLMy+npqairKzMYRqVSoW4uDg0NTUhKSnJnOaNN97ApZdeirCwMPO62267DUqlEnPnzsXDDz/sdKb1xsZGj8swkObmZtE+O9hx34qD+1Uc3K/i8Md+beoy4I6dDTh0qttifVxYCP6aq8GkBJOo1xWp8JgVhxT7NSUlxeFrbg0CUSqVuO6663DdddehoqIC8+fPx5IlS3DXXXehsLAQjz76KDQa/9ztVFRUYNWqVdi9e7d5XXFxMTQaDdra2jB37ly8+uqrWLRokcPPcLajfEHszw9m3Lfi4H4VB/erOKTcr981d2HB64dQc8Yy+EuLC8P2+VnIuCBSsrxIgcesOPy5X93qkXr27Fls2LABV111FaZNm4bJkydj//79OHLkCKKjozF79myPMqHRaFBXV2derq+vtwkk+6cxGAxobW1FYmKiOf2cOXOwadMmjBo1yuI9ABATE4P58+ejvLzco/wRERGd81n9WVz90kGb4C9raBT2LM0edMEfDU4u1wAWFBTggw8+wLRp03DnnXfihhtusGhqffbZZxEXF+dRJnJyclBVVYWamhpoNBqUlJRg8+bNFmny8/OxceNGTJ06Fdu3b8f06dOhUCjQ0tKCa6+9FuvWrcPll19uTm8wGNDS0oKkpCTo9Xq8++67mDlzpkf5IyIiAoCd3zRh6RtH0GWwnOPvqvQh2HjTWMSGcXY1CgwuH6lTpkxBUVERhg4davf1kJAQj/s6qFQqFBUVITc3F0ajEUuXLoVOp8Pq1asxadIk5OfnY9myZVi4cCG0Wi0SEhJQUlICACgqKkJ1dTXWrl2LtWvXAgB2796NqKgo5ObmQq/Xw2g0YubMmbj99ts9yh8REdHLnx/Hb96vhslqmpfC8cn4y8/HIFTJaV4ocCgEQRAGTjZ4tba2SrKdxsZG9qEQCfetOLhfxcH9Kg4x96sgCHj8n7X4w8d1Nq/d99M0PHTVRU4HGAY6HrPikHq/WrfSOq0BTEtLc+mgPnbsmHe5IiIikiG90YS7363Clq8sW7hCFMAf87S4beJwP+WMyDtOA8DXXntNqnwQERHJSluPAYu2VeKf37VYrI9QheCluZmYnZHop5wRec9pAHjllVea/z9+/Lh5wuX+xHo6CBERkb/80NaDm7YcxqEfOizWJ0aqsLVwHCalxvopZ0S+4XKP1VmzZtlMWvjpp596PPULERGRHH1zqhNXv3TQJvgbGR+O3bddwuCPBgWXA8Bf/vKXmDVrFtrb2wEA//nPf5Cfn48NGzaIlrnB5rl/16GsTppBJ0RE5L5PjrUi9+WDqGu1fKTopcNjsHtpNkYlRvgpZ0S+5fI0MHfffTdaWlqQl5eH//f//h+WLFmC4uJizq3nope+asZTB04hKjQEmwt1uHJkvL+zRERE/ZQeOYVf7jiKHqPl5Bi5oxPw0txMRKmVfsoZke+5NWnR6tWrkZOTg3nz5mHbtm0M/lz0yucn8NSBUwCADr0JN28+jF3fNvk5V0REdM6LZQ1Ysu2ITfC3+NKhKJ6nY/BHg47b08CYTCaYTCbceuut5nWcBsa5kx29Fss9RgG3vl6J/5uTgRt1yX7KFRERmQQBj/yjBn/5pN7mtd/+7ELcf8WIQT3HHwUvTgMjgQemXQhTTyfWfXLKvM5gEvCLHUfR0WvCwkvsP12FiIjE02Mw4a7Sb/BGxSmL9UoF8NzPx+DWbJ6bafByeRoY8s5t4xMwNGEIVr5XhXMNDCYB+J93vkVHrxF3Ttb4NX9ERMGkpduAha9XYH+t5cC8qNAQbLppLGZoE/yUMyJpuNwHsKenBw899BDS09PNjxPZvXs3ioqKRMvcYLNk4jD835yLobRqTXjwg//ij/vZjE5EJIWGsz3Ie+WgTfCXHBWK95ZMYPBHQcHlAHDlypU4fPgwiouLzf0hdDodXnjhBdEyNxjdlJWMjTeNhdoqCvz9P2vx6N4aBPmjmYmIRFV5sgOzXvoSlSc7LdaPTozA7qXZyB4W46ecEUnL5Wlg3nzzTVRXVyMqKgohIX1xo0ajQUNDg2iZG6yuuzgJWwvHYf7WCnQZTOb16/9dh/ZeI566ZhRC2OmYiMinPqppwa2vV+Bsj9Fi/eTUWGwp1CEhMtRPOSOSnss1gGq1GgaDwWLdqVOnkJjIZyF64qpR8dhxaxZiwyynFvjbp8ex4u1vYTCxJpCIyFfeOHwSBZsP2QR/112ciLcWZjH4o6DjcgB40003YfHixaipqQEAnDhxAitWrEBhYaFomRvspo6Iw9sLxyM+wrIidvNXjfjFjiPoNZocvJOIiFwhCAL+8p86LNtxFL1Wc/zdnjMcGwvGIiKUc/xR8HE5AHziiScwcuRIZGVloaWlBaNHj8bw4cOxevVqMfM36GUPj8F7iycgJVptsf6tytO4dWsluvRGB+8kIiJnjCYBD37wX/zuHzU2rz06YySevmYUlCHsbkPBya0m4PXr16O9vR2NjY1oa2vD+vXrERYW5pOM7Nq1CxkZGdBqtVi3bp3N6z09PZg3bx60Wi0mT56M2tpa82tPPvkktFotMjIy8MEHH7j8mXIxNjkKO5dMQGqc5b7cXd2Mm7ccRluPwcE7iYjIni69Ebe9cQT/W37cYn1oiAJ/m3Mx7rnc9kEHRMHErUfBHT16FL///e/x6KOPQqFQ4JtvvsHXX3/tdSaMRiOWL1+OnTt3orKyElu2bEFlZaVFmg0bNiA+Ph7V1dVYuXIlVq1aBQCorKxESUkJKioqsGvXLtx1110wGo0ufaacpCdEYOeSCRiVYPmg8f21rZjz2iG0dOn9lDMiosBypkuPOa8dwttHTlusjwlTYvuCcbgpi09gInI5ANy2bRumTZuGhoYGbNq0CQDQ1taGe++91+tMlJeXQ6vVIj09HWq1GoWFhSgtLbVIU1paisWLFwMACgoKsHfvXgiCgNLSUhQWFiIsLAwjR46EVqtFeXm5S58pN2lx4Xh/yQSMTY60WP9ZQxuu2/Q1Tlk9Uo6IiCx939KN3JcP4kDdWYv1w2PU2LlkAq4cGe+nnBHJi8vTwKxevRp79uzBhAkTsHXrVgDAhAkT8NVXX3mdiYaGBqSlpZmXU1NTUVZW5jCNSqVCXFwcmpqa0NDQgClTpli899zUNAN9prXGxkavy+JIc3Ozy2lfnj0cv3i/HodOdZvXHW7swKwNX+CVa1MxNJqj1fpzZ9+S67hfxcH9Ko7m5mZUnu7GL3fW41SnZd/p0fFq/C0vFRegA42NHX7KYeDiMSsOKfZrSkqKw9dcDgBPnjyJ8ePHA4C534RCoRhUfSic7SgpPz8FwHtLk1G4pQL/OXZ+pvqall4sfK8Bby8cj4viIxx/QBAS+7sLVtyv4uB+9b2P6zpwzz/q0d5rGfxdfmEciufpMCTc5csd/f/27jwuqqr/A/hnFnZGZN8FSRRkGYRQUVlSkV8ukxuSIqKGZo/a6lNWplj5hI/6y6zf45ImuKIPFm6pZApmmooGCG6YgrKI7DsMM3N+f5A3JkBRGYbl+369fMk9994z5x7uzHy422kB7bOqoc5+bfMpYC8vL+zcuVOpLDY2FoMHD37uRlhbW+P+/fvcdE5ODqytrVtdRiaToby8HMbGxq2u25Y6O7NeWkLEhbpi1AvKpyvuldXj5ehU3CysaWVNQgjpWfakPsDrx5uHv0kDTfF9qBuFP0Ja0OYA+PXXX2PZsmXw9/dHdXU1goKC8Mknn+DLL7987kZ4e3sjMzMTd+/ehVQqRWxsLCQSidIyEokEMTExAIC4uDiMHDkSPB4PEokEsbGxqK+vx927d5GZmYnBgwe3qc7OTldDgD0hLhjvpPyw7fxKKcbGpCI1v0pNLSOEEPX77V45XtmZhn8cvAXZ3x6bunCoNbZNcYKW8KnudSSkx2jzn0X19fW4ceMGjhw5gvHjx8PW1hbjx4+Hvr7+8zdCKMQ333yDoKAgyOVyzJ07Fy4uLli+fDlefPFFSCQSvPbaawgLC0O/fv1gZGSE2NhYAI3jEU+bNg0DBw6EUCjE//3f/0EgaHyoZ0t1djVaQj6ipw7EwkM3sS/tIVdeXNOACTtS8d8Zrhhia6DGFhJCSMe6lFOBLxKzcepOabN5PACrxjjgH0NtOr5hhHQhPMZYm8Yc69OnD6qrq+Hr6wt/f3/4+/tj0KBBXf4awPLy8icv1A4KCgqe61y/gjEs+fE2vrucr1Sup8HHnhAX+Dv03DvbnrdvScuoX1WD+vXZXcmtxBdJWfjpdvPgBwBaAh42T3LCxIGmHdyy7o32WdXo6H41MFA+WNTmY+P37t3DpUuXMHHiRKSlpSE4OBiGhoYYP358uzeSNMfn8bBubD8s9lH+q7a6QYFpe9Nx7GaxmlpGCCGqlZJfiZC96Ri57fdWw99QK12cmOtB4Y+QNnqqK2MdHBwgk8kglUohlUpx/PhxPHz48MkrknbB4/Hw6ei+EGkJ8K/EbK68Xs4Q9t9r2DJpACa70ANOCSHdQ9qDKkQlZePHx/yBO6yPAT4KsIOjTj3MzUUd2DpCurY2B8CQkBCcP38eVlZWCAgIQGhoKDZt2gSRiN5wHYnH4+F9PzvoaQrwccIdrlymYHjtwA1USxUIG2ShxhYSQsjzySioRlRSNg7fKGp1GR/bXlgaYAc/+97g8XgqfY4rId1RmwPglStXwOfzIRaLIRaL4eHhQeFPjRYOtYG+pgBvH8nEo4s4GYDFh2+hWirHgiFd55E3hBACANcfVmP1mWzEX2s9+A226YUP/e0Q4NC7y1+DTog6tTkAZmZmIj8/H2fOnMGZM2cQFRWF2tpa+Pn5YevWrapsI2lFuKcldDUEWBB/A/Imt/IsPfEHqqVyvOfbR32NI4SQNrpVVIPVSdn4PqMQrd2V6GUlwocBdhj1giEFP0LawVNdA2hpaYkBAwYgLy8POTk5OH36NI4dO6aqtpE2CHYzg64mH3PirkPaJAV+djoLVVI5lo+0pw9LQkindLu4Bv8+cw9x6Q+haCX5eVjq40N/O4xxNKLPMkLaUZsDoEQiwdmzZyESieDv748JEyZg7dq1cHR0VGX7SBuMG2CCfa+6InR/Bmoa/noa6pe/3keVVI7V//MC+PTBSQjpJO6U1OLfZ7Kx/2rrwc/NQg8f+tvj5f4U/AhRhTYHwMmTJ+Orr75C3759Vdke8oxeesEQB0LdELI3HRX1fw2H9O2lPFRL5dgwoT+EfPoQJYSoT1ZpLdb8cg+xqQVKl6005WKuh6X+dhg/wJiCHyEq1OYAOHv2bBU2g7QHnz4GOBTmjsm7r6KkVsaV70ktQLVUjm8nO0FTQMMiEUI61r2yOqz95R72pBZA1sohP2dTXSz1t8MEZxM6Y0FIB6ARsrsZDysRjoaLMXHXVRRUSbnyg9eLULMvAzuCB0JHQ6DGFhJCeoqc8jqsO3sfu35/gIZWgt8AE1184N8HEweaUvAjpANRAOyGnM30cGy2GJKdacgpr+fKf7pdiuA96dj7qgtEWvSrJ4SoRl5FPb789T5iruQr3ZzWVD9jHXzgZ4fJLqYQ0OUphHQ4SgHdlIORDo7PFuOVnVfxR0ktV342uxyTdl1F3AxX9NbRUGMLCSHdzYPKxuAXfTkf9a0Ev76G2vjA3w5TXc3oumRC1IgCYDdmY6CNH2eLMWnXVVx7WM2VJ+dWYtyONPwQ6gYzfU01tpAQ0h08rJJi/a/38d3lfNTJFC0uY9dbG+/79UGIuzkFP0I6AQqA3Zy5viaOhrtjyu50XMmr5MozCqoxNiYVB8PcYd1LS40tJIR0VYXVUmw4l4Otl/JQ20rwszXQwj/9+mC6uzk06CY0QjoNCoA9gKGOBuLD3PDq3gycu1fOld8ursXL0Sk4ONMdfY101NhCQkhXUlzTgK/P5WDLpVylZ482ZdNLC0t8+2CGhzk9fYCQTogCYA/RS0uIuFBXzNp/DSf/KOXK75XV4+XoVMSHucHJVE+NLSSEdHaltQ345nwONl/MQ5VU3uIyViJNvOfbBzM9LKAlpOBHSGel9ndnSUkJAgMD4ejoiMDAQJSWlra4XExMDBwdHeHo6IiYmBgAQE1NDcaNGwcnJye4uLhg6dKl3PLR0dEwNTWFh4cHPDw8aLxiALoaAuwOccEEJxOl8gdVUoyLSUNKfmUraxJCerKy2gasOp0F968uYt3Z+y2GPwt9Taz+nxdwZfFgvPaiFYU/Qjo5tb9Do6KiMGrUKGRmZmLUqFGIiopqtkxJSQlWrlyJCxcu4OLFi1i5ciUXFJcsWYIbN27g999/x6+//qo0NnFISAhSUlKQkpKCiIiIDtumzkxLyMf2qc4IcTdTKi+uaYBkRxou3C9vZU1CSE9TXidDVFI23DdcxJpf7qGyheBnpqeBf41xwO+LvfH6YGtoU/AjpEtQ+zv14MGDCA8PBwCEh4cjPj6+2TInTpxAYGAgjIyMYGhoiMDAQBw/fhy6urp46aWXAACamprw9PRETk5Oh7a/KxLyedj4ygDM9bJUKq+ol2PSrqtIvNPyUVhCSM9QUS/DmjONwS8qKVtpeMlHTHQ18FmgA1LeHIx/DLWhB8wT0sWo/RrAgoICWFo2BhELCwsUFBQ0WyY3Nxe2trbctI2NDXJzc5WWKSsrw+HDh/HWW29xZQcOHMCZM2fQv39/fPnll0p1tNYWVSkpKVFZ3c/qfS8ReLI6bEv9K/DVNCgQvCcdGwKtMNJeX42ta7vO2LfdAfWranTmfq1uUGBXeim+Sy1BWX3LN3f01hYgQmyIUBdD6GrwUVlShM5w8Uhn7teujvpWNTqiX83NzVud1yEBcPTo0Xjw4EGz8lWrVilN83i8Zxr8WyaTYfr06XjzzTfh4OAAAJgwYQKmT58OLS0tbN68GeHh4Th16tRj63lcR7UHVdf/LNZKzGFueA//SszmyhoUDIt/ysPmiQMwxdXsMWt3Hp2xb7sD6lfV6Gz9Wi2VY+ulPGw4n4PimoYWlzHUEWKxjw3meVt12pGEOlu/difUt6qhzn7tkHfxyZMnW51nbm6O/Px8WFpaIj8/H2ZmzQOHtbU1EhMTuemcnBwEBARw0/Pnz4ejoyPefvttrszY2Jj7OSIiAu+///7zbUQ3xePx8L6fHfQ0Bfg44Q5XLlMwRHx/A9UNcswaZPmYGgghXVVNgxzbkvOx4dx9FFa3HPwMtIVYNNQarw+xRq9OGvwIIU9P7dcASiQS7q7emJgYvPLKK82WCQoKQkJCAkpLS1FaWoqEhAQEBQUBAJYtW4by8nKsX79eaZ38/Hzu50OHDsHZ2VmFW9H1LRxqg6/GO6Lp8VcG4M3Dmdh4Ibe11QghXVBtgxz/+S0HHhsu4pOf7rQY/nppCbDU3w5pbw7GP/3sKPwR0s2o/R29dOlSTJs2Ddu2bYOdnR32798PAEhOTsamTZuwdetWGBkZ4ZNPPoG3tzcAYPny5TAyMkJOTg5WrVoFJycneHp6AgAWLVqEiIgIbNiwAYcOHYJQKISRkRGio6PVtYldRrinJfQ0BXj9hxtoOoznhyf+QLVUjvdG2D7TKXpCSOdQJ1Mg5ko+vjx7Hw+qpC0uI9IUYMEQaywcak3jhRPSjfEYYy2P2N1DlJd3zGNPCgoKusw1FEdvFmFO3HVI/zaY+9vDbLFilH2nC4FdqW+7EupX1VBHv9bLFNiV8gDrfrmHvMqWg5++pgCvD7bCIh8bGHbB4Ef7q+pQ36pGR/ergYGB0rTajwCSzmfcABPse9UVofszlIZ5Wn/uPqqkMvz75X7gd7IQSAhpTipXYE9KAdb+cg85FfUtLqOrwcd8b2ssHmYDY92uF/wIIc+GAiBp0UsvGOJAqBtC9qYrPQNsa3I+qhsU+HpCfwj5FAIJ6Ywa5ArsTSvAmjP3cL+85eCnI+QjwtsKbw6zgameZge3kBCibhQASat8+hjgUJg7Ju++ipJaGVe+N7Wg8bERk51okHdCOhGZgmFfWgHW/HIPWaV1LS6jLeRjrpcl3hpuC3N9Cn6E9FQUAMljeViJcDRcjIm7rqKgyUXjh64XIXRfBnYED6QRAAhRM5mCIS79If59Jht3SloOfloCHmZ7WeKd4bawEGl1cAsJIZ0NBUDyRM5mejg2WwzJzjTkNDmd9NPtUkzdk47YV1067YNhCenO5AqG7zMKsfpMNm4X17a4jKaAh3DPxuBn1YuCHyGkEX1rkzZxMNLB8dmNRwKbftH8ml2OiTuvIi7UtUveOUhIV6RgDPHXCrE66R5uFtW0uIwGn4ewQRZ4d4QtbAy0O7iFhJDOjgIgaTMbA238+Ofp4GsPq7nyy3mVGL8jDT+EusGMrikiRGUUjOHw9SJEJWXjemHLwU/I5yHUwxzvjeiDPr0p+BFCWkYBkDwVM31NHA13x9Td6bic99cQ8BkF1Rgbk4r4mW50tIGQdsYYw5GbxYhKykZGQXWLywh4wHSxOZb49oG9oU4Ht5AQ0tVQACRPzVBHA/FhbgjZm4Fz9/56kPbt4lq8HJ2KQ2Hu6GtEX0CEPC/GGI7dKsEXSVm4+qDl4MfnASHu5vinbx840PuOENJGFADJMxFpCREX6opZ+6/h5B+lXPn98nq8HJ2K+DA3OJnqqbGFhHRdjDEkZJbgi6RspORXtbgMnwdMdTXD+3590M9Yt4NbSAjp6ughbuSZ6WoIsDvEBROcTJTKH1RJMTY6FSn5la2sSQhpCWMMJ2+XYPS2FITEZrQY/ngAprqa4rc3XsSWSU4U/gghz4QCIHkuWkI+tk91Roi7mVJ5Sa0Mkh1p+O1ex4y1TEhXxhjD6T9KMea7FEzdo3x9bVOTBpri3AIvbJ3sjP4mFPwIIc+OTgGT5ybk87DxlQHQ1xRgW3I+V15RL8fk3VexJ8QFAQ6GamwhIZ0TYwxnssrwRWI2frtf0epyEmcTfOBnBxdzuqyCENI+KACSdsHn8bD25X7Q0xBgw/kcrrymQYFpe9MRPXUgxg4wVmMLCelczmaV4YukbPya3fpR8nEDjPGBvx3cLfQ7sGWEkJ6AAiBpNzweDytH94VIS4BVidlcuVTOELY/A1smOWGKq9ljaiCk+0vOr8HmE2k4k1XW6jL/098IS/3t4GEp6sCWEUJ6EgqApF3xeDz8088OepoCfJRwhyuXMyDi+xuolsoxy9NSjS0kpO0YY5DKGWob5KhpUKC2QYGaBjlqGxSolf35f9OyJsv9Nf+vsqKaBqQ9aPmuXgAY068xb/Y8UgAAH75JREFU+HlaU/AjhKiW2gNgSUkJQkJCkJWVBXt7e+zfvx+Ghs2vF4uJicHnn38OAFi2bBnCw8MBAAEBAcjPz4eOTuPzrxISEmBmZob6+nrMmjULly9fhrGxMfbt2wd7e/sO266e7h9DbaCvKcBbRzLB/ixjAN48kokqqRz/GGqjzuaRLo4LZrLGgNU0hD36v07WtKz5csrzm4e5R/MV7MnteV6jXjDEUn87eNv0Uv2LEUIIOkEAjIqKwqhRo7B06VJERUUhKioKq1evVlqmpKQEK1euRHJyMng8Hry8vCCRSLiguHv3brz44otK62zbtg2Ghoa4ffs2YmNj8cEHH2Dfvn0dtl0EmOVpCV1NAV7/4QbkTb5EP0q4g2qpHEt8+4DH46mvgaTdMcbQoGBc4KprEr64ECZTDlxcMGshzDU9kvb3kNYRwUzVAvr2xocBdhhia6DuphBCehi1B8CDBw8iMTERABAeHo6AgIBmAfDEiRMIDAyEkZERACAwMBDHjx/H9OnTH1tvZGQkAGDq1KlYtGgRGGMUODrYVFcz6GjwMSfuOqRNUuCqxGxUSeWIHNWXfiedSE2DHOkPqnG1oAr3Cssg1Kr5W4Br8rNMOeA9CmbybhDMVM3X3gAf+ttjmB0FP0KIeqg9ABYUFMDSsvGaMAsLCxQUFDRbJjc3F7a2tty0jY0NcnNzuek5c+ZAIBBgypQpWLZsGXg8ntI6QqEQBgYGKC4uhomJSbP6m7ZFVUpKSlRWd2f3Ym9g0/9YY+GJXNTK/koHX53LQWFZFT4ZYQb+c4TAnty3z6NKqsCN4jqkF9bhWlE9rhXV4Y8yabc4staeNPiAtpAPbSEPOk3+1/rb9F//86Ej5EFL0HK5jrwarramAOpQUFCn7s3rNuhzQHWob1WjI/rV3Ny81XkdEgBHjx6NBw8eNCtftWqV0jSPx3vqo0G7d++GtbU1KisrMWXKFOzcuROzZs16pnY+rqPag6rr78wmmwNWpsaYtjcdFfVyrnzPtTIohJr4RjIAQv6zh8Ce3LdtUVYnQ1p+FVLzK5H6oAqp+VW4XVyLrpz1hHwedDX40NEQQEeD3/iz8NHPAmhr8LmfdYT8vy3bZH6TdXSarKOtwYeOkA8NQfs+L7+goID2VxWhflUd6lvVUGe/dkgAPHnyZKvzzM3NkZ+fD0tLS+Tn58PMrPljQqytrbnTxACQk5ODgIAAbh4AiEQizJgxAxcvXsSsWbNgbW2N+/fvw8bGBjKZDOXl5TA2pufQqdPQPgY4FOaOybuvoqRWxpXHpj1ETYMCWyc7QbOdv2x7opKaBqTmVyGlSdi7W9pxR5oEPEBPU9B4xEtD0DykPQpaT5yvXPb3dds7mBFCSE+i9lPAEokEMTExWLp0KWJiYvDKK680WyYoKAgfffQRSktLATTe6fvFF19AJpOhrKwMJiYmaGhowJEjRzB69Gilen18fBAXF4eRI0fStWadgIeVCEfDxZi46yoKqqRc+aHrRQjdl4EdwQOhoyFQYwu7lodV0mZh7355/XPV6WCkDQ9LEUw05DDtLVIKX4/+1xb+PZj99TMFM0II6fzUHgCXLl2KadOmYdu2bbCzs8P+/fsBAMnJydi0aRO2bt0KIyMjfPLJJ/D29gYALF++HEZGRqiurkZQUBAaGhogl8sxevRozJs3DwDw2muvISwsDP369YORkRFiY2PVto1EmbOZHo7NFkOyMw05TcLKT7dLMXVPOmJfdYFIS+27ZqfCGEN+pXLYS8uvQl6l9Mkrt4IHwNFEBx6WIrhb6MPDUh9uFvow0G7sezpVSQgh3RePMdaVLwN6buXlrQ/D1J7oy7S5nPI6TNx1FbeLa5XKvaxEiAt1haGORpvq6W59yxjD/fL6xiN6eX8d2XtY3fDMdfJ5gJOpLsSWIoj/DHuuFvrQ12z9aGt369fOgvpVNahfVYf6VjU6ul8NDJSfOkCHWYja2Bho48c/Twdfe1jNlV/Oq8S4mDTEz3SDmb6mGluoeowxZJXWIfVBFVLyqpD6oBKp+VVK10g+LSGfB2czXXg0CXsDzfWgS6fWCSGE/IkCIFErM31NHA13x9Td6bicV8mVX3tYjbExqYif6QYbA201trD9KBjDH8W1zcJe07uin5amgAcXcz2lsOdspgctIV2HRwghpHUUAInaGepoID7MDSF7M3Du3l+n5G8X1+Ll6FQcDHOHg5GOGlv49OQKhltFNY1h78/Hr1x9UI0q6bOHPR0hH67mevCw+uuaPSdTXbrpghBCyFOjAEg6BZGWEHGhrpi1/xpO/lHKld8vr8fY6FT8MNMNzmZ6amxh6xrkCtworOGu1UvNr8LVB1WolSmeuU49DT7cLfQhtvrryJ6jie5zPSuREEIIeYQCIOk0dDUE2B3igojvb+DwjSKu/EGVFONiUvF9qBs8rERqbCFQL1Pg+sPqJkf2qpBRUIX65xj/rJeW4M8jeiKILRvDnoORDgQU9gghhKgIBUDSqWgJ+dg+1RkLD93EvrSHXHlJrQySnWnYP90VQ/t0zPiptQ1yZBQoh73rD6vR8BxjpRnqCP88otcY9sSW+rA31H6uofAIIYSQp0UBkHQ6Qj4PG18ZAH1NAbYl53PlFfVyTN59FXtCXBDgYNiur1ktlePqgyqlsHezsBrPcWAPJroa8PjziJ77n4Gvj4EWPZCcEEKI2lEAJJ0Sn8fD2pf7QU9DgA3nc7jymgYFpu1Nx/apzhg3wOSZ6q6o/3Nc3CbX7N0qqnmucXEtRZrcjRniP8OelUiTwh4hhJBOiQIg6bR4PB5Wju4LkZYAqxKzuXKpnGHW/mvYPMkJU12bjx3dVFlt47i4TY/s/VFS+9h1nsTGQIu7MeNR2DPv5s8rJIQQ0r1QACSdGo/Hwz/97KCnKcBHCXe4cjkD5n1/AzVSOYKsGx+DUlQtbRb2ssvqnuv17Q21m4Q9fbhb6MNEj8IeIYSQro0CIOkS/jHUBvqaArx1JJM7VcsAvHkkEz7WurhfmYWcivrHVfFE/Yx1uLDnbqkPsYU+erdxODpCCCGkK6EASLqMWZ6W0NUU4PUfbijdnHE+t+ap6uHzgP4muo3P2fvzJg03C3300qK3AyGEkJ6BvvFIlzLV1Qw6GnzMibsOaRtu0RXwACczPYibhD1Xc33oadK4uIQQQnouCoCkyxk3wAT7p7tixr4M1DT8NdqGBp+HgeZ6StfsDTTTg44GhT1CCCGkKQqApEsKcDDEuQVeOHitCPyGGvgOsIKzqR60hDQuLiGEEPIkav+2LCkpQWBgIBwdHREYGIjS0tIWl4uJiYGjoyMcHR0RExMDAKisrISHhwf3z8TEBG+//TYAIDo6Gqampty8rVu3dtg2kY5hb6iDt4bbYppzb3hYiij8EUIIIW2k9m/MqKgojBo1CpmZmRg1ahSioqKaLVNSUoKVK1fiwoULuHjxIlauXInS0lKIRCKkpKRw/+zs7DB58mRuvZCQEG5eRERER24WIYQQQkinpfYAePDgQYSHhwMAwsPDER8f32yZEydOIDAwEEZGRjA0NERgYCCOHz+utMytW7fw8OFD+Pr6dki7CSGEEEK6KrUHwIKCAlhaWgIALCwsUFBQ0GyZ3Nxc2NractM2NjbIzc1VWiY2NhYhISFKQ28dOHAA7u7umDp1Ku7fv6+iLSCEEEII6Vo65CaQ0aNH48GDB83KV61apTTN4/GeeezU2NhY7Ny5k5ueMGECpk+fDi0tLWzevBnh4eE4derUM9XdHszNzdX22t0d9a1qUL+qBvWralC/qg71rWqou187JACePHmy1Xnm5ubIz8+HpaUl8vPzYWbWfGxXa2trJCYmctM5OTkICAjgplNTUyGTyeDl5cWVGRsbcz9HRETg/ffff76NIIQQQgjpJtR+ClgikXB39cbExOCVV15ptkxQUBASEhJQWlqK0tJSJCQkICgoiJu/d+9eTJ8+XWmd/Px87udDhw7B2dlZRVtACCGEENK18BhjTx5OQYWKi4sxbdo03Lt3D3Z2dti/fz+MjIyQnJyMTZs2cY9v+e677/Cvf/0LAPDxxx9jzpw5XB0ODg748ccf4eTkxJV9+OGHOHToEIRCIYyMjLBx40al+YQQQgghPZXaAyAhhBBCCOlYaj8FTAghhBBCOhYFwDZYtWoVXFxc4O7uDg8PD1y4cOG564yMjMTatWvboXVdE4/Hw8yZM7lpmUwGU1NTjB8/vl3q72n9W1xczI16Y2FhAWtra25aKpW2++uNGDECKSkp7V5vR3vnnXewfv16bjooKEjpofHvvfce/vd//7dNdal6n4uOjsaiRYtUVn9HaG0/7d27NwYOHKjy1+8OffisBAKB0shZWVlZzZbJy8vD1KlTW1w/ICAAycnJKm5l5/U0OSA6Ohp5eXnP/Zqq7nMaC/gJzp8/jyNHjuDKlSvQ0tJCUVGRSr5Qexo9PT2kp6ejtrYWOjo6+Omnn2Btba3uZnVZxsbGXCCLjIyEvr4+lixZouZWdX7Dhw/H/v378fbbb0OhUKCoqAgVFRXc/HPnzuHLL79UYwu7l9b206ysrOf6408mk0EopK+zx9HR0XnsH20ymQxWVlaIi4vrwFZ1DU+bA6Kjo+Hq6gorK6s2v4Y69mE6AvgE+fn5MDExgZaWFgDAxMQEVlZWsLe3R1FREQAgOTmZeyxNZGQk5s6di4CAADg4OGDDhg1cXatWrUL//v0xYsQI3Lx5kyv/9ttv4e3tDbFYjClTpqCmpgaVlZXo27cvGhoaAAAVFRVK093B2LFjcfToUQDN7+QuKSnBxIkT4e7ujqFDhyItLQ0A9e/Tun37Njw8PLjpqKgofP755wCAzMxMBAUFwcvLC35+frh16xaAxmdqurq6QiwW46WXXgIA1NTUIDg4GM7OzpgyZQrq6uq4OufPn48XX3wRLi4u+PTTTwEACQkJSkcSjh07huDgYJVv79MaNmwYzp8/DwDIyMiAq6srRCIRSktLUV9fj+vXr8PT0xNr1qyBt7c33N3dsWLFCm791va5gIAAfPDBBxg8eDD69++PX375BQAgl8vxz3/+k6tr8+bNABo/Z/z8/ODh4QFXV1du+e3bt6N///4YPHgwfv31V67+w4cPY8iQIRg0aBBGjx6NgoICKBQKODo6orCwEACgUCjQr18/brqzk8vlmDdvHlxcXDBmzBjU1tYCUD4KUlRUBHt7ewCNX7ISiQQjR47EqFGjqA+fwd/7MCsrC66urgCA2tpavPrqq3B2dsakSZO43wcAvPHGG9x7/tH74dSpU5g4cSK3zE8//YRJkyZ17AapSGs54NNPP4W3tzdcXV0xf/58MMYQFxeH5ORkhIaGwsPDA7W1tY/NC2FhYRg+fDjCwsI6vs8ZeazKykomFouZo6Mje+ONN1hiYiJjjDE7OztWWFjIGGPs0qVLzN/fnzHG2IoVK5iPjw+rq6tjhYWFzMjIiEmlUpacnMxcXV1ZdXU1Ky8vZy+88AJbs2YNY4yxoqIi7vU+/vhjtmHDBsYYY7Nnz2Y//PADY4yxzZs3s3fffbejNlvl9PT0WGpqKpsyZQqrra1lYrGYnT59mo0bN44xxtiiRYtYZGQkY4yxn3/+mYnFYsYY9W9brFixgtv2zMxMru8YY+yLL75gn332GWOMsYCAAHb79m3GGGNnz55lgYGBjDHGnJyc2IMHDxhjjJWWljLGGFu9ejWbN28eY4yxK1euMD6fz37//XfGGGPFxcWMMcYaGhrYiBEjWEZGBpPL5czR0ZHr++DgYPbjjz+qdLuflb29PcvOzmabNm1iGzduZMuWLWNHjx5lZ8+eZSNGjGAnTpxg8+bNYwqFgsnlcjZu3DiWlJT02H3O39+f25+OHj3KRo0axRhr3M8e9X9dXR3z8vJid+7cYWvXrmWff/45Y4wxmUzGKioqWF5eHrO1tWUPHz5k9fX1bNiwYWzhwoWMMcZKSkqYQqFgjDH27bffcq8VGRnJvvzyS8YYYydOnGCTJ0/uoF58ek3307t37zKBQMDtU8HBwWznzp2Msca+vHTpEmOMscLCQmZnZ8cYY2z79u3M2tqa2/96Yh8+DT6fz8RiMROLxWzixImMseZ9ePfuXebi4sIYY2zdunVszpw5jDHGUlNTmUAg4H4Pj5aXyWTM39+fpaamMoVCwQYMGMAePnzIGGNs+vTp7NChQx26jarSWg541A+MMTZz5kxue5vus4w9Pi94enqympoaxljH9zkdAXwCfX19XL58GVu2bIGpqSlCQkIQHR392HXGjRsHLS0tmJiYwMzMDAUFBfjll18wadIk6OrqolevXpBIJNzy6enp8PX1hZubG3bv3o2MjAwAjQ+w3r59O4DGv2KbPvqmO3B3d0dWVhb27t2LsWPHKs07e/YswsLCAAAjR45EcXExd2qO+vf5lZWV4bfffsOUKVPg4eGBhQsXctesDB8+HLNmzcLWrVuhUCgAAGfOnOGu2Rw0aBBcXFy4uvbu3QtPT094enri+vXruHbtGvh8PkJDQ7Fnzx6UlJTg8uXLGDNmTMdvaBsMGzYM586dw7lz5+Dj4wMfHx9uevjw4UhISEBCQgIGDRoET09P3LhxA5mZmY/d5wBg8uTJAAAvLy/uequEhATs2LEDHh4eGDJkCIqLi5GZmQlvb29s374dkZGRuHr1KkQiES5cuICAgACYmppCU1MTISEhXN05OTkICgqCm5sb1qxZw+3Tc+fOxY4dOwA0PjqrK+3Tffv25Y5WN+2zx3k0RjwA6sMneHQKOCUlBT/88ANX3rQPm2r6nnd3d4e7uzs3b//+/fD09MSgQYOQkZGBa9eugcfjISwsDLt27UJZWRnOnz+Pl19+WfUb1gFaywGnT5/GkCFD4ObmhlOnTnH70NOQSCTQ0dEB0PF9ThdNtIFAIEBAQAACAgLg5uaGmJgYCIVC7sux6ekwANxh4kfrymSyx9Y/e/ZsxMfHQywWIzo6mhv1ZPjw4cjKykJiYiLkcjl3aL47kUgkWLJkCRITE1FcXNymdah/267pfgo07qtCoRCMMZiYmLR4TdC3336LCxcu4MiRI/D09MTvv//eav2ZmZn46quvcPHiRfTu3RszZ87k3g9z587FlClTAAAhISEQCATtvHXtY/jw4Th37hyuXr0KV1dX2NraYt26dejVqxfmzJmDpKQkfPjhh3j99deV1mt680hLHu2nTfdRxhi+/vprpQfZP3LmzBkcPXoUs2fPxrvvvotevXq1WvfixYvx7rvvQiKRIDExEZGRkQAAW1tbmJub49SpU7h48SJ27979NF2hVn9/Xz86/fW4z1o9PT3uZz8/vx7fh8+iaR+2xd27d7F27VpcunQJhoaGmD17Nvd7mTNnDiZMmABtbW0EBwd3q+sy/54DNm/ejLS0NCQnJ8PW1haRkZHN9s9H2roPt0ZVfU5HAJ/g5s2byMzM5KZTUlJgZ2cHe3t7XL58GQBw4MCBJ9bj5+eH+Ph41NbWorKyEocPH+bmVVZWwtLSEg0NDc0+bGbNmoUZM2Z0m79C/27u3LlYsWIF3NzclMp9fX25vkhMTISJicljP8ypf1tmYWGBvLw8lJaWoq6ujrvm0tDQEJaWltyRAIVCgdTUVADAnTt3MHToUHz22WcwNDREbm4u/Pz8sGfPHgCNQy8++ku3oqICIpEIvXr1Qn5+Pk6cOMG9tq2tLUxMTBAVFYXZs2d34FY/nWHDhuHIkSMwMjKCQCCAkZER99f0sGHDEBQUhO+++w5VVVUAgNzcXDx8+PCx+1xrgoKCsHHjRu5a01u3bqG6uhrZ2dkwNzfHvHnzEBERgStXrmDIkCFISkpCcXExGhoa8N///perp7y8nLtp6tFISo9ERERg5syZCA4O7rSh+2k0/ax93A0K1Iftq+l7Pj09nbsOu6KiAnp6ejAwMEBBQQGOHTvGrWNlZQUrKyt8/vnn3eoztaUcMGDAAACN1wNWVVUp7ZsikQiVlZXcdFvzQkf3efeJ5ypSVVWFxYsXo6ysDEKhEP369cOWLVtw/fp1vPbaa/jkk0+UxiVujaenJ0JCQiAWi2FmZgZvb29u3meffYYhQ4bA1NQUQ4YMUdpxQkNDsWzZsmZD3XUXNjY2ePPNN5uVP7rZw93dHbq6us0+oP+O+rdl2tra+Oijj/Diiy/C2tpa6VEbsbGxeOONNxAZGQmpVIqZM2dCLBbjnXfewd27d8EYw5gxY+Dq6goHBweEh4fD2dkZLi4uGDRoEIDGfh84cCCcnJxgZ2eH4cOHK73+jBkzUFFRgf79+3fodj8NNzc3FBUVYcaMGUplVVVVMDExwZgxY3D9+nX4+PgAaDwdtGvXrsfuc62JiIhAVlYWPD09wRiDqakp4uPjkZiYiDVr1kBDQwP6+vrYsWMHLC0tERkZCR8fH/Tu3VvpZp7IyEgEBwfD0NAQI0eOxN27d7l5EokEc+bM6TZfwEuWLMG0adOwZcsWjBs3rtXlqA/b1xtvvIE5c+bA2dkZzs7O8PLyAgCIxWIMGjQITk5OsLW1bfaeDw0NRWFhYbcafrW1HNC7d2+4urrCwsJC6f0/e/ZsLFiwADo6Ojh//jxWrFjRprzQ0X1OI4F0cnFxcTh48CB27typ7qZ0S9S/qrVgwQL4+PggPDxc3U3pMZKTk/HOO+9wd8GSp0d9+OwWLVqEQYMG4bXXXlN3U3qMZ+1zOgLYiS1evBjHjh3Djz/+qO6mdEvUv6rl4eEBQ0NDpUf1ENWKiorCxo0bu/11a6pEffjsvLy8oKenh3Xr1qm7KT3G8/Q5HQEkhBBCCOlh6CYQQgghhJAehgIgIYQQQkgPQwGQEEIIIaSHoQBICCEd5ObNm/Dw8IBIJFLLzTFZWVng8XhPfHg6IaT7o7uACSHdmr29PQoKCiAUCiEQCDBw4EDMmjUL8+fPB5/fsX8D//vf/8ZLL73U4ggshBDSkegIICGk2zt8+DAqKyuRnZ2NpUuXYvXq1Wp5Tll2drbSOMqEEKIuFAAJIT2GgYEBJBIJ9u3bh5iYGKSnpwMAjh49ikGDBqFXr17cuJ6PjBs3Dl9//bVSPe7u7twwen936NAhuLi4oHfv3ggICMD169cBACNHjsTp06exaNEi6Ovr49atW0rrnT59WmlIxMDAQKXRBXx9fREfHw8AyMvLw5QpU2Bqaoq+ffsqnU5WKBSIiorCCy+8AGNjY0ybNg0lJSUttvXAgQOwt7fn+oEQ0nNQACSE9DiDBw+GjY0NN9KDnp4eduzYgbKyMhw9ehQbN27kwlZ4eDh27drFrZuamorc3NwWhyW7desWpk+fjvXr16OwsBBjx47FhAkTIJVKcerUKfj6+uKbb75BVVVVs+Hxhg4diszMTBQVFaGhoQFpaWnIy8tDZWUlamtrkZycDF9fXygUCkyYMAFisRi5ubn4+eefsX79em4c5q+//hrx8fFISkpCXl4eDA0NsXDhwmZt3b59Oz744AOcPHkSrq6u7da3hJCugQIgIaRHsrKy4o6MBQQEwM3NDXw+H+7u7pg+fTqSkpIANI4Le+vWLW4w+J07dyIkJASamprN6ty3bx/GjRuHwMBAaGhoYMmSJaitrcW5c+ee2B4dHR14e3vjzJkzuHz5MsRiMYYPH45ff/0Vv/32GxwdHWFsbIxLly6hsLAQy5cvh6amJhwcHDBv3jzExsYCADZt2oRVq1bBxsYGWlpaiIyMRFxcnNKNH+vXr8eaNWuQmJiIfv36PXdfEkK6HroJhBDSI+Xm5sLIyAgAcOHCBSxduhTp6emQSqWor69HcHAwAEBbWxshISHYtWsXVqxYgb179yIuLq7FOvPy8mBnZ8dN8/l82NraIjc3t01t8vf3R2JiImxsbODv7w9DQ0MkJSVBS0sL/v7+ABqvI8zLy0Pv3r259eRyOXx9fbn5kyZNUrrBRSAQoKCggJtes2YNli9fDhsbmza1ixDS/dARQEJIj3Pp0iXk5uZixIgRAIAZM2ZAIpHg/v37KC8vx4IFC9B0lMzw8HDs3r0bP//8M3R1deHj49NivVZWVsjOzuamGWO4f/8+rK2t29SuRwHwzJkz8Pf3h7+/P5KSkpCUlMQFQFtbW/Tt2xdlZWXcv8rKSm5Ma1tbWxw7dkxpfl1dnVIbEhIS8Pnnn+PAgQNP13GEkG6DAiAhpMeoqKjAkSNH8Oqrr2LmzJncTReVlZUwMjKCtrY2Ll68iD179iit5+PjAz6fj/feew9hYWGt1j9t2jQcPXoUP//8MxoaGrBu3TpoaWlh2LBhbWrfsGHDcPPmTVy8eBGDBw+Gi4sLsrOzceHCBfj5+QFovH5RJBJh9erVqK2thVwuR3p6Oi5dugQAWLBgAT7++GMuiBYWFuLgwYNKr+Pi4oLjx49j4cKFOHToUNs6jxDSrVAAJIR0exMmTIBIJIKtrS1WrVqFd999F9u3b+fm/+c//8Hy5cshEonw6aefYtq0ac3qmDVrFq5evYqZM2e2+joDBgzArl27sHjxYpiYmODw4cM4fPhwi9cLtkRPTw+enp5wcXHh1vHx8YGdnR3MzMwANJ7OPXLkCFJSUtC3b1+YmJggIiIC5eXlAIC33noLEokEY8aMgUgkwtChQ3HhwoVmryUWi3HkyBHMmzcPx44da1P7CCHdB481Pc9BCCGkRTt27MCWLVtw9uxZdTeFEEKeGx0BJISQJ6ipqcF//vMfzJ8/X91NIYSQdkEBkBBCHuPEiRMwNTWFubk5ZsyYoe7mEEJIu6BTwIQQQgghPQwdASSEEEII6WEoABJCCCGE9DAUAAkhhBBCehgKgIQQQgghPQwFQEIIIYSQHub/AQKpSe8NNF+2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model_with_holidays.plot_components(forecast_with_holidays);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After the process the trendline changed direction a little. The error were very close with the simple model." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The MSE is 0.016819355931023253\n" + ] + } + ], + "source": [ + "print('The MSE is {}'. format(mean_squared_error(y_true=test['occ_rate'], y_pred=forecast_with_holidays['yhat'])))" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The MAE is 0.09747919014509533\n" + ] + } + ], + "source": [ + "print('The MAE is {}'. format(mean_absolute_error(y_true=test['occ_rate'],\n", + " y_pred=forecast_with_holidays['yhat'])))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I think it is because the holidays in the first 10 months and outliers do not give valuable information to the last 2 months. If we use 2019 one-year (at least) to forecast 2020, the holiday and outliers should be more useful. Regardless, I will use 2019 data to forecast 2020 using this model." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "df.reset_index(inplace=True)\n", + "df = df[['Date', 'occ_rate']]\n", + "df = df.rename(columns = {'Date': 'ds', 'occ_rate': 'y'})\n", + "\n", + "df.loc[(df['ds'] >= '2019-01-13') & (df['ds'] <= '2019-01-15'), 'y'] = None\n", + "df.loc[(df['ds'] >= '2019-01-28') & (df['ds'] <= '2019-01-30'), 'y'] = None\n", + "df.loc[(df['ds'] >= '2019-02-11') & (df['ds'] <= '2019-02-12'), 'y'] = None" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:fbprophet:Disabling yearly seasonality. Run prophet with yearly_seasonality=True to override this.\n", + "INFO:fbprophet:Disabling daily seasonality. Run prophet with daily_seasonality=True to override this.\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = Prophet(holidays=holiday_df)\n", + "model.fit(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAG5CAYAAACTPcKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e7xeRXkv/l3vu2+5Q0j2lhKuYqGoKARCopFYQEFPxWuPoEeNoraNPdVTjz+LPZ7qz37Un/ZTqYBWkEJbMSpK1eMlWixKuZSEpCDXSlGPRJMNyU729b2steb5/bHWrDWX7+zsTSDZgfl+Psl+33lnPfPMrFkz33nWM88kIiKIiIiIiIiIiIiIiAAANA62AhERERERERERERFzCZEgR0RERERERERERBiIBDkiIiIiIiIiIiLCQCTIEREREREREREREQYiQY6IiIiIiIiIiIgwEAlyREREREREREREhIFIkCMiIiIiKlx66aUYGhpCkiS47rrrDrY6EREREQcFkSBHREQc0hgeHsZ//+//Hccddxz6+vqwfPlyvP71r8fdd999sFU75HDnnXfik5/8JK666irs2LEDb3zjGw+2SvuNE088ER/5yEcOthoRERGHGCJBjoiIOGTx6KOP4owzzsDtt9+Oz3/+8/jP//xPfPe730VfXx9Wr16NTZs2HWwVDyk8/PDDaDQaePWrX41nPetZmDdv3hOS0+12n2TNIiIiIg4sIkGOiIg4ZPGe97wHaZri5ptvxite8Qocc8wxWLVqFTZu3IhzzjkH69evR6vVqvLfdNNNeMlLXoL58+djyZIlWLduHR555JHq969+9atYuXIlBgYGcMQRR+AVr3gF9uzZAwB46Utfine+851W+X/5l3+J4447rvq+fv16nHfeefjMZz6Do446CvPnz8fv//7vY2RkpMqzbds2vOIVr8Dg4CAWLlyIM8880yPyxx13HP73//7feO9734ulS5diaGgI/+N//A9kWWblu/LKK3HKKaegv78fg4ODeP3rXw8A+MhHPoKTTjrJa693vOMdOPfcc2lbrl+/Hm95y1uglEKSJEiSBAAgIvirv/ornHDCCejr68Ozn/1sXHbZZZ6+/+t//S9s2LABRxxxBF7ykpcAACYmJvDe9763aovTTjsNN954o3XtY489hre//e0YGhrCwMAATjrpJPzd3/1dVfa73vUuPPvZz8a8efNwwgkn4EMf+hA6nU51/fbt2/H6178ey5Ytw8DAAE444QR8+tOfru7ZI488go9+9KNVnX75y1/S+kdERESYiAQ5IiLikMSePXvw3e9+F3/8x3+MxYsXe79feumlGB4exj//8z8DKMjx+eefj5UrV+KOO+7AnXfeibe+9a1I0xQAcO211+K//bf/hte85jXYtm0bbr75ZlxwwQXI83xWem3evBk333wzNm3ahO9973u4++67cckll1S/j42N4Y1vfCNuvvlmbNu2Deeffz4uvPBC/OxnP7PkXH755TjyyCNx55134vLLL8cVV1yBv//7v69+/4u/+At88IMfxIYNG3Dvvfdi06ZNOP300wEA73znO/HII4/gJz/5SZV/fHwcX/va1/Dud7+b6v03f/M3uOyyy9BsNrFjxw7s2LEDAPC5z30OH/7wh/Fnf/ZnuP/++/GBD3wAf/Znf4ZrrrnGuv6zn/0sBgcHcccdd+Daa6+FiOBVr3oV7rnnHnz1q1/Ffffdhz/6oz/CRRddhB/96EcAgFarhXXr1uGee+7B9ddfjwceeACXX3455s+fD6AgyIODg/jyl7+MBx98EJdddhmuvfZafPzjH6/K3bBhA0ZHR3HTTTfhoYcewjXXXIMVK1YAAG688UYcd9xxeP/731/V6eijj57V/YyIiHiGQiIiIiIOQdx5550CQG688Ub6++7duwWAfOpTnxIRkbVr18p/+S//JSjv6KOPlve85z3B39etWyeXXHKJlfaxj31Mjj322Or72972NlmwYIHs3bu3SvvBD34gAOThhx8Oyj711FPlL//yL6vvxx57rLzqVa+y8lxwwQVy0UUXiYjIxMSEDAwMyKc//emgzFe96lXy5je/ufr+t3/7t7Js2TLpdDrBa6699lppNptW2ooVK+QDH/iAlfa+971Pjj/+eEvfc845x8pz8803S39/v9UWIiJvf/vb5dWvfrWIiHzxi1+U/v5+efTRR4M6ufjrv/5rOfHEE6vvp556qvzFX/xFMP+zn/3saX+PiIiIYIgW5IiIiGcEtm7dipe//OX0t8ceewyPPvpo8PfZ4JRTTsGSJUuq7y9+8YsBAA888AAA4PHHH8eGDRtw8skn47DDDsPChQtx//334//+3/9ryXnhC19off+t3/otDA8PAwDuv/9+tNvtafX9gz/4A3zjG9+oXESuvvpqvO1tb0NfX9+M6zI2Nobt27fj7LPPttLXrVuHX/7yl5iamqrSVq1aZeXZsmULut0ujjrqKCxcuLD696UvfQkPP/wwgOKenHLKKZXFl+Hqq6/GWWedhaGhISxcuBCXXnqp1Vbve9/78PGPfxxnnXUWPvjBD+KWW26Zcf0iIiIiQug52ApEREREPBGceOKJSJIE9913H1772td6v99///0AQH1xnwgajQZExErT7hmzwfr16/GrX/0Kn/rUp3D88cdj3rx5uOiii7yNbS6RTZIESqkZl6P9nP/xH/8RZ599NrZu3Yrrr79+1vrOFAsWLLC+K6WwZMkSbNmyxcs7U5J+ww034D3veQ8++clPYt26dVi8eDFuuOEG/Pmf/3mV5+1vfzsuuOACbNq0qfJFf+1rX4svfelL+1ehiIiIZzSiBTkiIuKQxNKlS/HKV74SV1xxBcbGxrzfP/GJT2BoaAgve9nLAAArV67ED3/4QyprcHAQK1asCP6u8/zmN7+x0rZt2+ble/DBBy19br/9dgCFZRkAbrnlFmzYsAEXXnghnv/85+PII4/Ez3/+833U1sYpp5yCgYGBafVtNBp417vehauvvhpXX301zj777FkvFhYvXowVK1Z4Vtmf/OQnOP744ytfYYYzzjgDe/fuRbvdxoknnmj9O+aYYwAU9+SBBx7A9u3bqYxbbrkFp512Gv70T/8UK1euxHOe8xy6ye7II4/E29/+dvzDP/wDrrnmGlx//fXVPejr65u1H3lEREREJMgRERGHLK688kr09PTgnHPOwaZNm/Doo49iy5YteNOb3oR/+Zd/wXXXXVeFKvvwhz+M73//+3jf+96Hn/70p/iP//gPXHfddfiP//gPAMWmty984Qv42Mc+hgcffBD3338/rrjiCuzatQsAcN555+Gmm27CDTfcgP/8z//EJz/5Sfzrv/6rp1OSJHjrW9+K++67D7fccgve85734MILL8SJJ54IoLBoX3/99bj33ntx99134+KLL541gVu4cCHe//734yMf+QiuvPJK/OxnP8M999yDT3ziE1a+Sy65BA899BC++MUvBjfn7QuXXnopLr/8clx99dV4+OGH8YUvfAGf//zn8aEPfWja68455xycd955eN3rXodvfvOb+PnPf46tW7dWsgDg4osvxrHHHosLL7wQN910E37xi1/gRz/6Eb761a8CKNrq3nvvxbe+9S088sgj+Ju/+RsvCsYf//Ef43vf+x4eeeQR3H///bjxxhtx9NFHY9GiRQCA448/Hrfddht+9atfYdeuXbOywkdERDyDcbCdoCMiIiL2Bzt27JANGzbIMcccI729vXLEEUfI6173Otm2bZuXd9OmTbJ69WoZGBiQxYsXy0tf+lJ55JFHqt+/9KUvyamnnip9fX2ydOlSeeUrXyl79uwREZFutyvvfe97Zfny5bJkyRLZsGGDfPjDH/Y26Z177rny6U9/Wp71rGfJvHnz5HWve53s2rWryvPTn/5U1qxZIwMDA3LsscfKlVdeKeeee6687W1vq/Ice+yx8rGPfczS/ZJLLpF169ZV35VSctlll8lv//ZvS29vrwwODsob3vAGr86vec1rZOnSpdJut/fZlmyTnlJKPvWpT8lxxx0nPT09cvzxx8tnPvMZKw/TV0RkampKPvjBD8pxxx0nvb29MjQ0JOeff7786Ec/qvLs2LFD3vKWt8gRRxwh/f39ctJJJ8m1114rIkWbv/vd75bDDz9cFi1aJBdffLFcfvnlYk5dGzZskOc85zkyMDBQ3bP77ruv+n3Lli1y2mmnycDAgACQX/ziF/tsh4iIiIhExHGqi4iIiIh4Qli/fj22b9+Om2666WCrUmHVqlV48YtfjM985jMHW5WIiIiIQwZxk15ERETE0xC7du3Cd77zHWzbtg1f+cpXDrY6EREREYcUIkGOiIiIeBpi+fLlOPzww/HZz34WJ5xwwsFWJyIiIuKQQnSxiIiIiIiIiIiIiDBwSFmQR0dHD7YKERERERERERERTzOYBzwBMcxbREREREREREREhIVIkCMiIiIiIiIiIiIMHPIEeXh4+GCrcEggttPsENtrdojtNXPEtpodYnvNDrG9Zo7YVrPDM629DnmCHBEREREREREREfFkIhLkiIiIiIiIiIiICAORIEdEREREREREREQYiAQ5IiIiIiIiIiIiwkAkyBEREREREREREREGIkGOiIiIiIiIiIiIMBAJckRERERERERERISBSJAjIiIiIiIiIiIiDESCHBEREREREREREWEgEuSIiIiIiIiIiIgIA5EgR0RERERERERERBiIBDkiIiIiIiIiIiLCQCTIEREREREREREREQYiQY6IiIiIiIiIiIgwEAlyREREREREREREhIFIkCMiImYEEcGOsc7BViMiIiIiIuIpRyTIERERM4ISIM3VwVYjIiIiIiLiKUckyBERETNCLoJMDrYWERERERERTz0iQY6ImONQMjdYaa4EmZobukRERERERDyViAQ5ImKO4zdzxO83l4IkR0REREREPN0RCXJExBxHZ474/Wa5mjPW7IiIiIiIiKcSkSBHRMxxtNO5QZDTXHCgDciZEuxtpQe20IiIiIiIZzwiQY6ImCPo5gpCLLRPhgU5V0JlzwapEuAAE+Q0V2hnc2OBEBERERHxzMEBIcjveMc7MDg4iOc973n094ceeghr1qxBf38//uqv/upAqBQRMefw+ESKnBDQ7pMQOmJPK91vopkqhcYBXlLnUhLziIiIiIiIA4gDMt2tX78emzZtCv6+dOlSfPazn8X//J//80CoExFxQCAi2D3ZpenMmvtUWpBbqZqV8ZdtxktzQZIk+63LbBD9niMiIiIiDgYOCEE+++yzsXTp0uDvg4ODOPPMM9Hb23sg1ImIOCDIlGCim3vpY50Mo+3MS+/mPolV8uSEVmvnCrPhmTvG/cgZucKs3DSGJzr7HfWimyuo6GEREREREXGAEX2QIyKeBHSJlTdTgi7xmZjsKrrZrZ2JR2Iz5aftC4yUdrPZWZBZfQQyKxlj7Xy/rb/dHIj8OCIiIiLiQKPnYCvwRDE8PAwAGBkZOciaHBqI7TQ7zLa9to91sWJxn5U20VXYOdHF4nzASv/V3i4W9zeQzrMfv52PT+FwNYD+nnrd2s4U9u6Zws6d3Rm5N3QyhbFOjuUL7LcxOx5rYaDbj8k+e028ayrFsvn+m5sdIx0sSPuttMd2t6EEGMakl5+11/bHWxjoDqCv+cTdMnaMdpELsDDt23fmQwTxWZwdYnvNDrG9Zo7YVrPD07G9hoaGgr8dsgTZrNR0FYyoEdtpdphNe40kExgaXGilNSe7aPV1MTRkp+9U41i2qA+DC20Cuqg9iuWDCzGvt1mlTXRzHNYaxeDQ4WjMgCBPdHMkrRRDS2xS/ovOKJYtn48lAzYZHt01haFl8z05wzLh6T0sE0gAL13Dba+fd0YxOLjIIvyzxWhzqpBNdDyUEZ/F2SG21+wQ22vmiG01OzyT2iu6WEREEGRKZuweICKYIrGKmcsEEI4nnCrfDSLLFRpJMmM3i3bK3RqUcF0miY80wF0s1Cz9idtpvt9R4USenNByvx5r77eMqTTf71B5ERERERGHBg6IBfniiy/Gj3/8Y+zatQsrVqzARz/6UaRpEfz/D//wD7Fz506cccYZGBsbQ6PRwGWXXYYHHngAixcvPhDqRUR4GOvkODxTmG9Yc0PIFN9I18kVmg3f6psqTpAV8Tfu5gqNhHPE34x18FuLbSt0K83Bgl5kgTJbJekz3TdEBBnxnVYiSGbID5UIcuGb+jqZolbl8U6GRf32kJQLsB8eGhVG2xmO2s/hZM9Uhr5FfejZD30yJRjrZHjm2GAiIiIiDk0cEIK8cePGaX9/1rOehe3btx8IVSIiZoRuPvPNcakSpIRQZiRsm4ggV3yTHjuHo5ujIMgiABIjr2C8kwFwCHImYPxNCahluVVu3jOvyQXISd7ZbfKT4DW/3NPGScuJW8dE1yfIStAka5Q9rRTzepsYmIH7Rq4EU9393+qXKuXdh9mimytMpdEKHRERETHXEV0sIiII0nzmERvSQJziTPkyCmKcQMS+Ji/zuoQ6zRUajcSTk+aCNjlAJCdl6qgWLkHOytP1XC4cCi0XWjAo8d1RdJu41+RKsHvKjw2dKaEHmYTcXPa2M/obC6vXyRV1GXl8wg9lNx26s+gTQRmZ4ouP6LoRERERMacQCXLEMx4sLFoWcA9gaKWKRphgIdoEQJL4ocsyVVh+GYltwPdB7mQ5uoRQZsQMnVUE2U4vSKNPvkPHUhcE3kvGw7umMO4Q01wJEuIaMtnN6Ml43VyhQ+rDCD8AjLczqsvuydRLmwr4We+a8vMCBblnunRnGUuaoZ1xGSOtFK2U6xkRERERceARCXLE0w47ySEXIbQzhV3ktLtUzfwEt06uwN70M3Kniadr0MylJJSEUIPEH55KFRLiEMyt1pp82+ndTKEBfyFQuGP49RHhsn8z1vEO8xAplHdlj7Qy6hbRzRT1nS78mP30icBmRGaFnkxz9Db9Mic6fNPdeCenmxezJ8GC3Mm5e00n4z7irG9GRERERDz1iAQ54mmHqYAl7jckkkGmBF12rLLixOxXe30ZnZT7/TKXicKDNfGs1pqseqqU3105k6lCDyF9hWsDKTPxZbczhWbTtyAXhDrkZ+v6VANICiLr5mokvkU8zXlUiomuAqlOsXGRaJFmPMpIO/NJbztwf1qZChzkwt030sBR4LNBO3DkNztFEShOXYyIiIiIOPCIBDniaQf2ehwAD8UWsETmSjzSBwDbR32CrMA39E2X5v60Y7yDeb1NTxcx/plIc0WJphDrrwT8njNVkHVXzzQPEH5izRWAuoCoMjIGt4j7aGU5moE4zy4p1feGh9DziWboBEBBQahdTKb87cGT4YPMNmIWsjn5DvXlpxviQiAiImKuIRLkiKcd2OY1JTzSRCvNPfeAIj+QOz90MsVj4QZYE/PZFeN/U7exdl599q/gJDbkAkIlJMzdo7A2u+mZUkgCIwN1GUmKRYIJJRK0iDOtQ+4LdHGgitSZHtctxNUDAHobCcY7oUWTLzsPxJKeDdLA0eHdwP0s6kP8wZ/CTX0Hg6yOBPzBIyIiIg4WIkGOeNohtNmLbQ7r5OJtmAMK2uhm39tK0dNoUAJKyR3x2dXExuQ3hUVUqBtEyAdZEdmVLiS0XEI24ymgtPI6bhAK1DeZEX4lhRXaPUREiXbrYBZxX/PQwSxCrPM6bjN1gyCHrYSoZE8joe44qfJdRmrdfQzPIhpGrriUbmDzHnO9EBH8bHdrxmXOFgeDrHbIojYiIiLiYCIS5IinFUSEhvTKlCALpLMoFqJ8spoq0FPtCiLMJ/iQy4RJkopPCd1IJwIkAQso3UgXINMNwLOUFy4WPl3LVBGVYyauCto67baskqKtqEWc1IeFmzPL8MoEaVsR5IrLpnIDjDdTCoq8VlBENgDsIpEzAG6JZZFNgIKQ8817PnHe286wtzVzEjuV5mXM7JnnP9DoBEIlRkRERBwsRIIc8bRC6JCLXEBj+7KwaAAgSULIquLErPzPJ2bExUIAFloNQGkVtdOUdmEgkSYoEQyUyULLKcUjZ2RkIRA68lkfnEEtywGLuJD6CzjhDbVrAj8SiC6LWvhnSr5Lku22lYjQeM8AKvcYF487EShGplIaZaTQnS/UmN/zYxMp+tmOxgDG2hl1LwqB+eo/lRARdIkveERERMTBRCTIEU8r5AELXRaIEhD0fVXibWorXBIYqSoIdcjlwf9uk02biCovfwJGepk7AtejIKu+G4SgtE47+fPcd4SoZNOoHMzyrUoLsq8LqNuEV52qTJbOImfoBRD1QfbFU3cPVZJv14CsLeKu7G6u0A68mXB94bePdjAvcPKfIgs7Tcb9MHycqCsRGhZuvMM3ooYwm42BIkIPyplK8+ABOi5yAY0mEhEREXEwEQlyxCGLva3Um/hDG6namUKDBEnQG75cKDCLa/HXs5YC3HKLgD+w2LI1aU5ImSIhy3LAOk0srjoOMiP2SPzNiJo0mnJC7ghaP5ffFEeQMOJcLRGcMsP18cuU0kfaOY1wOtlEEPVvBspNhzby0ufbC5WX5iDhqJHmCmnG25WhIL1OmWq6+vhoZwp7274rxVQgUsuuya7//CihB9AAfFHWyYX6LE90curzz5AH3Jxmi8cnOk+KnIiIiAggEuSIQxgjrcz3E85Lx1r46Q1ijWRxdgtCKXB5giZ97LU8oz+MEGmXCUY2ksS3XNYWWp/0hqzTvruDmBmsK5h1ujoOewayawrn6KeKOMjMIg74vsl0Q+M09UmSxCOx2mI5U1eNugw7b2FBZpZl33I71uHxm7u58twa9KUhDuemhy3ifBE41s6oJbaIeOLn/9muKVpmiGJuH/M3I4biiM/m1MFM8Y2ys0UnDx9NHhERETFbRIIcMecx2c0x1uZWKnYQRRGX107vln61DO6cWhyTTCIzlO/f3TK1VNviqkmZX5ZLsvV13IJc/EYjPAQ2o/mEP+AaAm6dZsQ0vNFNyk2ETplatpff/mvq6FKzoLVZQDcdprlQNwjAdz3R94f6kxOf6qpPOD8Upyj6/a1FTjoU56+pS/FGwI1TzS3/TAYAjLZzNEkX7+bKs/BPdnNMpX7sZeanr3VkR3Z3s/2PGZ0pHtN7tggdthLadPhUhsoL4WBsgIyIiHhiiAQ5YlbIlWCCTJRPJSa7mWfNBYojhH2fUKEWvSwPxJOFT5Lykqxxi2bo8Avf4sr8Z7U/sEU+YZBVQlDoZjdBuZHQIOWVfsz6Wedw06nF1cldU3i3PoUQj5QrKU7SIxZxaltPCnu2f48C9SFuEN1c0GgEuJZD4vX9CflC+4sMflx3roT6fbdShSbz6YFPzHLhi6M015sofaLN+jI79KTadKhc8q0o+U5zRQ+JSZVQ63Q7cER46OATdhR4GnhmtRwXrUBUjuIZ92VsH+Vh+B4NpD9VUCLYHYh4EhERMfcQCXLErJAqweSTcJDA8Lg/OYkIdpL0yS63UnWy3JvgO1nhSsEIDrfE8VjFSfGjmxkJcwUgVtHKH5jowa2CjMLWFmdq5XVJX5DcgYdtC1indWAPzwd5Gv2odRphi3goAodZz5DFVUlhKWZuEA1hsgsp4qaR+1MvDRwSqwk/u4D4D3dz/7jukMVS+826i4luzvuyOPddQxHXi9BiQvufu/nbWUHsvTcwudDNe51MUb/f0EE2vxiZ8tJYW+n6DI/7mw5bqe++AgBdEgMbAEaJX3amBJNP4UL/1+RYeyVhC31ERMTcQyTIEbOCEkH2JLya3EtCY6VK0CKTMNtkpKTwEWaviFnoMrZ5L+QGURBEHoqMbWrTbNq3uPr0m0UmEP9C6yt1gygZnm9BZvVUfjmV7NDhJAEfZGaFZm4NEraI+/Sz/sUjsUTvug2dq0Wh0SD+zdXvvpKzc1MJuaOwfsgXdQwF4fejWOSBtg1JZZEwqnvsdFlttXZlVQTZTQ+4BqQBV4oilrSjtwiGJ3wLaicr7huTzSzIU4GjwNlbojRX1K2hnamn9Bjvye7MDyt6ssCs8xEREU8ckSBHzArFEcz7N8iLcOtNmou38x8o/DzdIvUBCoywsImfhTsWgL4eF/s/6xe6qa3c2OT5IJe+B+KQWNfzQrz/jd+0xdnwT1UipfsG8aslMkKbC2sXC7/Mgnz7sl0hwQgZoNnLtgu5NjCXkdDhJL7sXPQJgKw+jPDzRYOQdH3YiusnrHsc02XGbVL+8yKVKIUk8IaDPYHCytRvCVz9lALYKYqlNdetfyvNqRtEzgpFEaPaJeutTJUHpThllr7WLrIAoSzGA0KQiQW5leZUv4lOxhx9oESKaxyMTHVnRUBZ3lyExmh/svDYhG9tj4iIeOKIBDliVsgV9zmcDbq50JOzOpmiE2KW++ShmytKknQCP6nNTYNHYKtrA5ZVFtu3+BogYA4BV/r0OkdGvZ8rYAH09C6suZ5fLfz6lFyI1pNbp/3T+7RsfV0lO+AyUd8Ilsoihxh1c8oJHRTiCs8FpQWZauLJNusEKw930aGuCuX/bJHBFwGMwBdleosP6L7iPxOUIpM3JwV9D7ijgNQ/IL2VCt3kOt3BJ17Ej3aGXmKdDp1EmebcfaOd5jQqR5f4II92cvSSnYvj3Rw9DX/662QKe1u+S8Zkl+vCoISHysuVIHsK4z3PxiIeOto9IiKiRiTIEbNCmu9/SKZOltPJZioNHOahfAty5fvqvVLmFj02F4jxv4k8ED1Ay8jcuMFSlix+GhyipKM7WGTas5oa+cU/uEJPbO4Gu5B1NmRBrq8jodiSgGyX8Es4QgarTx31gt03cjgJ0TfkU63K++b2rcKA7MtOWLi58n/ml134Pbv1qevlwk0JBFEJLxoUP657uoVdqM/SBQkh1KEFZkYIP6Db2v9BCbGIyzQuPaQ+7cx/7oGCODNd2Fuibi5okobvZnys6ebKe74BoEX2O4SQ5tzynQY2Cs8WzO1ECXdHCWHPVDori/jjEzPf0BjaRBkRcaghEuSIWSFTQv1KxzsZHaB3kNipU4Ed/u0s9yYzvQvfO9VOgCYJucashTqdv3r30zUppafGBSb4RBxCSXQqZOsyxU5LAnqLH11COy4AACAASURBVPNX02OXmoQIvypDlIXqyTbSuVbuSrbY6XVbuTLsK61vHvkWLXpmhF/M323ZhZWXlOkQsLA1NxC2Toq4zt7hMSIQhA5ymWHfLMt026o6uZH15eDmPU74Peu0lBsaXRkAqMtIwFIctCAjQJBJVBIRXp9Wyg/3yYjehXzxonWwsQooXWAIWW2lihoA2iQkHgAa0SdTQjfjhcLQdXNFyWrhRuZf8RsypuaBMkPoBBYZbEMjAEzO4vhxFgM8IuJQRCTIEbNCpvjr3YlOTgfoSeLPN5UWsWN92fzVe4iYJEniuXtU1ly46b5umgywDYChqA/UxaJyybBJX0U2nHRmza1iKXtaljoZhSqDTLl+wuzo6JBM0W4D5Fhl1/UiSOLKvJ7sQNm15d/OW/lUM1LuyeAhyrRsv08UJJYtJvz+JjxsnW4T1zodkBM6zINh+lB5gf4WcOEILgI9/RR1u6lq5JFb/ko+dLS7KOZ2wt2i6gWMnV6EufP7Vk5kazls8cpuQ8iSO5lyF7J2xuvPou4UhxL5MkIh9Ka6OY0x/dhEx4tfDYDu38iFR8hQIsFNiqwF9rR4GLrZHAUeimDyVCIUTSUiYn8QCXLErJALf+3ZDlgkWsTykAZeBbJXkAIU5NMjcTrsFrfSuaCb9IRfUx3QQCZbgESxACd9mva6octcq6D92beuuTpq8u26KtREiyvOiAm1IOv0kJXb0oVHyHD1t2R75Lv4ISEkjB3jrPVl5I75VOvfWDuH/Jv9dFXpz/L7x3UTDYJkNbRZMhCnOlRGgHwW/5yFDQLuG+X/XH+SyPTQZbpvfUrJjHyzMovIM4T0KfFka/1YGL7QkSWsPlnA7zkLLATGiCtBO+OndnYVX0yGonJMdLkFmRJkxY/r7mQKo8Snuhtw92AbFIHwmM3QDRDksU72lBHnsXZG97VEROwPIkGOCIK5TGQKNGZpO+A/3CEHBrDXz4XssOXXtyDzCV7HOw6+aiZp9BV+yIpIdBHxSV9t5bXrpDfp2eSznjiD04cnO6F+wjp+M/Nr5gduEKuobnMm25Ez/fHbPN3znQaKU+eY6wW1rO7D75mQp5Blnd17RmJ0PdnaI+RiEqYC/D6EXDKoDzLznybPlc7r1bPauOnrXfwlsgM18ftV4JlVQCOgNyszNB4o8WW7ZZv6uc+DLpPVJw24jIQMAxOd3JPdShX1e84DVthW4DTCya6/GVEJD4XJ9mkApbsDWdBPewIiSZ8N+UwDuoy3+ebKJwMhl5GIiP1BJMgRQewc88MGFYM8t1SwgZVthgmNY+ygg4KA8F34oRPmWBn6lbcfis3PmytVhvTyiSM7HQ5gG+aksn56hJJMnjX5dPSu/jqEEsXrd3Peqjevue4hvMWntWg6bVsTRxKVgzDHECkHtGy7rUQS75joOoScc++xD4srqQ8cd4LiEz+cgskOknLhbhDFQi3U7rxMP7dME6ea9ZXQ6Y/ElQThiCzsCWdEOFSm3uTqvfUBglZu5vecEVeKelHnpov119IwEMqRLtJZfD4UbjtsMc6O1E4DY6QK9IhQVI6p1N8Y2M25pbibCXXraAVcRljED6Acx500kdlF3+hm3AUmVXyOeDIQWthEROwPIkGOoBARtMjIGpr2Q6/VWAzjkH8ms+poSyxLbySJdwR1Ndky+W70CPCJsprIiYwkSTxfP/2NuSS4U6Um+i4RdGXV330Sq1/nMzcIbYc25YcIVbBQ+AS0lm1jOrLKRNcuCX7xCWw/ykpfZ2FTbzr0CQvzqa7r48t26UAobF1lQQ5MwyzygXt0dqhNtN58ccjatuhV4qYJz8uihuiIH/yYcRanmpDjQJn6DYxvQZ5eNls4MKu6wI+kU5FytpgQZinn4xgjWrpPum2lw6p5egf6SOjNWRrwqU6VX/9ultM3eJ2Av3Zo02EuvMx25ltilYRPAGSbFEP1YYsJIOz3PBukgaPN5zpCPuIRcwORIEdQZEqo31noFRkLA1VHoOCE0pcdPtnMe7WtN2q5IcoIeSjS4U2U+vWzp4eOVcxksHRi6dNEkG88c8ojVu3qsy7Tkd1IEs8SG/o8HVll6Qq+L28tzwlbF4iQESLlgmKRkVuy6yuY6wlb2DBUhJKlO1bHatnhkm8JW4ppaDmZ5k0GIY8M2nWHLiYCPtUCp6+gXADSVR232rr9R6fT5wf8XrIyKys8WUiyo9r1r6H+aadx2WxjaS2DkPuA/EKu/YM+ndOV3c6KN03c1cWXHdpEluU+odSh7NwrighAvozQxsBuzqMOKcUNGuxkRH1qqYtOpvD4JHnLGPARLyzIvpxQ5IzZ4GBsDHwy0M3lSal/xFODSJCfQdjbSukgsmfKH+QKgkwG1oD1VxGrgbY6sIkvSHLYJExkKADNRkKtIzzObvG/T7T8+uTla/MgsSfswbe4apeEwIYnV2cyuWkC4ubXmwgLi6tbJsBeVwPTLVR8Uu4uPmrZIG3ICSVN161uyNZ5G4lbHzF8qv1C/QVZKNJEGR/ZWXwkAh7XmchWwTKFvsmwa2up7cnI1PQ+yP4iEHDvsSbkLir3jRn0WS2HPj+UrPIyi2TSBwVAQjY0Vm3r158vvPhBLgC3XNbX2WXSrKHFEfy26mQKzWbgJE6C0NhZbEa020RHjXDza/9mt63CpxFyezaLShLav5ELc10pfKTZ4SQiPFZ+lvGxsJPtP7ENHXk+Wxzo+M1P9eExEfuHSJCfQRjvZHQCeXyK7XJW9MENuOjRAVdfzkmvL4VNWrWV1xnM9WY3EqLM3ewFozwv5BopsyJDni4+zRYpfByZxTUBJxuuDC+ig/mZkAf9Sp5tDGS+zCGyWi8R7BQprdOulZdt0kOgrdyyq8+amLllgtUnQL8JUTe/MzJoy6tdYCDityGxFIfqGSSxVbpZ/4AMYm3TOjKLuJbi3wYe+o2GLETA4goEnh/fdSBUZvVGgMgORYdhXJu5QRRdyJddjzX+fWCkj6VV8ql+iXdMtN6w7NefPw25+RBZcnwLbaZ4KMNcBEnwNEIuO7SIce99HjBohOqzt53RlVMRj9rPH/JBbmfcxWCYhNDLlGAvcclIQxNTADQ6igg9RfGpRJqrWcWvjjiwiAT5GYROYIfyRNcfFDqZ4lZN4W4QIv5AmilOhTVRmsmk5VPSAsUmI3iTlrb2iJOmZ34zfZ9h0XiyRyhr4mhaXMtcLtkwWFIdLcKQ4ZXnT1pZuTgorKKulde3WjPiqESgo7L6pFxbXM38IaLFSSy1OKIm35a7Q91UUDOxWmvCT+49y1uV6RBKRvjrsHWsH7IydT906ipFCWzqY305aM0lPtUCeAfThFBbxBlFDvgsg/R98syG6hhaeOqNpdynmvkm8/tAiaMqQqvxQ2/4fWCgGx0FaCS+AaCI6xwi8Uy2Xx9VZqaRcRAIH0hIfE7SAG5Z1UQ4+MbPSTddoEy00py++lLgb/a6irdL6IjsceLf3MkU9XtWCL89YPg1OWwlU7M7jfDJQDfnPuIhzKUTCg9Fl5bZIhLkZxDYSU4iQoPUdzLu08YMEllgwO2W8UDZg8R3lnMyTV95Kx7zVlCSRIcMSYAM1q/wjYmfkFLzWleGJknmQKfJnRuZoSJaTv2rMG+EgLhlarLqE806Vu++LJemdZr5LruuCjX55/7AocWElVaWySzIifi+v/XCwdnsFiijzuLkFUJARbs1OIsmcCtnEuoTAFlMSOka41pXNQFxSFIVco2TQd+nWryFl+4roU2HLiqiyULihfyeA77g3iv50mfXWzQZv/vpM3NFqi2lLlkFjTAT7J/C90ywhbsqSTaNygHuGhN6Q8ajcnCf6gbbuKlApYdOOmRHgWflazbPgixcdpbXW1RNhCJhKMX9nkOHyjCCnCsJni7oGkUA/gZzOkyR+PyhExCfSnQyFTztkWEPedt7sMBOdHy6IRLkZxCK2JdOWh7YgJELPQ6a+dHlepD3ZGt/OTtdEyWbaIqXpsujG5i8D4Zs+P7AbNra1yawkBXRjzrhh7XS5I75JusLma5MD/dzXm5QdMlTPY35pM+tj3j/m+m+37M5RQYM4hZYZIKqrRzynWt/GcDbSMfiQ7N2M/OwvDxONZAkjotFFbbORt2GTpni1ye0+AhhuljSzKca8Em8+Ty47jjFX1d2+cx6ZfoRP8w6+feeR5jhJ1GidN3xZYf2DfCFFxuXELAgcx0ZBADoRkwpNuO56cHNvJxo0/qQtx5VmSEXGIRk81rysZP4PZcGDVeO3vPgQvss70+6iCAl/TtTUhJzG1Opou4bSrghhh2qAvADUbKD4O4QsqqPTHWpju2n0MIdigSym2zEBGYXG/tQRSTIzyAwF4tOltPBL7TaZxbk0CSclTN/cID25IYmVbI7P0DM6ji2JmHhn0ObwKbbkOWWqdOKyAym7Jrc8TBuhnOCtWENzmdNNA3ZqrAuueTJjEls+zX7NzJknTbLNCtqymbEnd9j3lZ+OijhZ0Tcr4Oh4zSkvEi3XWCoiwXCESVcva10UqbBk6nFstJF8UggtjxDV/FjGFdEkG06nM46HbC4cmLvPrN+e+v0kK8xdSUBgvsGGPlmhFeHeePWaVJ/Mo6xRYBOp1beSm94oG/IGEFEKYS1IWmTpGxFJptBwOpTLrycvN1coUn8m7u50EWjCC+XGK2LdOXPP8UGQD9vpjhxbmc5tSCLcBcLFmVDiVCrdSjGdCvNZ+XaMJtTB0Nxt4vTFf307izD2TFy284UJkh9HptI6dHm7LRIEUEa2Fz5dPKpjgT5EEZoddzNFR0AmD9aETbIH/3YKVYAH+QKgpN4FgmR8IEbcNIrUkEG0OksyCHbkE9KE7jjthW6jOgXgk+GNBE285QvYOmrcP8z80EOWR8zJdSyqi2R7HhmV++Q1ToUk9mUzerASIX5ey3PdyquXUZCbh2cmLlgJLZawMB1gdE9zn97UFg/Z0a03N/rPGTxQe6ZJdtNJz+IIceczMX44N7naa3TNH0a67xzPxkXqsOi+c89D8XmE+raL5nIICQ2L/V2ldGklN01do9DpJyG+FOCBiGJmiDOZFEXWnhVFnGysDGvY7K8dPKduaMU98VfqOVKgcVeZu1a7G0ItbdfnxCZSnNFyVpoXgoR5HbAlYJFaOrk9XNrYryT0fwMIoIHH5+aUV4gbG1vkwNbgOIQFpa+fbTtpWVKAn7ceRUlxSozQL6Zq0suQJeY8juZClqcD0VEgnyIgK1gfz7SonmnujkNPp4TK1bwWFQy8IdQjKt+aJ9iI52/+9skrFVaoCy9ScX/mRMzwHf3qK2i7klt2io6Ox9XFmPYvaAilAiR0br+ttXUJyBuOZZeZpmaODsWQzqZmv8HyjQ/mbIDxe+zDUN1sKy5ZjoCG+mIPDvdzev7a9f33nWxqBlLaDFDyyStZm5Um/ZJ0kWGLOJm1vIGua4K9bUBN6JAW9FYxWAE2Y8DLRWh8gliaFHrbsTU8Czi8O9vIVvoW6lQmQUC9XfTAqTcfNPkyQgsBJgm0z+HpA0TeKfghSzoYXLMDRoixGVEilHJFZUqoNFg5J5HTWGNq9vEJ996cWT/0M4UmoSsprnA7T6F/zX3m2/n/pHaaS7ISIN1A/tuxruKWpZH237Y1JFWRuMaiwiNypEH+kor5WQ1DRypzcpMc0WJcChmdJuc3AjwMHxKuLU9U4JutCBHHGgw5/y97ZT7KWX8gVZk9Z2LUJMjex0I8IlLRNBgm1gUPGIC43pmiXVlV6+IiR7mXzPd9/udhjwQOTVH2veDLt7/pQzDl9XdHFZ9FD+vJVvPwI7sENGsiBnCluBaRsgSM71suLINcmfrKAF5/p3Tr5NdmMc7h+pv616XoHej67zMfYNaxPVfFuqNlF2HDzT01gQhcRZ4Vb9yZQTqE/zkx+Wtxbun9ynjOr8eLJ1u0hOfEPm9vkCQlAdIH1t4VkSQyQBbTGiXptCo5aaId8hJ6D5o67T3e6ULL21G/YcsgoDaguxFR3GuM9P9eymA8LcBzGWkPnzJTi98kPnzwCzcLLKHrofvhsf7ZydXaAQORGFzWHF/fA07qU8o01zRUwdT/brSwVSXu3Xsmsq8eXZvO0N/0xcy0c0xPBE4VMUvsjyB1v+FnUaYK0GLWMrTXFE3ldCpt+wURZ3O9GZhYNNAeNji2Ph9z6dzDZEgHyJgxz73NhvYRV5nsIdLRKhVWM/l3E/V14O9gsyVeFEcgOJ7M/ia0CerbIirLEPECgKSXpAtYo2CT4bMSZX67IbIE8tr5TAsyEQX/cm8km6Ac67gV/rCXXLCJmH9OtUtU4lU6yVWtdDmsJAPrSUiQEZyZcxLpi6VhvuWbeqrlOBXe9tGHrKRDtqtw5nkjZtsJldxdt36hNLhtxW7x+bV1BoXkk19kH1XnzoqB3sG4TViXX3TL16oe0jY3YHH8BX4CxWN6VyRTIQ3AAbKFHgh56r75qUXWvpWTrZMLb7xsHW8DuyluR6b/HvPTwqFFNZSv57+yCxA0Beaxn9HwK0j0C70mRQBhLyRLEk2s+Y2Gj5x7mShg0/8elYLUkb6yFzYzhQIh4UidSx04f7AY+3Ub8PA3p0dY11KykN7fdJAhJCMuDh2ckXD07UDETJSxesTcutgm/FyAbXCtzMetm54okOJ9lxHJMiHCJhPcTNJ0CKvP9gDnUvpd0YGPz6Ihi0SIeuN+zDW8TbdMsX6a6WRwY8NLGL87urnyqnIgzcJ2yTAK8OLbqF1tPUQ43Olt+knHChHfw4NG3oi86+zy2efGSm3DycRJJQ419ZcJtsnZuLlMXWcictIbtxj3oaBzWEBm99kqmjoQtY+SZJYFs1Qe4b85jVx9Cz2iX14jEyjL+s/Vrp3L+1+NdbJoE+S89oq8HYC5N7r+nnW9vI/gWvlFe7uEApbJ/5CRcvnrkg8ogSz2mZVmU59jLLNNBaGj7m0AGFSrnNmLFYxs7jSMdXWsyoT/KTQquezejpjs+4S1HWHrCZUsA15u5j6m3oISddlunNBNy/ePjId6eZHYYuJknwT/TJice3kCj2z2HdTWD/99LFOHuxvLkLRJ6bb68PKzIXsIwpF6sgUXWR0My6bRbFQwv21Q6H/Ojkn5XtaGSX8zMA3lxAJ8iEAER7A3CSEJopXKHZaMTAFdsqzgQj+wKonluCkRYQ0Qru8nfzF94QM8twHmVlFtX6Jc4EASMjEaobXYuTJTLTIt0dWwwSekg2nTItMW3oI29MW9oE26BN1gzAmIosIm6RHGWRV3Nadzs8T+OnO8cAvph7MEslayGhDMsnrDIygmxtzLNcP637qKLbupF3fORq/260PyyM10WSuTlovSw58Ak37ePnFfGMz3s4LCx3pn6G4zoo1SgnXLaro+v74UfMsZ1JFYYl0US0WCAHjFnHfWhYksQhvRvQXxnVGfwxixD4wBsHf71CV6eTXVnhm5WX9e7qTQpn1lxk6eEuZ982RjdlZxN1xs87LXSy4fzOPnBHcjMfKBHflq4/OttM7GWlAaGuu/wwW6bZwTRzZnMftsP7iAKjHCpbXzR+KGjOZ5uht+lSukwkaZCGQBsi3Is0SGr+6OffX7gQ2EY51Mpr+iz3+5sK5hEiQ5xhGpoifkiB8XjvppDl5ADS/9n0LiyEnREBJVi9v5QNGJxDiR1cSJdt6U1zhhalCeMOPq6c58ZnDmY6z68XCDfgJWxuejIlUGLkz/yc8iw3c5S90seJavsOuF9N/pj7IxgCYm0TYuC4X/mrTJmlOmwPoaSRop36Zrt6V1ZqQuGChxPIEMEIgpbx6Ygi2j1FmyF/bJYOsPiyvdlMxN9K5bw6oXoHJ0l8EaPJdpOWiqmOM3dfv5uLLkknqoOsRWtS5xKd6u+PoXR1ZTMYDt0xz4Unfejh+wtWeBI9Q6lB5PonjbkGaPLl9mRgAwN++afcvTiiJC5n4/VyPTcEynfRSxRmdsMeIeqU38ddWyg+RWclmbh1kAcPGZaA86ZCMeeHjugPPAiuz7EJuW9UHWLn5OYljZFBPKa5s/UZ3pi6LIZeh6honbxH+zm1DofnbKR+zGeEHtBuI8vIq8ftKfbqi/UM35+QxZywbQDcVKKfPdnNFNxfOJUSCPMcwQs6CzxU/4Se0+iyiVTgPgAAN+DtP60BaNtjDYk4stn7cR09/dx8M/Zs7USblaGSRDaVPlPIHRV9i8T+zgCXwrYWaJDWTBF3DhYWRFz3psbIryx25bjqyUQuwM9RW3toS5022lV7uBO9btUzCr9MzpSj5ti3Lpgw7j1uLnoa9jYdNQdqa59WnvMduugazgOrMpnVLTxNHzOt1CG1SX2CUmSSsrdyaGUq4eouA9Xxt+TfJkyYZgO8yVBEZL90v0/RB1s9ypopd+VoTRuLZJGyWYcIPt1eW6Yw31Zsj960S0duU4z4F+q2PcuJUV2TDkGFurCVFcsIfcgsSbnH1DAAqbJ0OnTpolePIdp9ZRrI14ffiOgt3MRFt6PDqM/M3fmL87ubXuroXMNnCZAu3thf1ZFE5AuMHKVMANARBFz+mCx2fwNqVGzmqTcBEykw3+IbKTKuFip1e7YPwSDnvgEH3DfEjTqWBtmJ7L4Byo+MM3VS6uUIO32i3t5Wip0HOOJhDiAR5joHtRs1F6C5agBOKXMGz2uaieMi1kkAEN/FYecX6qxHcOAO+KUfgT7ZVHFPX8gIumx1OIiVhccs0iaZFkMtJqKeRYKKbWfm9Ojv6W78TV4VqepqObOg0k8wbdTV9G5nvckgvNri61xZt4svIjA1zjNi7LjOWLtPEbS3KFErKczH9tUl9Eva2ocghZhq5Vrz/67rViyaur5W/zJTmqjoIgFnrdHoCn5iZoPURXr7bJuL8nisgy4vyEnEITmBSZYQfqF8Pe3qIv6GxWkyJqyMfJ1y9q7qVcnJnUVs5cDhtFYqQYf41y/RcjlDIdt96hTav5ZV1msv24r/Dvk9aNoDAQS7TjL+k/8yUlIfSpiO83GWk+NGtjwTvA7cIz8Z9g+kn0GOMIztgha8tyL4c0xBhlkeaBEDg9EfWVuWPrF24y1Yo7jYhyNMSfh/Fhj4/XYl4hF9vfnTbJCtdKRiJZ4Wyo831XOPWJ1OFcSrQlecEIkGeY2inuddJg36M1X82lIhHkKuQa6GB1f0uZFUPgPrbVjuu3XS++haI99o85Psael1r6lnJKD/6RxmXmrvkrvzb00jQMt0DKpn1w6vJt18mj+Eb+qxq0XzlbJCNzLCsWlkk9FnXk/lz2vXJjPY2Ub9+5aQ8HJUD1cRg+WvDlFHL9kN6EXlGj2Nkw/zsTh3mYo5F5dDWv5B1Udxyyr99zQZ+U8Yz5dNVTQZM8sQme/+za/31S6iJY/2DXkAn5U/Mwu+5Kii7vv4FTpmJTxLrxRR3GWETOcDvN3/T4hOcULSK0N0wfe5dPVy9q02HMyD2Wk7hRuNqUo8VtgztjmKXOZ17ES0TPtmqiKmXxsfxhBBKrTUlfeDPw0wiFAHlG6ukfh7M/AJeT9p/xL8/1VsF54JOGa2CuTvQjengeYvoG3beyhc8MDGxdqF9k8gwjRgmqpB45P6EFkZMO0U2NGoXGFfvTq4CkU1mvqFRz53MRYnVZy4hEuQnESwQeJor7G2lM5bRJnEe01w4UQK3LBcrRKczIrSCLx5dztXYIExeQQofcPXg79nExX9tXu9On+nrWj9dvP+1foWFyhv8jc+pZa31y5nOEkitn4FydLo1yVn3tm71kGU1eJKcpRffNa0v1aG4ijSDOAnf+WwTCV+eqZsAtbuAMQFkanoy4OrikReNxPsw/URFrKWMiHp5SP6eRoLRdj5tmdaCzPrFJGmBz2aahH63+3jhglVvOrTVqh8UVje7joFwbqit7SYZDC+m7L+0btZndoqi7itkTwIdC33ZGu7YZLWho/e0ZJWQHrdNalcfCYwHgYgsgbZyRz79bV+nSZp5PdnV+OuNqtQ6rcmQ9zywOUOEbzqUMuSnfwW4xZmHrWOFht5gZkrCYUaFtUvIKOQXq0SCUaGov7bwyCOuW5WuT9EmdmuluRSEn8hmkMBvSvn8QATUUtzN+CbK0EFi7GRA/Zz4bRVyU5k7iAT5CSB0xPMkObSjmwumiNtECJ3Mf5C65SqOweu4SnySCUCqED6+bzKTw1broY5cHQfNJhDHj05Pwu5AXJHYJOBDGbLqBMiVqay2MExn/eRHidYPuz2p+rJdefv6bFrjwhaEGWyYs64rZQfzGOQ7YJ02rdZuPbVs11e0RnmctzF5mpaaUPSNUL+q6uNaRVn/qLSz85ikh/XlxBFYf0zCOmpSA6Dy/GV9GYal1rzclWeJNmSzzXUixrk+up8AaV60k3u4hFlje070+7JYF9jPbFU3ayGpP7tuA5zK7NNdyfhsbxY1yw+MNWL/NeEuGqw2tvQOuG/4Iis5LL42BH7sZfN/a0HKjQshOigy3VHgvhsEkxEilAB3GdG/+M+DP1eZC1K/TPY20de7Snfnn8Bioh4n7R8yBTQadhjH+vpAlAy3Xasb6pfZmNbtxk+nZFp43oScTJspXaZ4+Vm/D/BmSmJ1n3D7VVeBbq6cboHGnk32ZkIvdqMP8tMMuyd9i7CIoEtiEqe58nccC990l5X+O+4vaa68G1W/nnHS9f+kMzbICl5PEvQVDdlMxLpytYPc09FSqv5YPTD+xOdk976Zuri/moTF0k9MSxffMpcaoyidZAIPcehwAx46zP7MrdK2GwTzEw76AGsJxgRaWC4MQlB+1n6VRZ5aXmamm1qXmVxfURvlTmjzaqOPhuqzLwuuO7gyC7YS8wrbMsfqo7+4Vl5TE1Z/M48YZbr3R/fCahPsNCsCi5SbaeL+Xspx2lCkCAOpy8yDb0PIM+7pEXqufBclMxLITBa1XCfjClN25QJkk7A8MNaESTmf+Mve7CwCA284yGLC7VQRxwAAIABJREFU/1XLMPOzsYH4IMNvK7uPGWBvwlD3VrefsrE99Gq7usdOkYxQTndvGUHMleLzj3BXBREEwtaF772vSzFvhvZFzMYHmbp1sIWKFJZvbllmsvkGRXoyrYTPMmCQwG/ETbgg/PBlhzdRhutE25C0FTMezDVEgvwEwIJ+T3eyjGuc7OSCBx+b9PIWBNlfIXaVH1dU4BNYgBPH4rtYFi0zf2iDncuzq1c/LC/4gOvqUgxC4lkFTasG9aEMybYmofoXW29Vb8giMgAgE5NU1TLMOrD6hAbnfW3OYq+c3DwWiTWpW/A6PYXYxLGe9pPg5FgL8eWZ8NrQzI/SOuEsDvS3fb2S9z+X9QlFITBkT+c3Oh2JA+BEPCnLJJO2e60O5+aWr+tJrYul8JAuOl28/8P1EdQLG3dIqK91w78xvae7J4m/UKnCJLrkCRR1nwyUaepnkFW3/qyMUD+o5bl5E09vvenQlaCse2LIIQNCVb771iOge8iay9oKqMMzes+D+ORE3zcX0x0/TucI+M+DbkPWVg22gIGWTZ5TRvpKhdjYQMPtsfuGwoLsGqO0W49Xf/j9h7mX6DIbCYkyAv8+uPq7erCoIWyhovuKZxEPlseIum+ZNsuc6XMVdvPjIWMb8Dc6hsLDziUcEIL8jne8A4ODg3je855HfxcR/Mmf/AlOPPFEnHrqqdi2bduBUOsJg51qlytBTl7Tt1KfIIsIdk50vcM/0kDomDwXL/i4lE9FKGalK0Upfhy0luU/GEUB/kROfMOCE4g/g+gJ3p1spfJ99Q8jYOArY//1M6AnFf8Vn83jCuunEjEWHu4re5+s6sHZlRf2pbX1ddMs6Q4zYK8YWTskhqVG6Y7iyA5bbafX2yV9dr8s7h33c3f8ni3ZIV388gsdfNlFLX0Xi5Bs80mhBvFp3Drq+yaB18l+Pdlk7NbBuj+inxTnOqkXGYaq5clW7LnidWCoW4TdB98/VZMel1gEoyQEymR3yCSr4isTJJShdrZPsyzrI67ejDaHSQK7t7oNfbeOIt2VHtzgTGRrHVw3iLrvz9ANQmtC6mOOHVX+sp+z58FtK9fIUKXrcJ1ENq2/+Yztqz76vrnpikdPCMkJhX5z21WX2Uh4dAuW3+7npmxf77w0iPl+wipgQWaxMMp53UnT1mOWXixsfMWp7kSGmd+WrccOt69MbyiaCzggBHn9+vXYtGlT8Pfvf//7ePjhh/Hwww/jqquuwh/90R8dCLWeMPjZ5FLFEjSR5sQhHsX61V3ZdjKFZoM86KTXifG/lV4RA1eGT27q/OT1GZlwKv9HZ2KptAmuKm0ZD96zFRu/eCW23bWlSs9C1igiw0p3iQtzSYBByh0Z99+9FddfdQUevGcrqo0UUucwiZY+5MKsf9AH2Zscbc3N13Pf/OqX8IF3vhn/52vXl/mrIby+yrDKsPbZvHkz/vELl+P+u7fi/ru34porP4vNmzdXVn/AtgLZMmySwOvgTlR2PynkFxYL28fN8EGu7rEjG/V9uO/ft8KFRwiMvqnFFCfJ+TpuvWszvvLFK3H/3VtpHfzNYYUuX7vmSty1pe6fJmrrK/DQPaXed9d650Y97Y6bVP+HFlBmv3LTdDoTrWOnetcan+hzNZP7XT737n2oDyGZWaimcJkBtyjAk231vX3ILtL50dlJMQjTt1ju+BZ8K8ee03I8Zfsd2CE5oQ3OIX9bAF7kDF0mG8dZ2LrQ8eNV3yNzhEf49f9OW4Ws8JXrlnt/hLvAlDX16mMNz1WZ3Aof2phu6mrKLuri61fMA26bKL7pHcV9ZvczuOmd6OWbuMqzDAjRrAom4AsvvxWDLiMAGOFH4msuIl60HC2jAf/NRIh8zyX0HIhCzj77bPzyl78M/v6tb30Lb33rW5EkCVavXo29e/dix44dOPLIIw+EerNGl1iQs1zRiBKZCHo8X17AfN1dyS3PpWc+RrrjsdBcPrjPEHvo9GTh+a5ZE0VRZhUGqRyMKAcwUK8Q67TNWzbj0ne9GVma4stf+Cy+/e1vY9WqVTWJDU5O/sPoTqwixsEaRnbzNDFz8L93213403dchLSboqe3Fyd/65s4a9VZVY3MyaVwdyjLMeofchvQmzjM9ileb9UkSQlw3XXX4f/78AcBAFtuvwWdXOGFf/IH1nX6S11lu302b96MV7/61eh0umj2XFbom+W49nOX4Wvf+Cc0jzoZulBqtS7b3F3lM2JifikGt/oeaLcZJay/1xOWK++n27ZW96G3rxcnln3CuodUl3rgNu+P2S5ve+Mb0O2m+PJVn8Vf/91X8IIjXwoXpi733b0V7y91+cpVl1f9k7XFXVu24NJ3v7nS+2SnL5t5bVJIwnFpa6l1nfl/2Q7k2QASpEow0FPYLmeyyGGypy1Tv4Eh7QDY1rjaEmuDhq0LlJlXz5X37gwMIRILPfG7bjSJT/qqUw/BxzdONhhx9C1jukyXEEy3wZnVR4/jbCMmO8iFEZnaghyoj1smAm4d8Nuq3kQ5C9kAnfPMv/W1hIBVVng7PS8XjflM4lQD3GURRbt6VnUECGXZ5sU+gKYnzJzDzXnBki11fHGrPmQ+La7n/MCto5Ydco1hsgGhhF/Vm00sGfTxFH/sAMz7Sa6ZIzggBHlf+PWvf42jjz66+r5ixQr8+te/npYgDw8PAwBGRkaecv28sndNYnjADum2p5Vhz2iK4T77bPHHdrUx0EwwnPdXaZOpwt49Uxju72CyrzbiPzbexd6xQsa83jr98d1tjHcVdva1KoKR5oKRPS1MNRMMN6aqvJ1MYc+eFrLJJoZlotZv7yiknaPb27B02b27hXYuGG5MYqq/6A65EuwZaUEE2NnbQl+zKHO0k2HPnuIo7J29LTTLHVePj3TQzYuh0tRl9+4WkiRBbwOVLj/c9ANkaRdKKXRTYNOmTTj22GPx+N4uJlOFVqYsXXbtbiNThS/3cH/d5iMjU+htNtDJFYb7izYfaWUYGe2iv9lAbwNYWpa5a08HU+UGynZvgsVl/W/98Y+QdgtdshT4waYf4JhjjsPInhbSqXG0UoXhZguTfY3i/u7tYqqngXamqvo/Nt7FyFSOZqOwRA73tEq96/bR9dft2uppIFOC3k4TX//6163+8pNN38Ylb3wt5vc28NjuNnQAlHam7z+wa/cU5vUWg69Sgjs2bUKn04FSCpKWhEIE3W4XP/jBD7D6tUNolXoPJ5No9/fg8bJdAaCV5tjZ30YjSfD4rnY1+aa5wnBvXZ+esj5TPQmWqH5kSrBnT1GfsbFRdDKFHTKJnkaCPXs6aPc00MpyDPdMob+ngcf3djBZxps2Zd9u3Ie0W/eJ3bvb1ZGraqqJgU5f0a9GptDfbJT3ZwoLehvY3cqwZ7SLqWajkr950yZ0Dbm3/+RHOG/l71h9FgBaPfXzaeli9M/dI1MY6GlYuv/zD39I9dZ9GQAGehIcpvoxmSrsGWmj3dvA2PgYHht+rHrGd48UbdvKFB5rtjCvt7hXRds2kZv9ajLDyHiKvmaCngYwjEmMjLSxaypHOtAoXpW2m+htl21VtqHuy/N6GxAR7B5pYaCn+DzcnKr6mC6zmRSyzee+v5kgnzTuQ/lcadkLdH3K5754ZuvxcKRsQ7PMiW7dLn3NBIer4pkdLp+rbi7oL++xvm+dvNiUaI61u3e3IEisflXUsygz7W9iflroPd7JMLKniwaAnTKJzrxirHlsrIuRdo40F+zsq5/fXeUzYcrWZTYbiTXWtFKFkZE2mo0EC7MJ5AsK2WNlGwqA4WYL83V9yr6SOvXRZTYADCf1fpWRPVPoazbQmWhgYVkfPRcAwHBjEunkmHXfAFhjZ9U/jftglmk+D0U9p6AA7FQTSMu20vVMElhtpe8bALutyr6in4cqfVcb7VysttL1VCLV2AGgeoZ6GrDaSt+3vmZS9Vld5kSqrLFD37dWJhhuttAe3wugnvOKtqplj3cyjOztojvZsGTvHO1ibztHT6d+1grZ7WIOK8fZKn1kCkpQjbNmG3r1mcwwMpEi62tgidFWj+/tYm8nx7ysB8lUr1Wfdtlnzb1Ku0emiufYuA/dvCgzn2pWzxpQcI89kxnmpeNotur6PD7Swd5OXs2Dmm/t3t1CJ1fY2d+uSHk1HzicRM+dSbun6rNAMS/vaeXVGH6wMDQ0FPxtThDkJwKzUtNV8MlGrgSLxvdgaGipla7GOljW08HQ0GIr/Tf5OOb3NjG0fH6VNt7JcHh7DEcsW4TD5tUdvdvfwnizg+WDi7Cgr159Po4J9LQzDA4uqQaibq6wNB1Hf09ildlKcxyWjWPJQA+GhhZW6b8c7aJvwRLM72tiaPmCKv3X+Rg6qcKy5QsqXTIlOLw7CgAYHFxcDVC9UylGUAxcg0NLKsK0CxNI82KVOTS0qJK9PRtDM0nQ00wqXV52/vn4/Oc/jyxL0dvbiwsuuABDQ0MYbUxhIM3RSnNLl2GZgFKCqUxhcHBx9TAe3hlFf0nAhoYOAwAkEx2MNdro72mg1yhzb2MK88oQfOa9eNG6c/G1665Cmqbo6enFy15+PgYHB7E0HUerp4F5i5Zg2fIFWDLQi2Sig9FS9lSaV/Wf6m0B89LqlEJ9Lw5Px9Bbto+uv27X+b1NZEpwxMJevOENb8Ctt95atdm6Cy7E8sFBLOxr4nFMICtJ3FSaY3BwMRpJgqWdQoa+VxdccAE+//nPo9PtotksiXOeo6+vD+e97OXoO+xwzO9ropMpLFs2H0vn9+KxkrAXsou2bTYS7FTj1Yq+mysMDS0p6tMdRV9JPuf1NjC0fAG6ucLh3fFqsl+4+DAsO2IemkmCZSiIyVSaY/ngIszrbVb32JW9Zt05uOHvi/tg9gmti4hg8bxeDC2dV+jS3ot5vU1MdXMsX74Qi/p7IOMdTDTblY6dTOGCCy7A5z73OXRLuWvWnVuNFbuTyepN0DyjT6xedw6+8Q9XW7oMDg5iaXu0WpR0skL3l553Hq774t96eo82pzBQhoIcKNtqoptjZzaO+X1NtFKF5YOD1TOu23aybKsFfU1Mlc/xgt4mUlX3KxnvYLK3qGezUfSrnWocWX+KZfN7kZf9auiwedbzM5kqLB9ciAV9TSgRHN4dw/yehtVnzTIbjfr50c/9QE8DiwZ6qvugn6uptL4P5nPfSnMMDi6BPinu8I5f5kA7xVI1ifm9TfT1NDA0WIxN7f4WZCJFJ1c4LOmr7ttIMolOpqp7oPGbfByJ06+UCJZ2xjC/t4EFfU0MLSvucX8rxREyiUaSYNkR87BsQTFpT/W2kLRStDNljW+6H5qyzWfcHGsmuzkOzyfQ2wCWHT6AoYX9VRsegSnkIlg+uAgLy3uv+4pbH33fksQeUw/vjGKgp1GM42V99FyQQLBscAE6oz0YGhpCnx6vAWvs1GUq4z6YZc5z5qul3VGIAMuWDmCwrI+uZwJ7Luj2t5BNpKXsuj57G5OYl6rqedDYqcbRyRSOOGwAQ4tqMnhYZy+UAMsGF1Vj3Xgnw9Jsouz3tezJ3hYarRQ9zYY15+n+afZZoJjzBlKF5YOLMNnbwNDQUDU2J0A1n5h9ZUG/PZ+ONafQ086sZ03Xp53W42zVhp3R8t7XbaXbsCeBVZ90tINOXweL+u25erQsc+mifgwtqdvq19kYOplUY3hVZnuv11btTGFpOobD5vVWzxpQPG9ZfxdHLOqz6jOSTKLZSnHE8gU4bKCoz9DQEA7PxtDNBINDiw2jncLh3TEM9DSsftWc7GK00cLh83urPgsAexqTSCZTa+yYa5gTWh111FF49NFHq+/bt2/HUUcddRA1CiN05HO3PCnIRZqrwoRoQEkR8Nt9nZGX73PYazXAeSVEXkHVefgRoNRPK7QrOrTL28sTflVUvTo2kleecSY+cfX1eHDbnVi79iVYtWqVJcP16xKj8uarPKfCpX6zCyP23NNW4q//7iu4e/MdOOn0s3D6GWdaL3vNV4XuqXa6/jo2JWDX02of0frVadovcv369fjNWAc3b/ouzn75K3Huay4K+B/6ET60pqtWrcI3v/lNbPzuTThz9YsBAPdt/Te89vxz8NvPPw0PPV6v5vWBEm4YuvoemnUAhZ23zpQk5ZGlif16un69atwHQ/YpL6zvwwtWran6RC239hMu/JsT3SRVW2Uk0suqVatw9fU34OZb/hUrz3oRfucFp1e/hcLwnfKCQpe7/u12XHDu2YXLhIj1+lXnfv5pZ+LTX9yIe+/6Nzx35Vme3mY9Q6/QrXoaby1n64NcyWDuBGVu676xV9gC1H3WLNPwb7aicth5TB2bjiuW2VXcMu0xRZdTPG/Mf9j8a9bTjWHMXB+0fvRER9RPZ8iFyy2T+0gXp6/ZbidCXchMdyVfNvMJ9S/Qz6Hr41vVQOp7MpMy3V+KuYP5thclmOOa6V5k623q6sgG6e9lX3TbEImvdyj0n87pRZqQaVz5HFeFyr+ZPL+NxA95Wc8X/Iggf95k/SxwgIbYv5vJrodz7Q/s6lf6cbtuHSocBrYYf+HkL0s11Nezpqt39YyRe+/uA5hrmBME+cILL8QVV1yBiy66CHfeeSeWLFkyZ/2PtV+T6+9TnHZHfJjE7+iarLoPUfFKjT+M7qCtHy43cqceLEODBSPUrg+YGdaIh4FiR5qSesJPFwAnv2AlVp6xyrKSm7n4A8MeRntAM49PtgdWplVRt+e+cCWe+8KVmEzzioBWtTTIujmpmvXnG6L45GwSSpPIvOq/vhmvfMObABRWPCtKgiszAcwBVd+fM85chfxZJ1fW3JVnnomTly/Arslulduc5EKTvek77ZXtfHb104dUiJgnP/rE0pdd3wePyDjXKrMNjfQ0V/YCpvz7vNPOwFEnv6Cy8MOS4+ulSl2e8/zTcMxhA3V9rfz6WVJ47gtX4tTTz7Ai0jA/bivihUHsK/lGW+i/CWkwux/61zPfXwBkg6b5PwIp4fqY5bo+p9U4JXWfdRdTrD7WfUCR3nAm5+CeBE/y9PVJ4JO+eq/CbMPW2fpViwlrDKobi4axDDwdHokjY209KgfKdOvj6O+VSdIYiU2se1uWqQ+kChBHT3ZCDDRAuQfGvw/+3ZlmXAlkkLJc/z6UfRYw7mH49E/3ECwth292K6Ta9Sk3UToFFHs1ppmrXVWqMb3WXMwLTNll5YP3mIWBRZjEsufEzao3ALL75o4dcw0HhCBffPHF+PGPf4xdu3ZhxYoV+OhHP4o0LQ7b+MM//EO88pWvxPe+9z2ceOKJmD9/Pq699toDodYTgnnynNn3cmUPZhqCugNs3rwZGzduRCdTOO3cC3HSuWutvPqVGgvjAnCrEg3VIyQ9MEDtK5yOmX/rXVvwpS9vhAiw4R1vwdo1q61rgxYWjwyQCVHPH0797/v3rbh78x04+fRVWHX0OYaOdYXqB42TlHCorxp60aPDJek0fW3uHMFct6czgekySbqSIoLHQ9s24wVnrsaasv1MncwBQ6SIqKDrf/pRv1sRDZ3+3JVnYdXR5wTCDRULt4fu2Yr7tt6J5608CyvWlRbmu7fins134IWr1uD4555mEVBuhfc/F/s0Etx/91bc/pN/wVkv+V0MrV0NlSQGiTMjgXB59/37Vtx717/hhavWWFbeXEn1OlJfkCvBg/dsw0Pb7sTvrDwLv3PeSwDAsuTrNr/uuuuw8ev/hBNOOgULFy3G889YjZVH/S6AYoPmD775dSABXvX638fJL19ntZ8mBJs3b8Yt//qvGMU8tMdHi/Z63mkQESPyikMS9jHgJ2U99Hjw2EQXr3zt7+P4576w7m/mplDruTejefgU0LWkVbwsMZ9TYyJ1CFgi9nW6PiwqR0XMgpEC3JMo/c/2W6k63SQeodjlJiqrtZmXrVJRt4NH+ky9nfTQwsMtR58A6IXEK9uwGJutq6s/1gYuMl4LYLzJsMc3MT6b6Xqzl20R9/uNWaZ7LxUEzaThk+/SPG3dT3iczNPLhL7PXpQaqcfkWkZtzbUMVFWfDc15/nzqnoJXf7YNMTwUJ2i/NmV7z0M5brM2dPXTGx39NhPvDVGtA3vuiQHNrKMBTcr5RrrQ/ZuZ0S64aVf40eZzCQeEIG/cuHHa35MkwZVXXnkgVNlvZOWxz9Z4A3uQslGkb968Gb/3e7+HbrfYNHHDVzfiyK/ciN87Z62RE/T4SlOOmZdlYyRd5w/97r0+0xOIocvmzZvxtv/6ukr/m779dXzn//wf67VyaMD15yl/9K8mW9S6bN682Yoy8Tvf+iZetHq1ZUmp5Ce+G4Srh/vZtFBq0pI07UdZDwy2bPvwC788oTdny5YtVQSP3r5efO4fvoZnv/xsazgxBwwzokJPby9++5++iZVnnokH7tmKPzeiJ5zy7W/j1NPPsPTWn+7ashn/z7veVOW95stfx/aFfZXc3r5efPyqL+OMFS816qsHPJs8uZ8FwEN334UP/cGbkXa7+PrfX4UvfOkGvOD0M6q2Mt0G7EgpxefNmzfjA++8uNLl09dsxOkliVXe4Fvkv/Rdb6ra8Jiv3Yjzzn6R98x87xsbcfn/eykA4M5bf4IkSdDX34+Tv/1tAMD71v9XpGVf/v4/fQ3Hfuc7VuSMJEmw7a4teNebf7/aAJk0Gujr68PHr/oyzlrxu1ZUDgusrZy+dteWLXjTG15TPU8//NYN+P++uBGnvOzssu6+pRjQoZ68Aq1v7uEkmrCZBIiR0mCYRHGplV03dzK3n7dCA+tezmTxWt0H12Wk/t0mlIV8352KL8YTYrlkJFrLLhYeDtGCD2W9xTIX7PV9YKScRQbyLfP1BT4ZSjzjQl0OtxhS44qTblmtHRKrR0rbNWb6tmIk1rWK6tFFj8l1fUprJmkrhmpBSH5LwCKBSHVdU7uMlH3FnzfJjTC+2qdZhsbRao1h9WVV9TdfNrcg12OMqwdbHPDQf/6x6YUu3CKuSPVDRrt6YROoT4CzzAXEk/RmiW6uaJxH5ptcrHSLv7feemtlNQeALE2x5Y7bnAv8BxcwX4u7ZQTOSKeveOy/thTfkqIHDJ3s6p92u9XmMgnq55dpWamcdMCeQG699Vak3RRK5ciyFLfdelutn2mh1HXHNBM/0cUcfHW5StWWYvM+m6famfoyYqAtq2767bfdWkbwyJGmKbbeeYcnwxww/n3z7Vb9b7/tVogA9971b1V6mqa49dZbkStxyixk3HnH7VbeLXfcZrVrmqb46V138EVZ2XdDPri5UvjpVq2LKuT/2+22NdeYXFwCVD0Xhi53b77Dazez1NtuuxVZWue/43bdJ+wK3PbP37erIlK11a23FjI0sjIdsC3/W+64rYqCAQBS1vGnd90Bge/bqBGylCdGm9xx+23eePDTu+6srs0UP1RFh3oq6lT/bnJp+lwZehWLeTZembJtomW+EWDl8GfMfwZcWNZpUxdDgiJluscQM6VY/6nKrPIoL4fAaUPjgz3G+cSkct+ATWR0GwYXE+KSYf+ZMVOY0cEdx0MLoRAdCZUpWm9Sn1BbzfgwKbBFkD8XFGVqi7hrAfXbxNLFTS+/uyRWPyl2vw5YP52/pmxG+Iv+SmQnSeBIba43I7H6Kv+5T7w+W59e59yfYH38flWX5r9poZoFfKrN8WiuIhLkWaKbayuvfVOV8AdUd/61a9eit7fe1drT24vTznqRk78QkLsO/uIHSC/KmibeMVmpm3+t/N7GOABILFcNV//e3j6sXbu2qidD/aCbk5MxajuTlvt57dq16O3rRaPZRE9PL9a8+MW1fmQyseIdT2vRgpcnQUFKXKuyOYGZWuuvbKxSjoL601lrXoSe3j40mk309vbi9LPW+Bcbep16xhqr/qtftBZKBKeuXF2l9/b2Yu3aIj0hA83pZ62x8q5c/SKrXXt7e3HqGavpoKz7rt/exd9cAS84s5TfKGSdtmqNJcMkBIrIdnV54Zl1m7BJY/WaF6Ont86/ak2R311Uvvi8C6zvSZJUbbV27Vr0OM/i2rVrLWtZAmDl6hehr68PjUYxTDYajbK91hQkM0A6Qoumuk0SrFqzxhsPXnDmaqut6jfIRp81+rh1z1hjBfQqsocsq346I5Fm3XwLk9/3xfzfedYZKdeUwT/IRQ9k7nNd/vXGZrNku56+NU7ncjeHGbINPRjpq9w3PNI3vY+6R3CMcsA+m3lLowN360h82aG5AH667ltufUKuMSGmNZ0bHrcg+4sJs69wP25Xtp9X5+ObDm33lqpMutnNLd2R7b71kOJXj/CXF1ltrg8icutDSzTvJ2kTh3ybbzhmJByMH9TjpN+viNEOIU4iZOyYW5gTm/QOJejNQH4nDUSfKDv/qlWr8J3vfAcbN27EVJpjzfmvwfNPP8POD/46Qz+8bEL2j/qsV/a+jGkeOm8SlNISXXxbtWoVrt74DXz9q19BJv8/e+8dZddR5Qv/zg0dlCUnOSBLTsrqfBVxwqQx9mCwGTAGmzjDMLwPeDADzHsLnmHGBmaMB8wMY9kmjOWcZBswwTa2FTqrW5bUCrYlK0stdQ43nFP1/XFOnbOrapfUvR7rG61vqdaS7um6dXeFU+G3d+0AfOFTn4jVK0KvHNwVij3zNXzMtMMjbcnlcrGXgHm1OdTVN+jti37BbuyENhe0wyyvxp2CBLox6H0h19XGdXbyaUtza+oacOfqNehqb0Z1bjkW1+jvn7YDAOZX1RIvGznUNTTAF0Lz+jC/LodcLoeekRJS5O5dtWVRdX3iIaJhGRbV1OOiGZW4c/VD2NbWhOrccsxeWJ0wGQa6SvZCelDJ+HNh5PVhwysvYcUVV2NJTb02VvRwMXVC1bqgbblsSW1cljNkq66rj8dwYd1SVNU2aG1S6f033ozZ0yvw6FNrcXGkg7yAeJr4lwcexYvPPgl4wF/ccBNyuZwmhfc8YEltPdauXYuXXnkVQ6kJKCgd5IXBpePUAAAgAElEQVQ1MYOadMcBXsiYUcarqrYBzz//PNY89DC6h4u49oabcMmiGkOlJ9F3iK/5zYMqqsOlp6sESZ6X3HJRQ0eqz6lJrelBjhNLIk3pNJV9s++eJJcqiTDq1/qjaNN849mU+unjFoXlNoEMedJ/G1GUyXhKIL5VMaXtnPeNOBCSsb/bgV8ISDOGRQdxxnr0kvqV6TOnr67306BP+qaXDb1y6BLkqDWSKw9nYCuz7ljVRWOCojo9PXBREjyGf7djl4omIajTJM/e6ZIxdJ2b1lktJVKplHajHI+hZN5b9J0+hsnaNGmzjYmy7DGRgNTVQdU+5GSOTLrx2Br4gOiCm/00J66U+m0sTZx0+lRKpwHyOFN4fRy+9ObmZqxbtw6rVq1C+Tvmswv0t0+sQeNLv8PHb7oBt912G3K5HA4OFHCgP8+7nwG36EJq5qa9vaMNr7c1Yvuc89Db24tVq1bhooXV7ALo2tyBXV1bUZ1bjiV/cSVpo735JRIJnc6imnrMmleFEV+g+tzJpDzszdzBZbqkVK+3t6KjeSOWNCzDjMh4DQDmVdUinfLQ3Lgel545EZevWOaWjhv1JH20ywIhGFTGbovrl+GCy1dAGdK1rvsTlr7zKsx85wqLHn0XOvi2AQh9CiSwsLoetfU57RspE2M8akgnJWLvDiPFAFJKCAF0bW5HVwQoL4rArQI3is606TPw+2AYsxbVxe1QVtfNzc3obGnEGTNmoKN5I0b9ADXnXQnNhRrpkeBeMFT42LCNM2fNwRkzZkAaUhI6dls2tcWGcVdce0NsdDmvqhY1dSHQVd4ghOPg9YWMx7AUiJj25vY2vPD044AHvPcvb8SchTX4xK23oeEvPhIfvgUSAXN+VS2qIgZV+Q6lx6MHoKOtFW9tbsHUadNxeN9hNCxbGb6L2OMJ00C4paJxig7nXC6HJbX1aD8wgAnZNIpBwp5oBxLRueTOEiEkKtL6e0vaEv7SQwIGAwqECW2qZ6+tJWqMSGuJpaWEkTROanrwcocwNX41QTlUnw16+tjqa08DsURoofUn+pUluYwKcUbOioqkZZl9R3nSMV2DqTH0pLE3xc8nv2Z3CQCo0EGTVCOZM9x7c4E+Tmptgtj4hsPTo8ZxxtO07dbNqwCQ4te6mpNJWcOQz2y32R+NIaTlJbzI6FABZCGpVw7ST+i3YCZtF7bjbXpgedLhjChdNJ39DKmzZU3coNRU7Dp46hK28Z4k7TXnlScB4Zlj5cY1p430/n+W1Ltsbm7GRz58A4rFIsrKyvDD+x/GZYtrtLK//MXP8ZPvfgsA0LL+FQCh39sYJFoLl58wEvam3dLSHIW5LUJKgVQqhfLycvzikccxbc5ijXRzczP+1//4HPySj2xZFpfGoXzDXYy9PvPstiiJgFNqYOQlEhaDdkwvaR8NNfyzBx/HnMg7wbaONvxDZGT26L334Nln10bAhkiprCdjk5OJD1AZ50ls62zHt4gB231rHkcm7eEbn7s5Njq7b83juOBd79TVMQwwlEqaglhnl45F9IepOqMSNcZThnTnXb1Knx6RNL+lpQnfJG3+59UPYemsq1AMgB2b2/H1z34MxUIyJ9KZKDqiHyBblsVX/9ftuPufvo18Ph++z1QK2WwZLn3qGaxcvtTirOhVstUfaRupSdiqK0KGoNw0jJv/7LNYvnQpeyIEBihX7zN0pxjRjuZnc3Mz/p9bb9Jo33nfI6g7/0qn5Iw7YCkjsK2zPZqTxdhA7+F7f4K7HngEsyNvE9yBrKReaWNc7DFJ8mOpNWmXZhSqVcT3hzra5/rpeV7igUea0mnEoJ0Nmw4YoFSnHT5TSZu9DsMPRlLsAOWKeAgqaLaSSurqDsmPHZ4zOLBqgNj4ydPfF4eVaT+5cTDzEwkyb6Rn09Hn/4nqdKmMJIzN2G4f3XXawC02OrTanfzSlFyy7iOtB8SMjaUyQlrCvVuWpwFgAf54HRhqL+pmgPZTjSFzJpu0tTZY4+0x5yzilc/NA7M/ghss8rc5f/Q2hjX5Qr0zyVBgKEfntYkPVGnrbCeAP1Z3hL3WtDpNn4CnUDqtgzzeFK2vDevXoVgsIggCFItFdDRvsCb0c889p/39bGRBnxwmPPKwHIFHi5du2hvXr4dfKsZlhRAoFoto3LDBUsJXRknUqCvqCmuAoTg7k3OOF6hBP+GmjUOF4bI53THTUKtl44a4TGcLNUgLDQMlHPWPYYOkfdncslGvt3EDmjZssIzOzD7Q/mv98VQwD74dgeFlQxXrNNsRG2/qoEpKYP269bqBXUsjpAwlcZtbQzp0TvilkvbuX3rh1ygWi8mYCQHfL2HjhnWMpJgGJ7HfGzVopONqS5Alaxi3ft16mAaNlA5Xpy/1a1sJnrYypNPBCAOGYM6f8LmjeWM8DwDEBnqhEWEIOLh3n9Cxn4mNXvyOApHojmt+t6GxBzEdTvromvd2P8M6fSF12tGT6cpQJU7vmT7T/cP0PKIfvPY+4VPazN5g7U1af5I8zYiUAeXaHoRkbG1QaoO+JHmENj/oyl2WVac2hvbexZwGFg0Xs6f5dTZURnhAmRTg+mHPXzLQcZ2JpNwJ+Jlni9m2WCo1x9WcICBW+VgGPxZmT7h9WM0VTioag1XaT/DzQdhDYtVjJu485fz2u/rDGlFGAgxeaOXBM8C3UwXTsZdIKObaHG9GUKZoW3rP/Chx+uenWjoNkMeZ1ORYtmIVysrKkE6nUVZWhiUNtsHVtdddp/19/fXXA9CvvmhSHCXnCNxcpEuXr0S2rAweMSAqKytDw7IV1iGnjJKoUZeiC2lfn1FLecGtXCOf23BdG7tmfBTlm4Za1HhtccNS1iANzCHEHgLWc/hHIKRmBJeNjCbrl63QjM5ql9oqFnSjk0wD1MI320V16Ohvl9TrRnf1y1YYupwJeFpklF1SvxQSQNGXqMmFbadzIpPNau/+6vddi2xWnzeZTBbLlq+0QKlqowT/PqkfYJWElLq0NJJMcoZxy1eutI7HBAjyh7pPJcjRFxztJfWhKo45fykgMRMtW51Txoe6gV51bjm8iC737sNH+/DWzghyOFN/x7Sc5TWFabXzcCbzkII+Vaev1ZnoeWoqFi7Qw+wBFJjpB2wCNqhah7ZPOOpR4+COjserO2iSZfo/bffJAP8YQJ8CDub3SkJnfhHTNhtDaXN7qlG3ZMoK5h3TNlpR49QnZ6wFvr/Ws9LjhnkWuJ45GhRhme2TFohNGBvbGJHtRyzEoHlhBR70KHhug0aHy7WTCWWsPU1aKhYyZkhtNQhah90vWk/0Hi2hVfytsX4E227XruhmzKVVZ4wbJL+uuTpTBlN3qqXTKhbjTuGkq2towNq1a2Md5NR58+AbK/UTn7wNe3vz2PjiC7jlIx/CbbfdFlKQCXAwKbsmjLlp19Q34M7VD6GjZSOWzD4X/X19WLVqFc6bW4XDgwUN8OZyOdz+49V4s2srFjcsM8I7mxAlUQWw2qhJwLiRSfQZXXqrmn4mad8P738Yr7eEwSKWRMZrUkrMXxIagbU0rsf177kKuVwOQ8VAa1QCQuxDAIBueEbKUiO46txyLKquQ1nGww/vexhNr72M5ZdfFRtS0o1A8ylrHCFSJtEW49x4oxYscKZGd0salmFxbb0mgQ97Gbb5ssV6m+dEOshChrrA6rsp06ZjohjBOfNCozdVvr6hATWLF+K3L76CGTNmYKCvF/Nqc1hSW4fdPaMmPEbPaMlSF1BlAmlfm0pjc1TqBLlcTjOMu+LaG1DfEKn5OCXIJ67Tiw7QcP48gpeeewrwQh3k2QurIWGo13jKK4fOfNA61ZtbWF2Hn/7qMezd0gpZMRkHj3SjdumKWAfZZATig8gzDgdySKsa6ZWlHeCEM2FPHPLzNzf8WNH+UBAbqgXZjJoJys3vzbrU2FJmX79t0EFsvO5PolNN+2Y9k0+9/wwYkw6XkuD/iEE5dJCiSXlj2slvdfUNB/hWtBnJZdwf2MkGWo491bMFHYJ0iAWxEvF70NpigG9+V+WFKHTHskGfrdIi2bGKbGBgXO3HYyus8ma77dbSvFAHmfOx7GQmHDPVtfa4NWOBctjCIvpbizY3l8nEMd9DrFNNyis/6qbXn5OOoaM/mhFl/LKM0TpBf7yUHd76VEqnAfI4k5DJIsrlcjHYbNk/YC0iKSXed+PNuOGjt6D2/Ckkn9cDUg7Craho4Dn1BVV1mLukDvUXTEZZOpR07esbjX9D09yFVVj2zqs0EB9KOm1RbLzhwgAqscTIJWFxgQSTtn2ttKCqLgHGhK6Eh4XVdbh4UQ3mnjmBtNuoE2adUjsIzLYoIzBlBKeKCQEsqqnD+bMvwhkzZsSHjAVwpDo8bPBogh6VAkPiSo034lDLEdjlfEMKKVHwhdbmkVJ4WCjjNhqyuea8yeg4OBjnq35curgWZ16yOG7jaClASUgcGCigMqtfKo2WBDKRFIobQ66NVN+QzhVqGDdSCligqkgGQmjXWzHQNHZT9ff8qjpUR4Z+AMLQ4TICCeTOO8E6/IFEXeUtrqnHje+5HG/2jGJgtBTPW1cwH2l8ms8quaS5NN8ZaIGhx+uS6mCV0tZ14Q1JLFPPiSWEniZhI+e1Nme0NaHeg8cBQLt+Gwx5sBnjhO3W8hkAwh32Zhnqbk/fbWg/7behzwu+F7waBK8njOisScZYAZmkLCd0oM8ugQbdr52tlogLaHMCCpTzaj/ms5M2s3er9+Z5Hqte4zaiNOqKzyLH/KX9iTmYE9+OWpEOrbOaviW9jHluqoh50ixv1k3yTdygajPfsVLLlND7o6S8Y2EmkrbbzI6EvQ+ezOjQVadLBeNUSKcB8jiT2i+U4ZGSIOPcudYsU7pU5uvvaG/FhnXrQonU+6+w6mCtbqG7vDEV5VVbLqlqwPlzq8Z0wEpHfmyA4QDCJlj/zRNrsPGPL2DZu96H3Fe+EJft6mzF9vZmLKhbiqWzQo8FUvIBEMxDDgCamprx6G/+iNyylbhkUU3MOJgS2taWFrQ1bcA582oTsBtLC8PtQ3l3qMotR/V5V2oureL+SRi6n/riptI1EQFZSKmFg264IGRCujrb8NJzT2HPW7tQyOfxhc9+Cquu+4guuUP43h759R9RF0knlZGXmjsdhwYxWhKoPncSCn4Y3jgrJdoPDGJyRQbvmFoBKYGRYoA3tmyKJcXzq2qxvz+PvC9QkUlpdRYCga7O9rjsxYtq4AdANuWhPG2U9QUKkNqgmBu4CjW94oqrMbeqFpCGrjVzrSdB51/yxbbOVmx4ohOL6pbiwEABLxOpcNW5V2rzWgeUelL6cTS/q7MVG57owPTp07F5zyHkIq8UqkwghAEWwm82tbagacN6VOeWh+8IIeAT0pgr0RzmmJv21ha89MqrqFu6AjNnzYkPBV8A2zvb8XprI5Y0LIvDt2/e1IrmDRsMt3KO62TmIE3KEkYl+jGNxifjduuENN/LDjCiHY7CBm4UnFjSdq2NdjeczzLJFdqY2CBIGu/Hrt2kHjWbgD5zflJJGwdkTtYHOmcVHfZqX9Vs6FZzEnEqdOAq5f3cu9tof2+/W7VUTCEKP4MooHTQNsrG0mnHAcRKXB3rwO7jCYRC0qYDYIyRDmVM05TmqvKC6FQnNzZu941aG6St7uEC37E7N4N2IoXXqTOyJLN2o6xnvXuX0SH3jpO2OwL+nCLpNEAeZ1LSy9aWFtzykQ/HXizuuHcN5i6p1bnM6H8pk02uubkZf3PLTSgVS/hVWRYXRx4lQtqqEr0+SMBLMZMxmuctLc246UOhR41MNot/uf9hXLKoxgB1ycae0KaVSYO24pSFlp88h3/8/Oc/x49vjzx1bHgVF06vwGc//Wm0NDdrYZUXRv2keqtOHatonG644YMoFop45N6f4M7VD2HOVaH7MyqN2t7Rhn/864+jVArDMd/1wCMhSJYh4xC6bWvFt0ho5suefRaXLKphpLwykvLy15gU9ClJaVdnO771+ZvjcNDz1j6D/lEfX//MR2OvCgDw5S9/Gd8cKqL+fTfi9SNDmHvmBPS9tRVf/fRHkS+bip8fPxfpNg8fXHg2/v7yWTg2XMJjrx/BL9oPAwCumD0VP3j/pfA8ie+8uAev7ukHAPzt0vOw4OwJ2NLRir+/5yEE865C6sHXcIcvsXJpAyoyKfSNlrCnL49Lz5iAbNpDW2ur5jXkztUP4bx3rkAm7SGjxTH2UAwEowaQzJmtHW2xt4cnfnkv7lj9EC5dVBN7VXCD2MjQjRykWzva4jmTTqcRCIHA9wGEnikuff55TJ69MKEQgb5QX9tIXgh4VVsT2olXikcirxTzq0I1lECAZWC++MmPxGN11wOPxP6K9fWl1osZ0TCk8dmbb0SxWMKa//wxvn33vXjHzGsAAO2teqjtnz34OLqnlOPvPvlXJBT4mjj8trl+pZSWLmkCpvWIeeqJ2hiEgF7/nSqs+jcecBW7yyJ/AycKA2+DTyA8yGP3iZSegjhSB990F6Pt4m6r7BDDqq026HMZHVLmQ+uPBST0Z8vnr2on6Y+mmyspuEpenD5uho9alejNhAHY4lNB6x8HVh2gPOqLLUHm3ycLVmVyg2naqbB+60m3zHyWEVIAbAzz1yUUosiRynBYsAqwnptiQOnpKhZ0dNgqHRJXuw98hMbQU5YrAI1G2p3PvHuJ6KbNM4V2SJg9ZpwtwR+375xi6bSR3jiTRDgJNm5Yr3mx6GxptENGSjvuuemxQXmUULTpp3qWcHNrEsD6dYlHDb9UQmfLRqYtfF/YZ2qAwZShm6LyzKHS85Hnjg3rec8ZLvUDc0MJxykJy7y5tVE7tBSJzW2NKJVKCAI7VLE6ODe3Nllj7gthHdjSHAjyN2d4JiRizxE0HHbThvWhV4WySiCVjn/3wouv4NYnuvCdF/fgM09tx0vNHSgUi5B1fwl59sXwpYcntnRj17FRHBspxuAYAF7Z04/9A3kcHSrG4BgA/r3pIHpGfbzW9jqCVbcCZ86CmHcFHm/fi0BI7O3L45NPdOHLv34Dn3tmO/rzPtqaNqDoC4iqa1FYejPWt2xCiZGoAxKBlCgGnJ+J8D1Rbw+lUgldbU2ozCZ91gy4GBmZOjwARasYv0sFjoEkHLTljxRRyGcj34vyJaEdzkfbK4UG7oz+caGwU14I+Dg9aaWCRfPWrVuHIqGxdVNrPK/sUOAbmFDgjSdkJs056zqQVNJ1jQ2VBJXr8br9vG4u9HVCgFkC1qExE5wBFU2c4JACR8+jbaG/TAAR9dahgyEdSJj5mjcRbYCJ7YFMvI+49lnn/sr1k/YHMCTHySfbH1CAaKNBOlZhNukPzWOAmQuU64E9bC1SCbPPybzhytCyAffyCQ3SNY2mtXU7wB1Xq5qfHDNh127MSVqf85yVFrCP57K0x4VLbH+Y+Rv3h6PtIO4aQ+536qbNnle8gpgL8JMSjvz//nQaII8zqf0iF4WhVV4sFjcsQ8xlRin2rUgyTY8NyqNEXD6sRasPsCU5yYGje9TIZLOoya2w2iI1euqZvyZMfHYaOp9qw0WysV933fXa+CjPHctWnMBzBpPMzScMbZ2EZa6uXxbXSS3Fq+qXIZvNIq3K5ZQHjMTl2pJ62xOGChlOk9JLdrVLJdX/QEgsNsJBr1i5EtVLV8C7+q+Bv3sU+Ox9wNkXhfSX/VVsYDhSEth3ZnUYbrj6Wo3+s13HMFTwzWpxfLiE3b15K38gX8IbM3Qf3K2pORAS+FnzAQwUwjoPDhTxws4eLKpbitSKjwFXfRao+yB+X1GP0aJAyvOw6eAgbnuiC596sgvbjgzDD2QUkENi57ERHBsuxe8wkJJ4e0jGn0qhFZNlSlbVxk2BRnVuOTJkHisfzkASDto0LoG0DU6AcG2EQQYI7WzilcIjXik0QGVwAlYo7NzyeC1yB7IltZXSorGQRBusyS23PLiY5ReTUOAmdqCgidYZ9kdYgJ9+Aro+ojAWIVee7lCcbi6VwtM9y3QhxwEjJ7gk7UuMDj1idEil1sno0/dpSij5euizUgvSZfBxP6U9V1ztVm3kCkmyp2rj7egPK1Wnt3JMW0zhitZeAro4rxZSnlyayxkdUmZCk4hbZaXVHzq23Ptxqf45DelY5sCkncxPnoEyDWRtGjTHnAcqFDg3hrbesz0mtDyrg2xI8l061ScDo06ptVaGV6/RAtOMBfCPqUX/vem0isU4k3qZ1XX1mheLYOZlxmaaTCQ653K5HH76q8fQtGE9lhCPEqq8UqxXiefQdG6NetSYtagelyyqiaN9abTZvtibX+xIH/rmFxtFkw3qE7feit29o2h8MdRBvuUTt0bjU4c7Vq/B9vZmzK/NoaGBhom222SCilwuh8eeehpPvvAScstWYO6S2uSwFSKWRi2orseDjz2Fza2NOHNuTayDDCTGbvOqEu8Oi+rDMX+7b5QHFtYZYW9Wqv++EJi9oArv/adHcHjfXtxQfT7q6hvw253HIaqiH0w6A5Pf9WncnpuIr+ybplFuPO7hX+5dg6916DVm0x768wHMFEiJwYKdXwgkRtMTAIxq+b6Q2LB3QMt7Yddx3H1tPYL6xC3agO+hcd8AFp09AT98bS8ODoaqIf/edAA/vf4yCBmqdTTtH0RFJoVvXz0bS2dNDd/HufNwxe2Pwt+9CR9+ZzUZfzJWQulr0y9C/eaRUsLtLKyuwx33PoS+XZtwUVUOwwUfv18ber245voPI5fLofPQoEZfQkmK9eQBKIloQSnaq9fg+M4OTJ02Hdv2JjrIJaIPbKpY5HI53P3zR9HetCHWQQ6EhJRKfUOXxNI1pVIul8PqNY/j1ddeQ00u1EFW7V1cU6d5JVlSU4/LzpqAH/38UWyK6pxNdJB1Fa6o3x6zuGGrjHBHkpK0A2494UAmgU+oRJiDTFQKT6VxFMRROk7JuDa2qk59hDWbBCW1JuTo+9T3Nx4wKXUKuu9petySgHWNNg+E3Xudna+HtddLUd12Dji6/TrbtA3KuoBE6r8DdHUcDmeZQpTEQNdUe2GAvWOsdKNDuwynTmCLZ3ngRbch2hal+mepjDjocTT092q8v6hDwuRCmaY7ASWzJiiDZekge7B0ql2g1C24UucfneNKvcYQ2pHANBxDZgN++2w91dJpgDzOJGXCrSkvFlJKNO7tj79Xk5jqUtG0uKZOMzqLacd1mHlMMI+olu0dbXj10U1415WX46tf/Sp2do9gpBRYbeHmID3ktAUAoo/F6MuF5UWc9/4bP44Pf+wToecA0oeF1fWoq89hxBdxe7kNz5QwqMfa+gakz5+Hidl0DEpU+7o627C5pREL6pbiuqtX4ZrLV6Blvw4GlUcIIPHuUIp2cxqRjY4Hd20e1qmHpT5n1TL0jAj87+e3oGsgBaRmI9M3BR/zBX69/bhGY/DcJXj/jUvxlR81afnlKYnF1fVAR6eWPzGbQm++BDMFQmKQkSz/2+3fxMFzrwMyE/X+MLvUhGwa3GzoL/gYKooYHAPA7t48JICtR4bRtD8Epnlf4JebDuMLyy7AzmPD+LvndoaHX2UtPjjz0pBW3sfd6/dhd28e188/E7fUzIwP/eMjJRQDgWkVGYz6Avv685obuflVdVj6gavw5vFRjJQCLIo8m/gxiJXYTgwM6xsaUAoSjxfqHS2oW4pzVy3X+jq/qg4L3nMFpJToOjocjUUy96UU2NbRhtdbQ3eD1XVh3Quqa2M9ZSA8BHwR1rUtCvkdu9szjju1rBbX1OOCeVVIeR6O9/Sw0lmadODIR4dDBNhMGls2teHFh9uxsC6HaXMW0+IA9DluAzOzDeH3XCRK7mKfgriknOkSUDfSc6nvmLQTKKDT1tS2yI1doEkF9TaxUlEG9NEbDiqN84UA6U7MuHAAlbZV7xEP+vR3n0gd6c2Zqe5wIr/OZv/pq9Ov1u3JSD2ecLS5cwkwmAlJv9HLamcAaSsbQMNiZvQ6pedZDKRVp1St5pkMDmiqWuy26Dq4HIBV9ZCpYrXbjKqr1psLN5prQ8KWTrt0qpO1bmMPU5hHb/102pJfV0hGVl9X3HtIznxXP0+FdBogjzMpZtC66owmuTmR1Pcajfh7k3Y4TU+2aSsa2zrb8K3Pfxy+X8KPf/SvWLt2LabOWRSV4K9zzInLGmA4NlzqkD7Z2GgpXv8vPEAQHTBmf8n4GX2mkdo8L7lKb29txdc+kxg2nf/ok3jPFSsNhiDxectdMwvGGI9u2LS8kBKbN7XjW//xMILK6Sh76Mu47z/uQU9eoGsgobFh7wAGCgGGi7aU96XXGmFunoX+49i8qRVAVsuvyKbx+tYumMuzFPAS5N88/hDwd9db+Vs7bdoTy9KsXlVlJoUBBnwHgUTTPl1qu717BFJK3LPxgDZeD7Qdwt3XXoonthzFy7v7AAA/3rgfV100HbOnV+Dlt/pw9/p9KAmJjy45G19dNQujJQFPAmu3dWNKRQbvnD0Vx0dK6BktoiKT6DJLAAMFHx1tLZrB5T2/ehRXrFiGlOcRg0Fl8PYYzr50iUajf7QUXuEyY9DW2qoZzP3bLx7FwvddYQFQD6Enmm+QkN//dO8a1Jx3JcwAJ+bvaFsAoLNdN5j86a8eQ9+0Ci3vn/9zDZbMvAIANLCq/qaU1Rj4pRKy2Sy+v/ohVCn3d8xa14CZ0VodvHjk2QY9ybqHtmZ1XV7SfwIGub1GL0tpSIa24SovBrE08IkOwE4UEEWXIOu0uX5SDwcuqajWn7hfEhzocxkA0pszjp6VT/drxpDPBWIsoMWMYfIeDCGKGgjCTLjVGlTrzHafBJR7XNvDzBhcUgBmvWO7XerMG6sEmUvcua2eOS8jOgNl98d23+iqh5POR1Jeqftrl4SItvYUg2f2hxlDpbpkzqt4DCX/zk3a0tP3lFMxndZBHmeSYK6sOGSFZHN1TnTHxGB1jGCoOyTl0jsAACAASURBVIgoRHFkoFYsFiNDOPvQojSt68ATHBSuRDcoo2dE2kElSWZceP234fjZ+VS6FF6phs8thmFTYxyaWW+L0hPmALIpvVdt43SwioHEg5sOIljxCaDmAyh+6Lto3LAB65pbLRojRR/DJRvEtjczbcwPoqWtzcouBgJdu96w8svTKQwy4BsAUDbByupsabTyJmbT8Q0DTb6Q6Gek1iUhMVi0gXMhkNh0aEjL64j+/q+OI1r+09u6MVoK8MPX9sbqDI9sPoqe0RIyKeCbv38T/9F8EN9/dS9+0X4YfXkfZekUnu06hr9+Zgf+dd1ejBR9HOgvYHt7M4qBhJgwDUU/QHvTRhQDIJ3yiMFgYoyZNbxyjPoCfXmfvdlpNuZVe1No8GnOFc/zojmYGJG+3toIiRPdQBj5Ec22Jr3NbU2MkV5bIw82DCtyIDGaVIaOna3JHKCgL+kLBWaufcoaKljqZDHtBAxQQMlJvVT5JF/yzwQIq9yU58X7gRa9jpR3BT5hpY9k7Wsu8QgjrelUU7Aq3WOU1Gm3j4IECswoiAORXAo4gD2zz9PkeaaecAw1jX3clv85JfwneabvngJ+8wYx9u5MwR2SOjm9X1PSSWun/eF1qk8ePEZXZST0mLbotHl6JwPcJmNFC/DnJY8PTuZxSqPh0Ie2+6jPRkU7lE7ztwf0Fiehw6xp5j2caum0BHmcSUkkbS7XXujKEbjJrSW0TNrhp8lNSticugBQ3RAa+JRKQLasDKtWrXIcMbQSvT726sexc9ANil5BxgudLGhTvYRe19r9NQ/m6HCShsFP9OPapaTf2Swalq2w2u1FdFxeM4aLgeHSDJG0OJSQtuwZwFXpCZgzoxL5UoDXU7OSghOmoWzucpwvfGCnTneoGGCIkfIuqFsGbNLzvOIwZi2sA3bo+cVA4sxZlwH79fxUCqwEmU35ISxcuhzQtTcwIZtCH6PfXPQF+hiVjJKQKPq2lfoIA5onlaWtPCB8DzuOjVj5hwaKKPgBdh5PdKef2NKNr656B97uy+Ou9fsAADuOjWDmpDLcUjMTs6uXA7fMAaafBxzajgV1c1EIBFKQSF+2HKmaayG3vYysLOGSqqVxAJ2oJSj4AqMloQFnNW/MeaUMPk2pLQBU5ZYhU1YWS2oX14fGftaNBZFWcaGjqxqWaXXWLl2OC6dVanlV9ct4QCBtSa4ymvRLiAx2k7DtnDGeB8CP1zJ1xUbBBgdW1a9N2vTWx9P2I71WRUcmf5P9gwMb5vRUHkkoWNVURpwgkj4nY8IZHVJDR5d0mvbNBSiFlFZEylAvP4GmVCLObcEmI5B8z4+yBsDYcGV8kCV6XrnVHZiKkOzzTp1qZuzNdguh++lmy5zwfXrxWrR/l7wgOvVUIVMQlfzWBSjNPHuh6t5x6FqSWhmzP7bvZbuGxADQEKBF69CSiCeLWuu/erbGim0rEo8fzGDRG2atvWReuTDTqZZOA+RxphCsujhyfWIE0USS0cQzwag5L7h8nfsm+UJiUU09/vX+h9HcuAE3vf9dyOVy6Do6fNJ28ZsfLevacEOHczTCkSTto9IoPVrXicNBJ0eEngJjV1flqWHT4vplqKq1DQA9hBIk0zOBRCihLQYCmZQO6CSAzYeH8KXndkJI4KFt/VjzkQWYUm4Dv6nnzQ4r2blHyx/1hREKO0xzF9cCmzZreYsWLMC0WRcDO3Zr+b6QqDjjXGD/ESufU4O47iO34Dkj74wpEzHzsgVAZ5eWX55JoXfUpuFLiYFRTrIsWKl1X96mMZkZJwCYVJ5G74hdXkqJAwNFKz8QEve3HtLyVrcewkerzkFL6WzI6SHolefOQ8+0OQgCiae2HcPP3kgBV3wW0y6/GbfXleOyJbXY3TuKe5sPIpXycFvNTMw5oxJ+IFGW8jBY8LUgKotr6jWDuYXVoV9zoSNHAMDFi2pwx70PYXt7U2RIF4a2Nm8sXOIRtQxomPEw3Hk95p89ET+472FsiXShL15Uw4I+wAx3Hera//D+h3FsxyZcuKgeFy+qIaWTcVdJB5QSMJja0N83L4X1mLVsRovkVSxsvWkAulSLMS4UJliNnilYpSDWpeziCj2vo7ek3ab/c8AOs07H1gkoDdBHmQMXsFc0gRNJxB31KMBC9murXdpn9D8BZsEJAzvZ+ZoQJWY+CLNF9IQpcLRsYE6gg+w2OtQl4iwzIe1zmD57Hl+nOWd5/eYxgF9HnWx/CIh1qYxQwE+PS7UOPemSJp/cP7LrXE7AtyPSoaWLb88rFzY51dJpgDzOJKMN03b4HfJN+iKJHcAaG5drA5fa9ySH/qE9Lqqpx5xFtag5b5KWb2z3ye8MfTluE9H8UBrSkXS8GLUtFYC+MNyBAeiztPLo3xYNcmgpozsV0YzSU20RMowalzYO277REtKeB19I7OkdxdkTyzClIgMhJX7w6t6Y3mhJ4Ikt3fjS8gusfmRSHgsS8yXJAmTOuG7S1Gn4/qt7rfxASB7ECsnW+bf/+D0890sdfE+bVIl+B43eUVuVwg8kepj88nSKlVoPF2yR1OSytDF3wlSZSbN15gPBjosvJA4P2cDZDySe6Tqm5T246TDec8kM3NN4IM7r8yYA512K8rSH7738Nt7sCSXUPSMl3HXtpRASuKfxANZ2HcOMygz+z7vmYOmsqZCQmHHxIkyrnI1JZ4cGj0PFAL4Eyo22FH2B+VW1qKsPmbORYgA/MqLUgFMECPiVHtIxw50Deljugi+c9gxC2nkLqupQf+1VmsEu/bG93kRMixaVcZ6+HxV8YTOeam3CVHdIjHm1Oo3f0UwhTbCR5CfS6QQQmGBV1+XV6wvBmgtkchJkqmJBAL82/ZULMIcbL+hgWN/37POCuq3T9nEWFJ4cgIXttdelM2QzOa80aa4hReRq4tplHidqJKj6iqut2k+1s4Pe4NogVrdH0dutCYWMWwCX+gaNZ+AyMKPvSh+HhN/jpPBmndzdjQQSnV1aZ9QFU/KtGdo7EKhtW+COnUCfKRPMeeUA7Nse9bUuqbaFc6daOg2Qx5kkwklHgYDa6ExQ6rTqJA+J9XO4uLd2tKGjZSMKkUTYpTNl/qFvDIC6ZuLrDBum+wkl7XZsxNwzvVIOJQ5m3432afmUlr0p0s1Mq9P8vQwBBNU5C6+OBQq+xPbNodeDKdOm43jPcVx1xeWYeekSfOm5nejqHsHUigzuev8luHB6Bd7u0/0Mbzo4yALHkhAYZMBqSQj0jRSsXvYyag1dR0dY8BkIiX1Hjlk0fCFxbHDUym9s64BpThBI8EZ3JwLfTL4Er9Yx6tt5k8rTzjr7mbHyHUaHr29qw2ChwqZj5YRSa06fvHu4hMFCEINjAOjqHsHWjlakzpuPtRHQ7hn18cTWo/hE7bk4OFDAp57cjrwvUJb28B/Xz8WEsjRSkFjdchBv9YziuvlnYsWsqQDC+Rmq8ADwQuC449goplXo26oEB0pDdQ/Th7OLaeR8pCcHWjgfqJeV+guushhwqoOsAGXKS9asXme4f4T7nLaScWy4CMBjJahUykkPbU3vmQAzYewqkgFtCVil7fYIbdJqCmI14EjAGgO+zT1IPVMJqgZkjE2M7lmxEMFx8CdlyZggGSvdxzLxJwy7P3Gf4v4koO+kwJnc+OlMnGlLwoBYhraux520S1c7kgn41iTItA9Gf0idKc90w6czPE5QzkitoReJ2u1Z9gLhF2RtgoJVcy7Zku+T6XFTVSRp9IeqjEDSPELb82wVTPXeZOL9SW8XH+LZKZwjSdMRp/lSUeZVRjTAL3nap1o6DZDHmThOK5kMZtxzyjkmB0284dErBwDbNrfjW5Fl/IM/+zHWrl2LuUtqLC5Xf1LXKDbM1PYIipCj5PQTyk5utfnq94SmR4Ag1gvkdS6pLl4iGeLdwpjBBRQV7mChGwiQbNAdbS346qc/imKhCCnDEMMP3/sTfOQHj6CrOwSV/XkfD28+gq9dTvSMozSpPI0NLZsA6OoDvgD6GHC37fVOjAZZK3+Y0dnlpMEA0Nd9BFu2bQXOX6Tlv/XGLgzlfSBTpuX/83e/A9xwu9E+BygVEr1MfiB54Bw41DryTHSOSWVplsaIH7BAOATIdvmvf+ZjYZAVFwohaXJ5BqWAkWaXp9HP0P7m527BFbc/DMpQvLK7H3v78rhn4wHkI4XcYiDxYMdhfOfMOXhm2zGs6QzVXRr3DeDxjy3CGRMyaN4/iH/60x4MFwP8zdLz8TdLKzAhG9J9bU8fplZkcMkZE1iJFBDeKpi6zVxRNZelVG7kSPlo4psePOY9+6wWljspa0LsECDbBqrhmuRUD0YZnXRqHa+1W12iGZUKVZ/R4aQ2ChLCT1NqrYQUlHZ4OIfPHEg6kXs6TlOUSlA9DZQbIF4DL5x6gP1M9Z7pWOkednggbApXTppI+2IQa7WFtpEAM6YPgbCDlmj9Ie21DKWjz5i5hFG3AzgpdReqBkEZHjpT6UynghP32UbqYSTYFPRJoyJWr9ZoN+uGzwC6SX9UrmlEyYBVymRQ2rTdRv7JmBKufVp/6Nmubw1au+w6HTctpzBOPu3FYoypezi88uUEOcmc1pd2wmk5rt4k3ViBzS2JRbvySiElD2K15NkbNpXSuCQyNHqQy0LXNZHpAcJdQXISM4C/eqGcN6UdGCoWyWGW5KmDxTzIlZV7a+NGFC9eCfn5XwC33gN5xmyUSiX8frfugeGPb/aiIm0vh0llabRv3mrlByJU1TDT1o5NVl5FJoWiP/Zd4NDB/ZCw9Xnf2LFDC12tku/ZfG4gJApMnS5JsS/A+l72RRhqmqaUB1Z9Q0iwALkUyDian0Zb8vmlUgkFYctcuINzcnma7U/K49viS4F9h49a+YMFHy+91avlvby7D6VA4j9bDpI2AM/vOAbP8/CTjfsxUAgQSOCB1kMYLvpIex7+1x/ewv/+4278j+d34amtR+NWN+8fwP95aTee2dkPPwgZlTIDIccHP+mrAjL64RmVk+Fa5zx4uECcvn6SQC58pEM9X3oeioHEUCHgVajIs1OCHLUl7I4N+Dm1DkA32qVf0Hlh6VSTdksoUE33Orov2XsglaDSfEunGnbSzwK7P1SPm46VFQGRoaeHAif55JnerNCyWjTC6ItSIMiOYwIz+5luCRyIo7R1Q+kE0FP1lZN5/KD1UGBPGRJN2m78kPafwXYn0Km25wTtp+kpw2PqN4NgsX3TVJGYOh2/c0VoVM+U8dLLO+asQS7BCmPBB+rdM7caRnl6YzH2k/H/+3QaII8xmZb8NnC0/f9p/oTZCaNPkiX1y+IQs2WRVwpnJCPmANXK0OszmBOcblB2f05kvWrWb0fOstvnWmh6SXsBmlJoVtcYkQQ5/ov0QwjMrV0GedXngYnTgDNmAZffimw2i1TlZKsdXJqYTeOsSxZa+ZmUx0piL1hQa+V5HmL3ZmNJZ8y8AF7GlkK/45K5LEBOV0y08oTkXdmFgNeWAArBqzuMluyyldkU8qVx6Dc78kuBZA0As1m775PK0mzAuEllaRwbcdVptzFTVoHKGeew5c1UmU2xOtUjxQBSSuwfKMR5o77Avr4i9vXn0bgvCVhzX+sh9I+W8ObxUXzjd2/i5bf68F9b+vD8juMo+gKDhQBf/c0uvPuBDnzv5T0oBiIKiuPhrZ5RNO8fCCW8sNcJIMMbGy/xXkHDqVuSXu02i1JhaEf7h2mMBxnmD5cCh09esjaNa18tX9qgVAEzF0MvHEa7ZhWcTrUSRliAP/oMXKBUHxJQPWG9TubtUAEFs/9rPpbJWFEQp3sGMkCfhJVP69eXOaWR7Jbqt8VAIM14dnGDO/vZks5TnWpG0GHfEJ64P6YhX1g2+d4zQJeuqpCU54RCDlXaBJRbjFdycGpnG6tLwUt5aVwBnZFMSusg0ibuAvwEBriFXI5x1ssykm+9FFunKcRSJXQG02aOTrV0GiCPMcVeG+Ic80laklz65JoCdBOdXxVa0X/qS/8Ta9euRS6XO2kkI8BYvCoPOmj2KAcfPVHOXudK+Xq4BaX7VE3aoR9antYWk4auo8YfTrR+7dCKrhh9IdEzWsS/rtuL7768B/v78xAAhmZcDJRVJj+4sAZ3PfAISildTQHgQVJFNoVJ57zDyk95YCWX58y5jKXL0XalaWeejfNnX2zln3XBbLb8zV/4ipUXOOp05ZeERIlRm+B1isGGwnaqbzjAqpC8Gsg/3bvGyptYlmb9S0sJHGc8ZPgOCf+37n4AXoXNHHFMw+SytKUjDACTyjMYZhgHAYk9vXkr/9iIj/taD2pr4kfr9yGQwK93HEf7wSGUhMQf3+xF64FBHBzI47U9vfjMU9vx9y+8iX944c0INIfjeE/jfvx70wEMFvxYqrow8obxmS99DXeufghVtfXWrUUoKZYwLxaktHWNPZKfMixlhZDIl4R+u8Os77B0VLcBNBX4Ng99FsQShl6XWkvt+5h2XKe+Y0roUlvaXjMsN6uO4vHATILfD0HKcpqv1EiN1qWFPCdniktq7ZLWcaoCFJiE5cPPgi+ckQ65xJ0RlOHRJeL6/WAinT9xwBazP+pRZybI6HsJExXerCTwkrZxrDrVQCJ9pcyEzthR0MfrN7s8iMQ6u0RlRGq0+TNPoy25u9fkmQ3+YZSMemHRpitAfz/8WGnvx/U+OdpWzadOOq2DPMaUOKSwX6oypPO8MXJr8aN+TdbV2Ybt7U2oql+OXC4X5+t6zGHa3N6Klo0bUJ1bjksW1RD9qGRhmKDZrN+1KW3Z1IqXnnsK8ID3f/AmLHr/FTCN4CgnqB+UnIQlWVJbO9vQFYXnvWhRNQAumAe/cNTfr29qxeaWxsgVVx2EBP60biP+8dWjeNs7EwDQdXQYz35yCQYYADavqhZDHZut/PEYkvlCYoQBSQd2vwGT7/QDgdde/D2QssEzlwIhkSmvBEZ1sJVndD8B4IzzLgR277PaxwFhX0jWCOXowf3whW0Yx9UZCIkCgxx9IdnxLkun0DtasPIrMymWyWhvbQUyy7W8KeVp9j0UA+GUWvcwtBcuqcKaP+y28jlJcVYUWcAzuZz3yjFaEiyILwqBfX02cA6Err4BAL9sP4SKoztxR3tyU9B5eAhdR4dw9qQZuOOVt7HlSOjK8Y3jI3jgw/OR8oDHXj+KB1/P4rxz3o0Vc2bh6HARZWkPw8UAO4+NYM70CkyuyITqMlaflPeNJEftH+Z1P4BYos0xtU7DNOnyA2/vE+bqV0+2twr9M2x3AmqEpP6rQ0baBPwJKHWpNej9SXSqNeic5Gl7PqVl7//W2Mb7Mm8YaEnWIwZD99hAydl1ahJkLylTCKSmD89JrWk7ONCn+cQn7yEw3n38PoU9J0I6sMq6njWVEfJbPxC61DoeK85gzVwSdO4lY8u5raOlXfQ0WyTyO8Ug0ndsAvWTAUoX4NfKUEYpniuGkR6DFVwOAlz91MsY4xxhIyoQ5G/GT610GiCPMQnoRiU6JxiFXjQRMpnQx4ZLuGBqynFIAC0tzfjm524OAw9ERja5XE6/Eoo+m5ub8aVb/yo2yPn+6ocw+6qVGl3K8ZrGN/ZTUqa5uRlf/8xHUSqGOte/ffoxXPz886E7K4bLVr6e4zoZ2uqasKmpCd/87M0oRX284941WPaOq7VFro+eeSCE7fvaZz6G4tnzkFq/E7d/EThnQgpf/ORHUPjbx+KyBweL2HV8BAPMFX4geODHgbWjR49Ans1dyYcHnJlW//TfgPfqEl0JD6+89EfgmrEBZBe4dQHkApPvOyTCvuBvM3775MOovPzjMCV6TtpM3/2Ab/fhQ4cw7NlS20DyEueH1zwI3KoDZCHBehMpBDwo9wPeJZ7neaxhILdJH9y1FW3tPsxw3SnPYyXiBYcP7MChg82B8uLIcGik+MXHtPxdPXksPKcUg2MAaD84hKIvcGy4hJ81H4CQwED3CB5+/SgWnDMJQ8UAn3t6O7qHS5hekcG/feBSXDyjElJK/HrHcbzVM4r3XToDi8+dhGMjJc0ntNo/hooCWU1P2otVd7yTSFxphslIJxJkO5k3SslvWNKWfnPio12H8RIhQ8Ux46Z0mgoAONqm5E4dDbwLObsdbJ0kn6pe8NJ56vmAa7du0HkyQGm6XGNpR5+BBHsWuMdKVzHgpKKajrYDlJt6xTFtRihk6T1HT0WRME0mWOVsfRKpKM+QJe31bB35uG+8Wofe/4Q2VVrkmCO6g1M1lZPpbuv5nOcrnbYeVMXIZ2lH78HMj5+S90CFYq594FRIp1UsxpgU1+j0RajczzAT0/OAXcdHGIluMh3Xr1sHv1TUjGwAg0OMCluhaFsbY30zE7grGtyC4aDSunXr4JcSIOI7DX4i2gQomdKb5IuwLevWrUOplLS7s7UJEvbVFH8ghO1et24dihc2QN54O4J3fgrf6/TR1NgELgJzviQxzHzBgbhJZWkWUPV0H3GGZmZVGDxHNLm0rVfrSi7anD4wwANnX0gWgPmSpy3gocj0M88Y+kmANTr0pWR1rQ8dOuCQZtu6/QAgK6dYeS41jVIgeANA4daH5stbWZD5IXQwNw2uthQDgUGH6gmna829n8JAD0olu92VmRQ6Dg1a+aOBwPM7jmnr7fe7eiCkxEMdh9E9HNLqzft4els3Bgs+/vBGL3742l48ubUbX3xuJ/pGfQwWAuw6NoLPP7Mdtzy2DY37+iGkxEgpQMoL9aEPDRbidpst5wCVlk/yFNjg9IGVlPf/RuUKAI4OFSypoJDhWjEjaIZ9EqyUU1PfsK72o/wIHOtX72a7bQBoSlZVGSopp2DD6TmDk7Ybm76m96yBHcR1JikBZpyrPMv1HyMVpGOlMwIJSNJkmNq5ZWdzcyVuX6KNErfX9HiiUhBQuyB7HMJ8uy06M0FZDwr6eHVIzesDSQk+SMZKat84dKolPX95P9XG1GfzNdqeTZsMLdtus06V7Jt00p94XvFCsVMtnQbIY0zxfsNIZakhHXclNSGTRkUmxUp01fPylauQyZZpRjYhbTuS0apVqzSDnOqG5bYOssbxSnieXSe3KaxcuRIZYiCWidpi6a6p/pJcW3qT5EsJrFi5Cpls0u4lUQhd3e9nkoQMfcW+eXw0NoxatWoV5LVfj8uMemUoXLQU2alnWL9PgQfIHmPtFQJkG5iccfa5Tl1eTkLLGcwBgFdmqy+4kgsgc9JcwK0GwYFVV7tT2TIgbYP7PAOagTAAy1jbfcY55/Ng3dFGr3wCW3bEwew43dk53NZxjAana+15Hi6YX23llxxqHQUHWC8Ggp2HXES3c86Yjuwkm0EAwOo350vCqQL0+JZuLe/pbccwWpK4e0MSw7wYSKzt6kYpkLin8QB2HhvF/oEC7lq3D8Ug1DW+a90+fPqp7fj4Y9vw8ls9CCQwvSKD3b2jWN1yEK/s7mMBVZjsPU+BjUAI3QAwAhvm4ckBwYQyrFEMhMDhwaIN4qVEviRZYzRbgmzvkVqdDFi3jQttME2TJRiI8+1y9HtK3ZIUn6TdAQGOVOJqBodi+0nANCdccTE2uipFApI0TxjEXR1nJM6NQEg7kdp6HgXI0HWq1fxk7894qSj1tKCPlamvDlJnXKNFjyZzvlCQHZ+n5IeBSBgb6sGEMlkaKHdJeaO/dC9XSSFKW5fCU9qUnp3vAWAuGLVgKy4f2KdaOq1iMcYkpDnRkkQ5R9fE1K7EyKd6rq1vwD+vXoMd7c1YULc01kHmItLlcjktPO3cJbWxzo/S9aMcL+W+aZ3cxl3fkMOd9z+CV54PdZDf+5c3IpfLRSDMBv9Uv0rjhAlpdU1Y19CAO1Yn4XnnLFQ6yLw+4/GRIr747C7s6y9g5qQy/OS6S/Guhgbghde0No9OOAtf/N6P8aOdRmc8j5X+lhjp54RsCkNFxlBr+hlOKTQH+j5w86fwzH4rG9UrroTtAI5PLkO6PANKAbcahFMHmSFzzXU34sWjKZiz1lVnngGZfsCPydQzz8I+ohpwonYDwNXX3YQXmXZzYDrjeU4JOgecOdd3E7Ip9DPM0dzqBky/4CJg1x6dtpQYcYDvIcbfNZdCDxl2/rnnnIW/uPvnuH2Lnj9SDFj95lLgBshmTysyKZax2d9fQDYV6jqr1F8IsKc3j2PDJTy7PQyqIiSwuuUQrr5oOoYKAf76mR2xC8B/vPJC1F8wBXlf4J6N+9F5aAhXXjQdf7P0PLzdOwopgb7REoaKAc6ZVAYhQ+PK8owuo5GS13sOAYWeJyRwcKAA6ltd9b13VHehp/Y9TjUIsPWbkzp4pKmpTXhUL1XXmWBd5cXt5NU67H4moNfUExbSYxFGIPX3n4A4I0R2dG7QdauBJ9IjBWJ19RI3bY6DMUESLavqMvuZlLVPCTpXPCSeO0wPGRzzIR3PIGV1YVY0VlJ/m5Q2VTc8UT3mnIgBqtQNNOPbBioRlxEdT++P65kyqdKYs+Rbi7YrkNiJXM6pdcgaJpL+uCT8p1o6DZDHmKTUF6l5DaNetnBMpO2dbVj3+CZcefk7kTpvXkQmucoKhAhDxNbnNOCgu4pL6C2qScLTBkJaur+6RwmK7k/sUaKpuQmbWzfivR+8MaavaHCMHpUgUzrKkG7KtOno6enBtddciXeuWIZ5NDxvKdAkRioS2Py6HGZNW4VHNndjX394rXt4qIi1XcewavY0qw0TsmlMm3kZsHO3lh8IiUPdPUYL+QAfQoaGHWY6fvw4MhOnWvkuADrt7POA/Yet/OkzLwCOWNlscoHBw0e6wV16cRJRCd4zAw3NrbXvrHPgM/6BOSAMuNU6OOm0C/BzYA0AGq58D140QnA7Ab82t5O0f99e9PYVAU+X3G/eug3mxZkEWIPLyVOmsmo3hw4cQGrK2XZbAt67B3f4Ti5LY4iZh5WZFM6cPRfYskvLHy4F7LvI+26AbKZJZWkWwE/Iptn5BVySowAAIABJREFUVvQFdh4f0fL68j7gAWs6j2j+sX/aeABfv/xCvLCzB89tPw4A+NWmw1h6wRTMnl6BzsND+O7LezBaEnj3JdNx119cgsFCGJ57bdcxeB5w1UXTyH6Q1CmlxLHhEoaKPrKplJa/p3c07oNKgQi9smQ1v+ZeBL71fnLAKaRtDYciY32vbsgsFYtIGheeGjaocAVTok/qJvDAQD7WdVUlwrEygSOhbYAXQAcm9MYvoEyGR0E5yY+Wmm/qcUefVvjx+FMfLN4zQxJhTzLnrEt9hTIZnufFUmnXjQDHwJuJqsCodtCxogFO9PI0rkAirOKkyRooJcknUnhTZYRKxE/Ubus5+hQy+UPNWcCcQ9IYW0Y1hMENin7a0wVltIyHRJWHMlknfyP/fek0QB5jElKccGJ45Nkss7WjDd/43M0I/BJ+9K9lsRsmOhnptQ2l7dqoaZ0pD8S6GmQTT6QDyYKWhAadxBLNzc340AdvQLFYxCP3/gR3PfAIFkQg2SFIsTd5SQzptOh1P8bjTz2D9PnzCBUVYlvgnt+145k3hoC+M1H2lS9j0k/vwcOd+uJ8sOMIbr/mImssKjIp1lBrR9c2bN3xBjBTN47rd+imcqCirXkj5tYuh3kIuUCsC1D+6aU/AgvfzX7HtYXbyJubNgKXrLDrZMI+A27JModLxyOdduWXTiC19hng7DI6dKmMcGMSOAD/04+uQbD4/cBkHSD/9Ec/AK79htU+TrIcSF4K/dtnn8biaz4Ebk5wqhd/fLPXyptUlmYDs0g4gq0IiX5OfcOX6O4bsNoSMJLSqRVpNhjO2ZOybJ29ed/BfHmasSAQAufRUoAfrde9qfy8/RC+deWF+NH6fTGtP7zRi929eZSlU/jey3uw7u1+AEDHwUE8+FdTICSwbk8/Ht9yFOdOLsNHLp2Aw0NFIAK4x0dKmF6ZQXkmhXTKs+aiWpemr4GQaZTIGldyA3kfPYaRIt3fTu7+zYuljQbmC1XIHP6bTWTAqUcoiWp/3jf2YI+UtcG3H5ju+aJ8UyVBSVyFRDqdgEEKTNPk7JAyZLxdV+96PjNWSM4d0097DB6Z9cyNrapTP3+SM48zOjyZ6gG0sslfdKy0ACeEhqZi4SVRcjmh2YkiOnIGmk7mwwEQNAAq6W9Uf0yXrCa4Dj1+cCBWM2i0QLkbw4TAmbQvHsNTFyKf1kEeY0pULKL/ycRQL9vy/xc9dzRvhF8qIgjCCHkdLRsB6FdZ9KpIX6z25hfWmfwRcs5Sy6ccbzFIDFDoFZe2tiTw2muvoUQMBTuaN2oL2tP6pq06jZAyIozVPoRAqVTC+vXr9Gul6Of7+gt4Zr8HVE4Bzp2LYu0H0dK4wSJdnvZwdNh2F5ZO8Z4Jtm99HbLC1uccGQe4E0ihr7/fyndJYl1AU6TGYaQnHW1hfDcDfx6g6ZYU85sXF27YJSl2euUYj3Ra8gyJi7aQHpBiIgwyEQrdPqN5KXwAD0d77TkRSMFKnE3QqJJLd5rz3xwI8MFWhEQvsyaktAHMpLIM62WjLM272xsqBqzeNyRv6Li3z25HwRcoT6diY0GV2g4MYqQkYnAMAK/sCQ0Du4cKuOOVt9HVPYKX3urD0zsHUPAFSkLii8/uxF89shWff3oHjg2XIITElPIMNh0cxFNbu9E9XEQpEKiMwLNKaq81576ERG++ZIFmpSNqvn8JtfbJ/otIF1iqvyh1ZUjFgWwHQCR5nuchEKEthdVy6b7ZK5lu66JCgUz8V9MzQgPlHh+NULWtGMDQ444A7xgCuZzQKwfDfOg0kjoTybeuYpHYwOi0VaLvn+qI63rciPNVaV3aLlijQzMEsy6h5fpj95T6jKbgWpfmkrHSMEHyrPeTtoNIxMnZTmezetYDifGMBU0mngjz9NDmSZ1kxKU9z06VdBogjzGJE7xE3eefbclanVuOTLYM6ShCXlX9svALcpWlhVUmdXESaTOf/p1waybHS9urg2kg5HhXrlqFLDEUrM4tNyTFTN+Zv5URoRddh6ZSKWSzWeSWr8CRgQLufOVt/ODVvegZKaE/7+OB1kN6Axe9G4vqllp1TSrP4PBg0covBgIDzNX2RfMXAxNsgMwBMxdISmWymDDZVrEYj8s1AEiVV7L5XHK1xWXoNx6A7As+qp/bAHB80unxAORxSacdLuRctF1Gh+lKPuqgSx2Fo53OZFHJzIliIFnGgUslIdk56/Lf7PKcEQgJP1Nu5zN71aRy3lNLWCd3qyJY40UALEPKzZXJ5WnWWj3U+2b6IyWe2NqtzdHf7R5CKRB4tusYdhwLVT729OXx253HIQG8srsPX/nNG/jxxv343NM7MJAPkE176Bvx8Z0Xd+PrL7yBXcdHUPRFvOcNF4NwnslQCp82ATLC9WO9fglsPjSI8rStO21FHUQEyuUY3dYxgAoIgdlIUbcB8aTymqKPoSphgdjoUwNgXuIbms4XCmRMoCmkhC+MIDGENu8qz6StfmeDb9t4jQpoSH4sWErqpDeplh/+mEHQK1Q61dDqVDQSQznTKwcdWR7wJ39wQrMQlNrvx/RskkjbXTrV9pi48s0tgQ9Ak5TT1DocQNx1q07HkPaT4p2YtOdZOOJUSadVLMaYJPlnJoFwcUppKqeHpRdW1+GOe9ege+cmXH3F5ZAz5wLQr7J8sjDo9Yxk6CXP9i6lrHQ1jleIhBMioNxczw0NOTzyxFN4+ncvIbd8JRZW18UAweXj0RwRKUMjwjtXP4RtbU2YMm06ent7cM2Vl+O8y5bgW09ux/bu8JDbP5DHf920gDWkm7ukFmjXXWxNLkuHV61GCgTv83bWxZchvXOXFQ2NY3RcKhNzl9QC5ROBIV0X0wkoHVLRudU5dA2wX9k0HLQvnLsQe2xbN1Y9wJXvdCHnBMg8ba6NLim8C/C763QwMA6/zpwk/5rrb8JLhwRM2Peh2/4Gj+21y48H8K96zwdwVNpzwg/AtpFLYaAZ3vUbN5eFdLi5EwKjgb0uOf3mtMerb7g8fpQCsBJnCc8RtMXu+8SyNEaZsOReymPB9+BogN2Mtw4J4F4jqMp9rYdww8Kz8O0Xd8d5fXkfL7/Viw8tPAv/tmEfNkZhv/f05vGuS2ZAAljTcRj3tx1CZSaFb145G+++ZDqAUEK/Ye8ALp5RiUvOqER/3rdcwgmE41VGAHLo1ip8b2UZXe95pBRgtGQGrYhoOVQMzCnnBwIlIZClx7UXztm3e/OMzDo03mT1ZANbJY4NPc+dEVF5PeoelU4b6ijG9ybtQADJcDl8SUvCZDDHD1Wl8DwvXq+usdXUADzlNUU/S2PwbQYbYerUaLtuBFzgm7kdNj2b6F45wJS366Pf6+1L/qeu2HS3dQ4PJqQfnCqF7cWFvoekzlitAzAkyADLRf43p9MAeYxJCN2Kmj7HXhgIB2uWmV9dh5veezmmVGTRtDe8VjQN6XQJMjQwG2WztNV3lCu1OF5yrUYXl6ZfBqC6rh4VsxZo+nhhH/VNNJEC2O0AgHlLapE/6zJ0D5dw/ZxpuHhGJbZ3D8XgGAA2Hx5GIRCOsL32aplYlsKRQUbSJeGUjAXMVTN3kJccqgcVEyezIGE8UlsAyE6YBAww6Jaj4QDZXlklMMy4+nJIeUeZfJd+83glyE4Q+2eQILsMAH2GsQkELy2dftY5wNFuC21MP+cCYO9Bq7yzTqbdU2aciYPdI1Z+MXA5kbKTkLzBUFinPeblGV7iyjFBlZkUq9/skhQHQqKPAbGTy9KsKkVlxpb4lGc8+IFddlJZmgXfoyWBAjPPDw0XMczUGUov9ZxsymPP1D29o0h7iMExAHQPl/DG8RHkSwKrWw8BAIZLAms6DuPqi6dhpBTg009uR28+jCj4vXdfhCnlM5DyPDzceQSdh4dwxZxpuH7+mZrhVNiy8H0OFQILUA8WAhwaLLDChbwvNO8bOgBRvSbGYsY8L/gSAwUfk8vJMR4BSstbRfxpg7jRkt4OBWQ40CMBK4qmC9hzN5XUFRt3dpiqBzGINdVU4jpsGmZbqCqj0LsTSf651ri9ckgHbZ1CEuGQ6rFTdRROIkxvkimgtFzlqX4SGicDy6bKCJV8n0wFiEp5dRyUjCvvpxpQq5TeHghHf061dFrFYoxJRC+RC72oJi+V2gLJRrC1ow2P3f9TtLS0aDTpVZZ1bRPTSMq7rjNUjuuqiC50XQdMYmtHG9bcew+6OtvijfVkC1f91myfypcytEz/5u/fwl3r9+HLz+9C3g/Qx1wpF3zBHoiSAQ+V2bQjChrv23a8urnj0p91qQeMwy2aK3X32EZdADA4MsrTHocE2eUf2a0ywtMeD6Ac7xhy+RKO4CQO2i5p9nhUY9y6yXw+f7/Ep0KhgOYN66z84z09Tl1rTtLHSWELhTx+/7vfsTQ4XWO3ioVk1xsHSieXZTBYtNudSnmsAW2+FLCAvz9yBWemctPvF0L1jTQDPCeWpVkmuBhIjUEHgK7uEfiBxJNbuuOojkIC97UeRFEIvLK7D//ZchCN+wbw/Vf3YsuRIQgJ7Dg2gpsf3YprHujALzcdhpCRVx4p0bivH037BiClQCGwjSslgOMjJXY+AwYA8xIBDC3tIbR3SKdTuus3L/ElzdHkVEaGi7qkXAEZGdHT6Uhrrbiu8DlApalYGGdVqO4QMQPkCylDdR+uP9aaI2CQVqoiN5pa0hK2HjdVMeAkyFqdBPBbYw6w+YBSMbDnriYRBx0rgzbDTNE87Sbb6BegC+fomU+r4ZgJM0ny6QptHt9qa7rtfH9OtXQaII8xhRKfBMVy1yace5OtHW346qc/il/dcxc+ftOH0NzcbExCxVGaV1/MAiDfmRNKSPuqiOV4CR3Vtvt//C/45uc+juaWZhQDlwsb8NdKMrwq3tM7GkvQCoHEz5oTKd2evjzaDgyxLrAKvsAQG8HNzpuQTbFXu9mUxxuejUvHVYzLCMwFeMcT7c6VXED4GGMYFtLmpbwDDJ3xglVOCu0q7/JW8ecAyMD4gpO4pLnufvK0Obd1ToPOcezxff39LEDe1NKEXoZB2r9v75jHUEjg6UcetPJ9h/rGiYCzy6OGmSaVp1njwlIg2HVfEryHkLzPRx00dYSBEAgzuBmTyjNsu4cdvqSFBBr36fpPb/XkUQokvvvyHi3/vzYdAeDhP5sP4GhkeLim4wgODxZQCCTuWr8P3/jdW/iH372Je1sOoeiH6m07uofx3Zf34L7Wgyj4AY4Nl1CZtfWYARsI+1Iik/Y0sOZ5ofeOKWVp3Z1dBGRMf88JWJNW/mhJ6gA5AjKcwEVI3oVg+L1Bm+uPEyRRYK8jMwk+HgDgBqXWmcf0BzSfoWG6OVMy1IChHbaF7z8Xb8D09c0xGZarVtI+rp8qcf1UNHTXf6otlBHwHHOFSq15IMzd59jqjSLuQ5JOXR3k0wB5jElGGw/HadE/TA6so3mjFhb6tddeixcDvULhNgtFI2mDjOvgvEGEINEG1CZUUBO/s6Uxbpvvl7B+3XqMukKxmkYCEcmDgwXc9kQXbntyO7747E4MFwJ0D9nW7IcGCxhgrn0LjkAHw0zQjkDAGbRjfIZnDG3J6486g3aM00jPJVlmE2N0BQBIu7xY8NvLKCP9C0Gs3Zbx6lQ7y3NeHwR/qI53DDnm48/hQs5Vp0vtZryAn02pNKRnb7/CS6Gn1wbI+97ey87xFCfPTaV5Dx7CrWvNSaJdAJnL88Ab7vmBRD+THwiwxohC8lJxLk0sS6PIjElZGmxUzNFSwO4rvuT7X+L8oo+UIAG0H0yCqkgAr+7pQ8kXsQ9oAFjbdQwlIVGZSeHrL7yJF9/sxYMdR/BQ51EEMrwR+PaLu/Gu+zfh6y+8gcFiELktlNjfn0fjvn6M+gJB5JpuQiYxOvUQMoE2gxCpQTikvPZwSTZ4ipTCFrggBOWWZ4sYJJmUVb4tzAHMc8ntlSPRQbaNvWzAb+erW1M7RLoXnZs8WDX1uNUombT5M5zX5U2k02ANHe2+C6afjlDg0WNgvDdN1UUTfgnSFqLuwDA2io6UksU7lmpM9BkI3suIxQSdogj5NEAeY4ojCMW6ROQ7B0KWUqI6t1wLC71y5aoY3GpXKC7um+UEjYpI+8ztIilPfx9O9CX1S+O2ZTJZrFi5Ej5jxAHYKhZq1t/XciiWpOw6PoqXd/exUqqyjMdKhoolyV6pcnkuIPznklCOR21gvLRdkmU2ZR1hqR35rnDQQdoGSeM10nOqjIwDUI9X7eTPoQYxXtrjUrsJeMny+AByBsjYrv+8dBYTp0638s95xyxed5wb21Sape3SPz+RKglnSHhsmPHfLMFGonRJikOvHJwfaMkyzNw+OKOSlxS7wHcx4IFwICRr1MiN1aSyNFKMvGtCNh2raNDkBwF+u/O4Fojm0dePwg8kXtvTh1d29yGQQMv+Qbz4Rg+2HBlC24FBfOrJ7fjG797CF9buxKgfIOV5GC4GuLflIO5evw9Hh4so+pK9phcyDPJipuPDRVaCbM5lD+EtYBjaXAcyw8WA1ac+OFCwbhBcfp2lFJHbOiKdlYmEWk+JIR2n2jMWVRJ1a8rZKgDS0m9WyTI6dNB2gfWkBjsFQrDnrO5wDawbPkpRE6Bpedx6Jj6wCW3NVZ406dDWMLrGpO/aTIlvxnm/2y5m6lRLp430xphExIFyEmTnsww9WNz1wCNoa9qAa668HHUNDWjZH17n2c66Eyp0kpoCXS56kgRzbaOVR1SnUscA5lXVxyGr59XmUFffgLd6+Ot9PxC4r/UQfrPjOC47cwK+9s53AAB+t6tHK/fU1qPInT/Z+r0QfJSxfCBYyZNLouU6yMejYjEeAOaSUDqlnOOUirIpZbsnC/N5ftblOKEk7E0/NFy0y7ql7Tzx8YytE6yOF3yPQ8r756B9IoZsPPONS5nyCizMrUCnkX/ZompUTpoMDAxp+Weccx5KR5lIh4463/2hm/EHw57zRP3hAL9rvXFqCoFDCusLyQNHh7pHWYr3kMExzJkU77+5PMPn+04gzO83HCSbUJZmxyqb9vgbMl/iwIDteackBL5vRIu8e8N+vPuSGfiX15Lbgrf78li3px+Xz56GH63fFwedaT84iJ9cdxmQTeH3u3rwH80HMKU8g/+56h0456xEirzt6DDOn1qOqeUZ7O0voD/vY1pFcuyH6hh68BTPC5mJ7uGini/DiJPmDaNEeHtgur4DgN09oygFAtloT/O8cL/adnTI0oMQEXoyRz3UQeZVLCwpZ/RpnpFCShR90/RbRrR5uxtTsB5LeR0SdF1olkhcOTVJpwSZDokGKMkZTkAsLxDjdaopk2G6geXUKjkf2JKp1Ww3LUFdAlJQbmKmU1UH+TRAHmMSUnc1YwYKUYlOza2dbehqa0J1bjlu/tzfYebk8qgs5cC4KxTjWkS5VNHAtL1IKbdmlw+T0plSE31hdRiyejgK+0wPxK0dbWhp3ADvA9fgT/vzWLMlzG/aP4D7X96MRTPtqG4Ts2kcG+F0C3mfqqXAdtOVTXvsITQwMAB/qq1+4PLtO94rfFeACs57Qqjfa+/YbhWLU2MDcOkPuiXCY9dBBngGYTzS5hPmM3RG83mkMrbqyXhVQ7qP2SHJXUDYNSfGwwQJeJi7uAadW7q1/EACBw4cADzdz7ILrL799l5wF4Hzqhvwh8YDY6Lh6mdJMH6A4WYkXWHGuWAjLpdz3DquSHtOH9AurxycdNqlSuJ5NtOYTXmsRHBSWZq9CRstCc3+RCXXvhcaXerl015o1HjUkNBvOjiEK+dM0yIy7u0v4MhQEWVpD3dv2IeRkkDvqI+ftx1C1dVnI0hJ/O3zO7GnN4/KbAp3vuciLJo5CROzKfxpdy9ePzyMVRdOxdJZU8N2G0Z6eT8MA56hTLkXqrjZADmcV5YvaRm6zqNhwL2o7/35wMoXITErGp9EBO44iavj3DRfXegmMbC8M6kzj3OhZt/qqjMZGtCUBDaaGsvmra4qa3nIIO1MKIAPfOKZIDaS7kaeM4SEHtQr+qT4RZMgCzK2htGhqVZp4hfabj2QWPhZDKA5CFBrRBodOjVORzudBshjTOFC4q9iOD2gpqYmfPOzN6NUKiFblsUP73sYZ69aBs0vIPgFkJSwF3qYx+hpQefWVJ4qr5Ln8P2o9Jp8IbGvL49//1MX2l76LcT6B/HQz+5G6YPfBi5YHJd+4XAa7/vTephTqDKbwpDjGpOT6nCHRzblsQf5G7t24KwKgAMy/7duxAB3dLhiybfq7OkbACaMPYDIqZ4cuNkJ7MfDfIxb1WUcYa97enoxadp0mO9nvKounZs7gVnVWp5T4vpnULEQknc3+OYbO8M1f64+t1x+oJ975kmg4Sa7LawuuFunmtfh59+9Uxecu92RPFOWSnmseginjuE5wPSJjA5dfp05t3WMCi4ml6dZXf1MykO/Q7+Zv+Hgpd/ceptcnmH3+wllKadR6KZDQ5r6xqZDQxgunYkX9/dGKhLh+1rTeQTfPWsiNh0axHde3AMAeHpbN/7rpvmYUZnFwYEC7nz1bRwdKuETNTNx5f/L3nuHyVGd2cPnVug03T3Tk6UZZaE0QhJKCITISxBBQmCQTVwW+7cLrEm2F/CaZVl/ix+vjRN419gEgwFhG2xsY5IBgwlCWSghQAjlGWly6J4OVff7o7p7uvq+d+iyeqSWqPM8oJnbNbduha46973nPe/YCvg0BRqzotgKA6oDOhKGKZBMSK5xhnx6coTSGa9in6Ygt5tMGWJKSmFFYcW+ke7fZpWXOTe5UoX0qmlf0i4PsSKX8gR0IcEs++9AQlquTNLkeWPhoh4404lwPBnCm9OWSyhzyztnfhf6SRNYwb85R+4wQOxzyWrOPnN+tx9P7jQgt2+k+6YdP+QFTmy9OEpwPpRwNcgFwjQ5TE6584rkFgD+9tZbSCYHkvPeX/UuDNOu4ZEtoeSK8PPu//S21Bi4bbaWaaO2N7llSSTGASzt2r+9tA0r2hiM6eeBn3IdkskkuFeUTby/arnQ5tdVcgk2xemXWUyiWyQfuEzFgQPiMrPTJW8nBSpkkTHodCJdqX7Riw3ynMBhMp4DIgxIrpuiIkG6oDjbJ1dFze5g1n9OynXLQNvZKWSCXcKgvUINRpcwp8ZSLA2/EzcRlVmBBXL7AicZKZPTzxQJEZYRZ0C2vbjPoEclpR7WRJ+632ittawaIXUtgx6V/KTMo5J9c3DSQi9ucFu0GQBW7O6BwTm+/fqObJvJLQcODuDh1fvwfnMfmnsTuO+tnTjQl0BAU/D0hv24+rdbcOVvttgqHDb3JPCLVXvx561tMEE/D0wun5ApDPZiK+nt+5L2CHUmWCT2w5E0TOF+MXm6AmKOvCxD+sSJnRUsSkiKqshdKfKPk2rPRL4zR2HvX+b8m9839c7PJbF2fpBx/KA9sE3JRCD3J7nsE9noNHWPCvtMD1CQxhDjzvWSLjW4BLlAmMgrj5hzPamyjvPnnwRNH0jOmzHnBJjILEVY20iXUGxfHy605i9nZP6+kHKU1rYm9vck4VWBN7d34qWP2pBKWVnL7zf3oqU3J0LSdAY0XQd8YoneKbPmCW1Vfo18ORkmHQWKSSJd1MuWqRrKq2qF9pRJW7QVY2k/ZULwAgUgT6RzIaBYEguSOCsqWVLaqd0e08VS4INJEsj7zYlTCejjYZoOEMmVsnHLSpg7LQXuSMPvoFS7tc/Ct6f7ph1mUqboyZtppwilV1NI6QWVG+HRFNJ9Q6aplq2QJQ066ZDiR0GvSl4Hr0oXiUkatCWe5V9NVUAUo9mfdPQDYDZCbXBg3d5eGNwizhk8tGofGCz3jX/5w1b8al0Lvvu3nXhm4wGkTBOGyfGzFXtw5W824wdv70I0YWQPsyeewo7O/uwqBkWHTM4RTZh5Ug0rWEQR4bZoEhrh07yrqx8+TYxaiySeoz9lork3Qa4M52+fjYrmtNtdLHLaeYZQ5umB0yu4+fe+TDKS+WO5c0ZOe1piIfg3Z6K8+QE+ggjnJh0KPtXIlWfauhD2mYG06mC+/rxECbIrsSgQGfkBXW45Z7v0v7PmzMG9P38SH6yxNMhNM2bBTD8csnIfyRJK7pfLzFue4ZwLyxmZ/SYFD2Pr39yHboaUdydSeGjVPjz1vhWRndMQwrKlTThAZKj/9Fe/wY0rgHjeu6hx4jRg3WZbm6rI9IIm6alLvRBly8/1I0ZbGf7tnbZ2pxILJ9KLeMoEnT/t4mBBkUzAmSTDEyiD5TRr78upc0btyDFoyUtqs75T4vZUwY7B+paBiojXNY5CLBZDvuO17J6de+pZWN4mtst8nWVE09EE0yH5puAkam1C9PUFBnffkCUdUjaRrVFar0w9xzSF0fpmzknnDBlZNbl4PAFdpZMIJatvSZNOOkyatOUeFQ0LeVSSrGoqI0m5aQKvftphOzcPr96HL0ytxco93dn3ya6uOMZX+XH6uAg+aoviay9sQ1d/CjOHB3HvWeOgwDo3L6YdPv5hfAQmt6QqlAY5kTLhzdFkcG5VT/Xmyz0AtEeTQsIgdX8zDnTGDWgBe3tWP5u3T3BrQpbiHF7b9qbt76zOM+9w8UWd4RJ5zWIfkvYMiTU5F4I3JheloNlAWU6Az/43nPzd3pzROeePL8Nf6PwnkfcS14HcrjRwyCLIL774IiZOnIjx48fjO9/5jvD5jh07cMYZZ2DatGk49dRTsXv37kM1tIKQmT3l/p5B7r2euwwzefpMXP6VG9E0Y1b2s8GWP7JgmS+Afae5s898os45T38B8jVWPK2/MrG7qx8c1nZJw8w+zABg5Z4e7OtNkBGJqTNmIU44IlCRFJmtEwdtm+SExGpen+QlTPctlVI4cDhw5D7hoiiQ5TPKJAlObN5k15NLPKape6goTiWS7TWPD4FwRcH79IVFSzhZ304rAzp2e3Eg33Bun0j0wZ2ZV1GlAAAgAElEQVT1LTtOKonQkDzHrGQv2u+ZJLEGXY2QOodluiJZfZNLSWSWeGRBJcJlIuBRyRLhAV0lI+IJk2Mb4XTEAcGV4/9W7IUC4IHle7Lncs3eXqze2w2FMfx0+R58761d+Ol7e/Dvr3wCw7Qmn2v29uDGP3yIO17ahv09CcRTJox0cGh/byJ7j1CToHjKpO8Jw4QQt2ZANGl38Mhub4qJuBzWxCM3ap27CpzXdXrVmXDOABVB5tjTHSfuf57z/wGYGV12ngg5M6mni319Nvew1WbIH3ea3OdHoa2gnZm39cA46fbcfYpl5EsFhySCbBgGbrjhBrzyyitobGzEnDlzcOGFF2LKlCnZbb72ta/hqquuwtVXX43XXnsNd9xxBx5//PFDMbyCYJVvzF1yGPg5V8yee2MI15xZX4wt61djU9rdYs6cudntM7deZkYlq4xnZfRaP29atxrrVryLY+fMw/Fz5wpjThgcH7VG8c1X9qA7bmJOQwgPLJoAqkBaV39KUohD3LZMV9AjSZChlrc9qkLr1CRarJ27diF//iaLgFkRIyI5TEKS9re2A0xcmpaVOHZRupBFoWXtPbE4wERJhoyY9cXiEBIAi1AtUba9ZcNX+ETSMaEk+paSVVm1SGl0mpZHUAvqjnXPDkk5FXFOGrTFoVOLPyrpzpAQ56Rpkg4ZVMESE3TQQUaQdSYvqpI/dpWBLAAV9NDVSTkHGSn3qrQNHyBK6KJpx4t1++yWhW9s78LcxnI8u3nAwWXT/ih2dFqWcPe89ml2osAYMKm2DKZp4hsvfYqVu3tQW6bj3rPHYXyV9Qz/4EAUm1p6MacxjLBPQ1lehUKWPh/5skSFMcv6LT/YBOueyK8Mx7l1fexJh1ZkNp8fMMveAgaHUA49swqs5lV56YwlSZcNq3hMzvGwjFWrSD5NbslGaDOB/JZM9Ddn3OnthGq9PD2WfBlnNmgnq3SYPxHI/JtfUrs037SHhCCvWLEC48ePx9ixYwEAS5cuxXPPPWcjyJs3b8Z9990HADjttNOwePHiQzG0gpG5+WwNmR9zeKzMZibz2aqVK/FvX/4SkgnL3eKBx36NCWednOd/yNI3qTgKnl5CYRgoFZ3p68e/fBoTj51p+4to2ly+O62PWLmnB6v39KLcS5CEpCGNpuSjzKOShQFkZFX2MpMle73wp+eAmRcV1IdFKsQ+ZC/b7t4+IERrTl0c3UhJ5DKye6WrNwZ47Wuw0XgSlNVR0QiyA7IqJ8i0NtVJKXAnSZQmpyclKZNOSJJFc+UJmpLCQZLjKbioCuhJ8GDnilqmTpmcHCM1Dl1l0oIlZKSY07Z1mqrQCYDEyyfs1ch7xavSBNmvK6RkhDFGRsSpcxj0qmSJ8ICukGNsiyWxqzNui6K/s7MbXfEUVu3pwcrdPQCA/X1J/H7zAdwyfwS27I/iX//0IUwO+LR9+MkFx6CiKoDO/hR+tmIPWnoTWDqtDrMbQ9mxRBMGFMWiv9SEEeDojadAmHWgP2kn1JlI8faOmCDFiyZNbG+P5ZFeJnIJZMgnMRKelsvksPuBAFrmt5y+eYbc2/vI7iRvn7bPMcA9TA7b8Vj7TBdVybPKIlfGs4mOkn3mHafJOWJJA6rCbMmbhxuHhCDv2bMHI0aMyP7e2NiI9957z7bN9OnT8eyzz+Kmm27C7373O/T09KCtrQ1VVVVkny0tLQCA9vZ28vNio7OjF2q/lr2JY0kDzd5+MMbQ2hbNLl8xcLQoUfQmTHS096M/ZzbrVRle/8srSCYSME0TyQTwt9f/ggXTJ6K9I5q9MeKGiWazF2W6go6OGGLpEqP9KRPNnn609CXRETXwzhuv2fp68/XX8Mz+EFbti+HYWh/+eUYEiR4dG1r6bMfyx417sWBEnvAKwO797WjvFZfPmg+0Cm1+FWjp6Bba+2L9iCbFb3p3bx8ZYero6RPaAMBg4q2ZTBnoT4im+739YmlrAOiLiy8VAFIHChefAxDlnQFa8w4AIDyW45YvlNAek3hGyxBNUEvyBige1xsX73sA6Oun23uJ9pRhoj9BWJTFk+R3szvaL7QBQFeULibU1Se29yeSJHnq7ouRy6odvVGy744esT2RTCHaL46xL9aPOHEt2rp6hTarvUdoS6YMdPeJz6ao5Hwn+mOkm0or8YxMGRx72/JV5kAsnsDeduKZ2hdDZ34CCID2zi609orPvrZOse+ADmzfJz7He2P92HVALG3e2dWDFsLP/kBbO9r7xH12dojv4YDK0EGUTVeNBHY0i2PZs78Dzb3i/dnX1Ylfv99sa/vjB224fGIA33mjOXsf9adM/HHjPlx9bAQPrm3DS9ut672xpQ//d/ZwBDwq/razDw+us0T7X55RhaZQCm26iljSxLt7oqgt0zA+4gFiPehNGHney9aO8iPO/T0KDkSTUBWGmDbwDlf7NXREU/DnEORY0sReNYq29n4bcTZMDk2BQLJ1BejqYIgmTMTS+02ZHN6khqRXtfGDWNJEsxLFvvZ+mwY7YZho8fbjQEfctrLkURkiZi9a22LZYzJMDqVfBfr0dN9WP7GUiRalD/vbOxBVk9DT0W+Lk8TQ2pVANKdv0+Ro0WJobe23SVB0BWjh1j4zKxpJg8Of0rGiK45JVT6EiODdUKKurk76Wckk6X3ve9/DjTfeiEcffRQnn3wyGhoaoBLZ6RnkHtRgB1gsVPTqqAzo2S9jNGmiti4MhTFE4l1ZMT8HUFcXgjeWRJXZB3+OGbpHUzD/tDPwq4d/Zvkj6zpOOu0M1NXVoSLeCX/6Ro+nTFRX+lDm0VCR6s0uGUWTJmprQ0h0xQF/Eieecjp++8sHs335mk7Fy+mHwhs7+zBvdBUWD68EsN12LFXhALhHdKXwBEIwmPgiUgLlAHbZ2jRNg8cnRmFV3QOFiy8Kr8+PFO8U2hUJWVW8AUHbZYClLbDsD2iDWDIHgFR+gkR28K4DhYsCQThKcAnJdloMhliAgQlGyyA4vc+kJI0kRbQbHGSVRkXVSBmVSUxSAYArtLUcZZUHRSWX0xgx8RisnXpOcKZAIUpqa7oHJhOJluqhv/cq4QRigkH3+gHYn1kqsT8AKAsEwJlIwD1+8Tmb4hz+gNjOVA1ME49T93oRI4IAgWAIPUmRgJYFwwDspN/v0cG94j5V3QODcHDxl5UhERPfBeHyCvQbIrkdVlOF/HdEZZkHofIKADvs7eEg4AuK+wwGgbg44amqrETMaBHaI5FK7Oq27/ODjiSqKivx0vaBfSYMjg96VZw5NoIHfj+gk/71B9247/Q6VFREcOuzH2BHp7XvW05sxKXTIvAmTTy/tQ1v7ejCzOEhXNRUDdO03FAyThyawuDTFfRpcQR0JVv8JJ4yEfSpMH2GLdEvmjQQqQ4iYvTaCqUkTSvBPl+Ooatp3+icr1DK5IgEPWAMqEj5UZbuJ5o0EI74UWHGbH3HUybq6srRqfTZ5I8eTUFdbRl2JbuzZNUwOaqCOmqCXkSSPQikuUcsaaC6pgx7elOor6i0HU91TRgHeB9y76KUyVFXF8Zeo8dG+TWVoa4uiEiiKxsQTJkc5WU6/GYMtbUhhH30d+xw4JAQ5IaGBuzaNXAj7969Gw0NDbZthg8fjmeffRYA0Nvbi2eeeQYVFWKyymFDWk8kLF3kJ6lm/f/oRLqpMwbKO8+YewKmzphtfdlyyFyuxogRSzFJg+PD1iie66zCGd9ehvrdyzF11lx8c6OO3JSBH7+7G+dOECPwZTrtq9lvmKSRfmuUiEYNcVLOzJNOx6q8oIRTraR0yVvyknPh4mAgjUJL4Ehi4TAxkCryYXJ6jAmDzgRwXOBFYv9GaaqL0bf1PBC3LcY5lPUxmCtHocVjTE73I9c9AwlKUy5J0msnbOtSJm1DJ7OnG8xjuodY+aA0r0GvSiYdyhMd5Zpq2gmElpJQSBmil3ZrNAnD5HhrR1eWHAPAA+/twUVTa7CxpQ/fe8viLct3daM6oGPeqHLs7Y7jzpc/waed/Vg4oRJ3nDoKqmK9m9fu7UFf0sCs4SH0p8TqgoCkqErasUrN5xOw7s982UHcMLNVEjNgALrihqh5Tv8ryB0yctCcNsYGJBP2dgbD5OhLmrCXMGLY2xNHwrCP0eIpJmJJe8VEmdQ4YcqcoQ8vDglBnjNnDj766CNs374dDQ0NWLZsGZ588knbNq2traisrISiKLj33ntx7bXXHoqhFQ6WWQbJ3HwDF9SevJdu47QVG8dAeedMW/4XJiOU70sY0NR8kg10xVO45c8fp2eDCq6atQQTjq1FbO37tm2TBkeUWPbzaXJfTUrrRumSo7EYVi1/B1BG29pl2sIEUVIakL+0vKEKoN2+VCjzVHX6snXhohQgJ32Fk7vO7l6AEaW2qSxcFKnSocMCIhSRKVbfNImlcxuck+/CNdWOvaQdJB2CS47ToPM9eiUTFZqs0sl4gxFkKohCHY9fU6QlwmkLPZoIA7RtHXVmQx6VPIcBD+0Q4tUVbNpll9IkDEt//v237dHpB1ftxbyRYTy+rhmfpgn1nz9sx6IpNWgs9+HZjfvxUNo3+qRR5fj300bDqzLs6OjHE+ubEfJqWDqtFrGkKZBYAELJbyA3WX8ADGmZharAl0NKFcbQHk3akgiBAaYilOWGdV5TxoCTR0bfnDRMKLlJh7BWsKmqk7GkIRB4y3EkSZQlHziu3L4TKboI2+HGIVFDa5qG+++/H2effTYmT56MSy+9FE1NTbjrrrvwhz/8AQDw17/+FRMnTsSECRPQ0tKCb37zm4diaI5A1Wa3quKI/n+ZRLpcZMTv+X3kP3QzQvnehAEFwOufdOCN7Z0wuUXF/7DlgG2p5LG1zeRD26eYZKJF0qQrMMkeolQ06sCBA1i5/B2hvViexHKbqsL7cBrRc+HiUIK6O5OSinny0tk0oXBSKMWpQ4Y0kc5B9b5i9G2YtFuFU9s6yvZxMBcLSiPu9LnnhCArCpOPhbhZqOd1yuTkJENVGGntaZFYgjgTZdZVRpNsw7ScGcSx0NtrqkISYUCULymMSpO1ynVTwR9wulBVNglOGCPPlurOoLnHWkl94UP70ubzH7SCgWfJMQC8taMLB/oSMDnwby9tw8sfd+CZTQfwv+/tQSxlQGHAD97ehTMeWot/eW4rWvuS2UDb/r4E3tnZhc7+VHqCaR8bY9Z9pSkQItT9hujKAQ609MaFiQ3nEKPQjMFEWkOd13fCJEgNJJVmYQXyKOKcHpLteGIpU4ielwIOmQZ54cKFWLhwoa3tnnvuyf58ySWX4JJLLjlUw/m7YHBgYHE+k40Ku6NFZluTsI/h4s2eWUJR8zJjOTeRMDi++7edePljS2d23sQq/KIhjJ2doh4t5BEvpZKMkQ+ohGGii5ipyyzayOxvRSX1jM79TQuP6picLtwg84h14eJogdRhRaLZlU48HXx/ZFFox1KFYkSQiXZZSXrHzyAHzxrD5KQ1pSEh1E48s53K06QuIw6cSlImXQYpZXJEifNCWdx5NUUq06ACNLoqKyZFR6cpx4ugRyUDIAGdrpaYksg6DJOOWlOcr8yjkJFfj6aQs93ehIFN+63y3Rm89kkneuMpfHAgiue2WFruLemfr545DJ92xHD9Hz5ENGmiOqDjp4smIOhREU+ZeHrDfuzvTWBJUzUay32CrIUxkOPg6ciyzEJOCOSZXOAkgPU9oY4/aXAxUiz5/gzs2x6djqdEQl4KKB0/jSMAlKef1ZYjschqkGW+gHkN3Hpwa4pln9PSmwDArWp3/aksOQaA57e2ZZdFCkFFmU8qpSDbJQ9RMkqlaGQCk8weyekLUf7SLjwC5sLFUQ9ikgrIEwYpMiiPckr6cPDdzJQWPpg+ZO3FK0LigMRKipMkiUjfYH3LIuJOCpw49ox2SJyp9nwdb2ZbSjssk2lwTpfrTklWMKlbOehV0d0vEmGZvtmQRK1TkqIq1J0f9KhZ94ZcBHSVPC8cQCtRmTae4nhkzT5b29MbrKJd9y/fk52YtEaTeH6r5bjxy7XNeHj1Pvxpaxtuev5j9MRTUBWG93Z147JlG3HZsk1Yv683615hmBzr9/ViT3cc4HI7Veq7ydNjzCWssigvh9xzntZap6vT2nKumJR8H264BLlAMACwuSJwDFBjUWJhQkxcoPREHNaNt35fD5Yu24TLlm3CfW/vhmkC+3vF5DjD5OSSGIWq8jDpVZw06ZKrjNMPBmrJzh8KY+rsecT46C+Gk2QiwNnD3xVSuHBRGIohd3BEYjkdWZX27UAaIiOOxZJ5OUmidHo8xYggS/uWFFMqRlK1bNwyCQiVvyJLGJQRaupd5VMVdJPJiLSUwjDNQaLWtCQjHyGvRk6C/Dqd02NIqihy0JFygGPVHrv7yJvbO6EpDE+uH3Dx6IkbWLm7Bwo4fvD2LrT0JtHSm8CP390Nr2Z5TH/9xY9x0/Mf4erfbsF7u7qQSA989Z4e/OidXfjbp53pFW0q5EzrnhMpkwj6MWmRD2pCxgHs6Y7DK+ikQWtmDjNcguwI4gW37jv6gSRuy8Va63wgIaAv/cB7fmsbdnT2o4OYIfenTPQSX64EsZzh12kj+ZRBP9BkRJOsMMdUHNM0XWhPmnSpT3mkuPBkImt7N1rswkUxIVNvFCXiKl2VKlwPLOvblETGkqZJHpMTXbas3YlbxaDtDoopOU1OdiSxMJxFralzKLsOg5FyWdIl9b460Ee7KFEkMyXRThsSDXKK0xIL6itR4aP1zSanV2RTJsgxmtJ9igyxzKOSFRD7UyZ6EqZNvrGrKw7OOdbs7cWavb3pMXA8vHofkoaJbW0x3PbCx/jd5lZ86y/bsWpPdzZJ8/aXtuHSpzbiV+uabcYBe7vj+KTd8klOmlzUN4NDIcbNAVBv9qRhYn9voiTlFBRcguwA9vhxbpKevR2g7UwMDnT2J/Ht1z/FZcs24n/f25N9+O3ttj8EVu3pRmeMcI9ImOSMmlqaUhmjk/EkWdGyBy5Fvp1GJJzo/wbbXvYyd+HCxaGBbLlWXoLagX52CCVXsn06lYxQPtXyaG7hzz25DOLgV+WcRood655lchTiXBmS4zQkk48uIlLMYSWBUeOm3oU+jdYmGyYd5TWICUlAV9AuSTqk9pmSrPZm5JT5YAQtL/OoJJcIemgLPYMDK3fbi83s6rJyln787m5b+89X7oPJOX6z8QCW7+rG/r4kfrFqH7Z3RJEyOf68tQ1X/GYzrn32AzywfLflsgHrWB9dsw/PbNwPw6BdXXimNnUeUpwL0eNShkuQCwQDE2Z4HGK5x8zNEkvSS0WvfNSBv2zrQEtvEk9v2I/1+3rJB5HKGPoIv8nueJLUO61Zv0Fok0U7ZAklsheFkweo0xKyrkWbCxdHB6jJq1NXDieSBFk/xdBOy9qlORYOiDAwmEuP7Jla2PgAuSWe7DkuK9ftRNbh5FylTNDFcBy8OwyTI0G1S6K5hknrng2TdsggPb05nHlGc5Mkwl5VIRMgKQ1uyKPSOUcS5xBZZJ1zYH2zvZDNBwesQjC58g0A+P3mVhimZRCQuRy/29yKvoQBzjlu+/NHeHRNM36yfA9+vmpv9u+efr8FV/5mM/7r9U/RGzdyuJCBHR39SBgmAppKRKFLFyVTSe/IQO4XiWU1xbZiHtxKoosmTWw9EMWLH7VjYnUAi6dUo9yr4oH39th6fGxtM8ZWihWeGKOXZzr7DfQRuuL1G7cASpOtTTaDL4ZGj4OOJMmiHU4iQJkxunDh4uiELApdDFlHMfTNsn5kGmSnfUuj7bJgBEF6nUgsBpNBUChGomMx9M2A83NFLe2nTDrvJkr07dMUCZmWJQDS7WW6WrArR5lHIbW8lQGddAKxLPRost5LBNaoy2xVyRPJKgPtQNEeS6G/L4Ft7QP2d3/8oA03nTgCn7TH8L8rLLK8qyuO4WEvrpheh5beBL76p4/Q0pvA+Co/fnTeMemoOMdrn1iBwnOOqRRqRpQK3AhygRAdVHg6gmwvCMIZQ2s0ia5YCre98DFe+qgdP353N174sJ2cOSVNTmqKZYkMvfEU+TAaccxksQ+Jvixl0g/GYjhNFCtBxoULF58/yKzLnTyDnFirDdY3FYl2+nwrhl7bKVmVOZiQkeXBZBAHeZyylUqnTkdOEwNlFRCp46EiuYYp0xRzicRCTpzJ6oUSyQSZuMdlzh60hZ4sgkzpmIMelZRHhLx0pV2NAS19VIEXhodW2V05Hl/bDFVheHTNvrQzF/BxWwx/3W6Vbn96w3781+s78ODKvbj+Dx+iQlIB8XDDJciFgsFWRYZxayaYcW14dVsHVu3uBrj1hX58XbNt1nbfWzvFPgGUezXyhjYkuiZqW5+mYPiosUK77EEkM/cuXvlXJxo9N1LswoWLvw/Uc8ypjllO+ugCGsWwkHMacXXmPlJ4dF6edFi4ztzaZ+HRdkNilef0XMmIsIw40/eKM9kJ5QOtwMotoranEu0p21SLINOJfpSUIuBQU53vgQxYVnmcOFdeSQQ9aYJ0xQLoREpNYUJRlWc2WnZ2/7diQJrR3JvAun12+UepwBFB3rt3L774xS9i6tSpuPDCC7Fp06ahGlfJwYogc1tDLGngk44YvvWX7fiv1z/F117cht9sbEHK5Pi4LWb7exkPlNWrD2iMbKcTCpxFHhTGHD2gDrS2k+0dXd1CmzT72Y0Uu3Dh4hBAJs8ayghyMQiyJYOgySB1SMVIRpQRzWIkUTol/MWITg+m4y70OA0OskKj7FwxJq8i2UVEeVujlH+zXDIhixRLEwMl5brzEfJoZFnypMFJCz2vxsjtARRsPRuSRIqpyHwpwBFBvuGGG3D++efj2WefxcKFC3HZZZcN1bhKDoxZOabd/Sl0xJJW9ReDY1Nzn23288jqZulMk9IehSQEWWZL0588+IQ5qY5O8oBa//56sn37jh0FjyUusXNz4cKFi0MB2VqVrCR9v6QohiO5QxHkHo512TKJhQOiWSyLPycyiGLJUZxElotxrgZ7zyaIdkeJfhKZxmDEWWZ/lw/Lv5koZGJIIuWMZa1o80H7OosIeVVSax3y0gWPDjcGJchLlizBrl27sr93dHRg8eLFmDBhApYsWYKWlpZB/vrogkdlWL27G5c8tREXPbERy97fj3jKRHOPWPY5ZdD2LtQsU1fospsykk0t+3E48750+lDkik63q2KZ26RBe5DSBU1duHDhojRBcaek4axintNKoVRE07m+WUb4D14SV4wqik4nGU7sAwcj5WTgRposWngfssR0mZ2d7FxRx2lINMiDEWeqf5l/MxUpliUdWpyEvkZUAiSFsFclc65KsYoe8BkE+bbbbsOll16K73znO0ilUrj++usxefJknHTSSWhqasLtt99+qMZZErj3jZ3ZaMMv1zajM5YiLddkiXdkpFiyVGKVfS5cllCMpA/Zg5h5RJcNAIDuFZpcezYXLlwcrXAchS6CrKNYEWR5cZKDj1o7Id9OAzRkNJc7s4qTv/OcrR44IfwJBxaHMqeSlMmldQgozTIVhPPrtF45ZdLE2aPQ8s6UydFDEGRqZTygK+S5CnpUKfkuRQxKkOfPn4+33noLmqbhxBNPRE1NDdavX4/77rsPGzZswG233XaoxnnYwYmSqft64qTlWn7xEMCKQNP150EX85B86WR1z2VlXp08LGSVpmpHigmAAOAvrxTa3Jw7Fy5cuLAge/FLI7QEMSuGvlm2T+tdcPB9y7yXZcluxXBRcu4lTezToV7bkWf0EFriJSXtpMWbJAgni06boBMDDYl8g3rnh7x00iEYIxMXS5Ugf6a3hqqq+NrXvoalS5fipptugs/nw/e//33U19cfivGVDCi5g2ECUeKBxgg5QdCjSpdE5EtC4jiky1DEOJwm78kSM6B5ABA3NVcgj6m4cOHChQsKsqcmFf11rG92EM02TE4SHKf7lCWpUUQ4aXAyGdGplES2T+roZefESeRfSr4lgSgnxzMYQaaimE5IecrkSBCRcgV0yevB9M1dxPbUcZbpdKR4MC/pUsSgEeRNmzbhggsuwNSpU3Hbbbfhhz/8Ib70pS/hnHPOwY9+9CMytH40YsWKFXjy8ceE9njKxM69og6bFqFr0mUL6az0IB8i8qWfg1/2A+TRbBcuXLhwURxIo9DF8EGWvGeoXJdB9ylx5UgQ8o1ikXJHlQ6LZInnaEV2CCPfTnyqLVcOZ3ptKuBmEWSxf8qVg4M2GRgsGbEUMShBXrp0Kc455xw888wzWLBgAf75n/8Z5513HpYvX44DBw5g3rx5h2qchw0rVqzAokWL8PtnnxE+27p5I95dvlxop8zHNUV28zrTNclkEPQXGuTDQtqHg2U/Fy5cuHBx+CDjFHJXDgdJekUq101FLp3IGgD5+8pJ3k0xHD+cEmSnkW8nfTvlB9LjcViWnAquyUpeO20vRQwqsWhubsY111yDsrIy1NfX45FHHgEA+Hw+fPvb38aVV155SAZ5OPHWW28hkUiA+0LCZ1s3vw/TExDaqRlS0nBGhB3b78i+dEQ026n1kFvMw4ULFy6ObMiihRQ3ce4ZXbgDhdNS4DLpH+n64PB4nHpGS8kqFbUuArFPmbT/k9NEe9LvWSLjNCSr2pYribg9RcoNk5OWcCmJHvqIJMjf+MY3MGfOHBx33HHYsGEDvvnNb9o+nzhx4pAOrhRw0kknwePxoL+sQtA2jZk8Daxrj9BOmowTSX5AZplD3D7p8ItOWuEYprPkAZkG2YULFy5cHHWQ8ZJiJQZS7ysnq6CAc6JJHZN8n0XQIEsCUU7es4PJIKQEmSLlMsJPFQSRcA+ZdjxhcFC9O6qiaHLEJaXNSxGDEuSvf/3ruPLKK7Fz506MHz8elZWia8HRjrlz5+K5557Dvz2/FWvzPmscNwnhHRq68lYMyBvGkMwQDXpWVoxyqU71WLIHkQsXg9X+XW0AACAASURBVMGqMunChYujHVRkEXBGnJ1EbZ22ywiyVALi4HgGi/KSZawdkFVArk2mIHXlcCTBLI5PtdNzRVkeH5ERZACor6//3DlW5GPu3LkYsSOItVtabe1J00TMFJ0cZHIHeYUfKkni4BMWDE7feNKCIGSrCxeDI+hVCy5v6sKFi6MPTiLRxYhCy7ZPSRIAi+H4kZQEnKS2dQ6IMCDXJlNw4rEsa5fJOGXJe04Jsiw6rRxBBNlRqenPM6ia6tJZnPSGcWC5JrkZD7R3kO2yyHJnT6/Q5hbzcFFMBD2lWSbUhQsXpQenUWinbhAUWZX14dSVoxiE0ukqcDFKgTuJ8srOofMqiuK20shyiTqiuQS5QFCm1ypjBS/nDLbk4OQL3d7ZTbbLZquxJFViktzUhYu/Cy5BduHCxcFC9l5ylHfjMOAkl1gU7m7h1DZVGhGXOEoUo6iKU4kFRcqdRvIpr2tZ36Wa/vSZEgsXFsiLKpn1OLkZZRmjMsLrCYaBPrFddvNCE8tBu3BRTLgE2YULF0MFWTxHWqXPgQa5X0qQC/eBdqL7HbRd4gbhRErhxKFq0BoMDki5U1eOo05icdFFF+H3v/89kknRv+7zAkp7VJSbkUus2CRTKubxk+2yiLPhLhK4GGKUEkEupbG4cOHi0ELmSOrEp9navvDgV7GSDp3wBqdJ/FJXDoJ7FCNJT5b/NBgpL0UUxJ4WLFiAe+65B/X19fiXf/kXvPPOO0M9rpIDaePiYOZocnopRiqxcCjwd3XFLg4Xgt7SIaUuQXbhwkWhSEiImaw4FvWedfqudioZcSKxKEbVQSe5VYOPpfC+j2iCfOutt2LNmjV48803UVFRgS9+8Ys45phjcM8992Dbtm1DPcaSQHFumIOfIbpEuLjwaW6E/WBRVkKkdCjJukatDbpw4eKogywSTb2Xnb6rhzRJz6HNWzEqA8rb6XLVMqlpKcIRO2hqasK9996LX/3qVwgEAvjP//xPzJw5E2eeeSbWr18/VGMsCZASCwdlKgFn5uNOy3G6+PvgRhwPHqV0Dsv0oRtLKU0EXLhwcehBvfGdWMU5bS9WNNepDMJJZUA5KS88AfCIjiADwNatW/Gtb30L48aNw1e+8hVcdtll+PTTT9HS0oKFCxdi8eLFQznOww4qIS8mWYZxogNy6qHoFvMoLkqJ3B2pKKVzOJQR5FI6znzobnTbhYuSgoz0FaOYh3SVWhJYcyL3kHksOy3X7TR5rxRREEGePXs25s+fj/b2djz55JPYsmUL7rzzTowYMQI+nw+33nrrUI/zsIOWQRz8zNGppUpp3kZHLtyo4MGjlIjjUI6llI4zH15XKuTCxREB2Tucspxzyg9kemgn5b2dlMgedHsHEfFSJcgF2bzdfvvtuPDCC+HxeKTbbN++vWiDKkUUQyjvxLfRlVIcGpQy6TlSUCpJeiobWk15Kd8rPk1Bb8KtZujCxdEEp64cTqO8NEGWJCg6lljQfIc6pCNagxwOh/Hpp5/a2rZu3YpXXnllKMZUkqBcLLZu/YDcVjpbI9qTBl07XvbFcFFchEqE3IUl4zh5dLnQFtAVzBweFNrrgh6yn6FefS8V4ujVFOjq0B1sqUwEKLgRZBcuPj+QFlWR6aEdRZAdrox/3iUWN9xwA0KhkK0tFArhhhtuGJJBlSIo0fq2T+iouRNNjrTAh4tDgkNN7uqC9CrMRVNqhLbRER+OrReJ8BnjIij3ios/FzfVwKOKX+nFk8W+BxuLU3iU0iBnXlUZUi3uUCYAHix8mqtBduHCBQ1KpgFIfJ2LUOAEcLZifkQT5P3792PYsGG2tmHDhqG5uXlIBlWKIC+gRhMMJzeM7MZ1cWgwlBpkKpi5aHI1ud0JI8VI8agKH2ktNrLCB5Von1QTINvPmVAptCkM+MJUmjhPJ0g5AMgomL9EIsgejZEThGKhlCPIPq10x+bChYvSBEU/iuGxLNv+SNMgF/Q2GTt2LF577TVb21//+leMGTNmSAZViiDLSkuq2jm1YHFx+DBUEeQR5V5MqA4I7fNGhIW2iF8nI58Rn0YSZFl7pV9DyhTvsZoyXWgbE/Gjtkyc4M0cHsQx1eJ9PakmQB7P8JAHEX9pkDOPOsQSixKZCFDwuhFkFy5cDCGcRKFl7TILuVIlyAUl6d19991YsmQJ/umf/gnjxo3Dtm3b8Mgjj+CRRx4Z6vGVBAyT1glX1jeindjelU0cOShGVDDi09DRn7K1nTuhCst3dQnbVgZEshr0qjQR9ksIsl8nI8URv47uuJhgQZLpAN33uEo/VCa2/8O4CF77pFNov7iphuzn2LoybGjpE9qHEl5NGdJiHqVMkN2CNy5cuDgckHFbGUGmti9VglzQU3XRokV4+eWX0dfXh+effx59fX146aWXsGjRoqEeX0lANnPylUfIdpkPsovSw8HqSgO6glPHVgjtw0Ie8kFAJdGFPCo0IvJZ4ddJshrxa0gQ91hAVwQ7QpWBJNOVg5BsimTWh7yg1AtzGsNQFAXDggNzbZ+mYOm0OmFbBuBcQu5h7begufqg8KrKkEksVFbaiXC6qkglMC5cuHBRCjA4bXNXqgS54LfS3LlzMXfu3KEcS8kiUQTzbRelCZ+mQGHyWXAuqEjxvBFhMrIY8WvoI2y3FILwhmQRZJ9GPjgifg3d8ZTQzoi+w15nMo2IXyPv34hfI8l6VUAHA3D5lAo8tMGKMN9+8kiU+8RHy+TaAMZGRPnG5JoAasp0vPmpPeI+LORBTyyO3lRh1M+rsSGTWHi1oU0APFhoCoOmMDenwYULF0ccStXmrSCCnEgk8Oijj2LdunXo7e21ffbYY48NycBKCZRmBpDboZTmpXZBwaOxgsgxACycWIUn1rfY2mrKPBICqhfsSxvyaqQVW8Sv4UBfUmgPezX0FNi3c/mGhlZinxG/Rk4UA7qCWMrEjDo/nj22MUvSP2qLCtsOD3nJqPXxI8LY0dkvtM+v6Mdv93UAwSpb+1njI3j54w5h+zER/5CRWI+qwDOE+uaDhaYwqC5BduHCxRGIUo0gF7RmePXVV+OHP/whQqEQxo0bZ/vv8wCpOF1SatrFkQNvgUvydUEdU+vKhHYZ0azwa+gl9MAUQl6VXB6XRYpVhaGnwL7DXo2MWpdLI8i6hKzT+mbGLGIGZo9gy5IIqfbqAC3riO/YCBji8S+S2NZdNKWGJODHVNHJtE5gRadLV2KhMjak+msXLly4GCqUKkEuKIL84osvYvv27aioELWWnwfIJBZuMY8jHx5CVzqnIYSVe3psbTUBOlJc4aOjvCGvSmrROeGGEvKopDyiwq+js18kiAAKJsiyQihhrybRIGuIEjaFPk2R7lNTmEDwZeTbSfvMaVPxx+VipLg+JLpvjKrwobHci96E/XxNrSvDxOoAPmqL2dpHlHvh1RR8nNfuVzlihjgWv64OqUPGwSIjsXDhwoWLIw2lSpALComMHDkS8Xh8qMdSspBJLFwc+QhoCppq7ZHha2YNE7arGESSQMkdqKhtmUcl5RwhrwaF6LtMF8dWmU5mO3m0fbJK2cdlxkch5FVBFf2s8GnokpBymWSEOi+yqLpMSkJtf/zMGfCExaQ+SkZRnXYHmVgdwFnjreTZuqAHd54yiuz73AlVpGTi0mnitQeA44YFS1qDrKsuQXbhwsWRiVLVIBdEkK+66iosWrQITz31FF577TXbf58HuLq+oxONYS9qynRcNq0WFT4NKgNuOL4BYyp8wrYRPx1xrfDr6CVkEBRCHhUcwEmj7EVB5o8qh1dlOH/SgNZ28eRqMMbQVBfAcemy0rrKcMcpowAAi6ZUZ5MDfZqCG+Y1AACWTqu19f2l6XVk1LqmzINuggj/5qGfYk/LAXL8+bP8DGGkzgvtnCGPWlOJgX5dQcK0b68wWXTamggwxnDnqaPxp6umYdllUzA87CWJ7YhyL9nPKWPoVbLLjq0jx54/UcngUNuuqWkNsgsXLlwcaSjVCHJBEov7778fAHDnnXfa2hlj+OSTT4o/qhKDTGLh4sjGeROrAMYwsyGEZUuboDLLLosiaxU+TVrMQyY9uHJGHR5fN5DUd8UMy/rsujnDsaGlD939KVx5XD3qgh7EUgYeuHACJtXsRlBXcXKaqClMwf9eOAErd/egpsyTlRc0hD345SWTsG5fL6bUlmFYyAsAuOq4Yfi4LYYdnf24uKkGI8p9SBomFtQCf9tvjYPt3YK2bSYaxjbZB2yaeOjH3wPOvRWYuOAzz19GvqEyQjpCkPKIXyfPVaWknZKdhCTSkMq8SHmus4iMlFMEmSqqUuZRUR/ywOQmfJqS9fecNyKMY+vK8Oandn/oURU+NIQ9eGdnt629wqfB5JzUch8sXImFCxcujlQc0QR5+/btQz2OkoYrsTjyMTbiwycddqeEiTUBmCaHwpgt4ifTGlNEq9ynYXSlH3/bMWBR5k0v3S+eUo3XPunEnu44jq0rw1nHVIJzjpnDQ3j8C5OhKwz+tA+zplgevqePjSCQ483MAHg1FU11ZTbZBgPDsLAPVQG7Hrc6oOO/zxpr8wM2OTCj7T289dcN4KoH2PgS1tVfj4uajsPFTTV4ZtMBKNwEf+H7ME0DbM1zNoJ83WxLdtAQ9mJP94DU6th0SWrqvFBTyohfwwcHRHLoHUTfnI+wxJWjwi8S2wzo66kLntEAXQwk410d8Gj491NH4an396M2qOPW+SPwCuGmsWBUOXZ2ia4cS5pq8IctrQDsx3rCiDDe3dUtbK+rjBwjBZcgu3Dh4khFqRLk0k3LLiG4EosjG1NqAxhHOBlU+DRwxsDytLgU4Qv7NMSI5DWvpuDcYyptBPs/TrdKsA8L+/DoJZPx66VN+NH5x2RJa0Ym4M8hwh6VkRFTAFAUMSCrEIlxAABG659PnH8C9E0vQ1nzO3h4EjPmngCA4z/OGI0HF0/EPdMBz46VUFQVesdOXNDAMSzkwSljKrBocjUAS36S3T8D/t+c4TA5h64owthVJj5aKnwauuP0akxnoTIVryqdqMj6kTlqUNpxOmptXScGy5LugQsn4D9OH4OQxGO6Jughxzitvoxs/8KxtUIbAFw8hXbraAh7hTaLIJObu3DhwkVJo1Q1yAVFkLu7u3H33XfjjTfeQGtrq205defOnQXt6MUXX8RNN90EwzBw3XXX4fbbb7d9vnPnTlx99dXo7OyEYRj4zne+g4ULFzo4lKGDK7E4chDWObqTdhIypyGM/X0JYduIX7PIcQGBt6BHRbmPdoSoLtPxiyUT8ddPOjGhOoC5jVbCHIOlRa0NDkR5OZAuuGHfqa4q6QQ2eztjFtnMf3xoCgPFp1n6b3Jhco7Zc+bi3p8/gQ/WrMCMuSegacYsRJMGNIVhVIUPE+bOwn0PL8O6Fe9i6ux5mHf8HMTybAwXjKnA3WeMxsaWPpw2JoLhYS8Mk5MV9vw6Q33Qg+Ze67yPifigqwrCXprFFWyJ56EfWZkoL7XaEye+v35dQU+BpDzstfapq/lTKWd2dhG/TurBRxGa9+FhDybVBshtZzeE8Mwmu05cVeiJnZMotAsXLlwcDhzREeTrr78ea9aswV133YX29nb85Cc/wciRI3HLLbcUtBPDMHDDDTfghRdewObNm/HUU09h8+bNtm2+/e1v49JLL8XatWuxbNkyXH/99c6PZojgSiyODCgMOH9KvdAuc3KwiA8D+Gcz5JBXxeiIHxOqByLR16bdLhSFYUzEjytm1GfJcQb5ZJVza/t8Uk5ZpVl/z6AQGl+RYlvbUJFli5QDk6fPwuVfuRFNM2Zle9GUgUdA04yBz6mxKAw4bWwEN85rRFPaE5qDJuUKY7j7jDGoC3rQGPbi5hNHAABOGlWBgD6wzy+n5Ru5CYoAcDpRvhuQ29bJ2gHaEo+xwr2kQ14VScNE0KsJkXwnRVgq/bRendK210kK0Bw3LEi2+zVaepKJ/gv9B0WrPBcuXLg4HDiiCfLLL7+MZ555BosWLYKqqli0aBGefvppPP744wXtZMWKFRg/fjzGjh0Lj8eDpUuX4rnnnrNtwxhDd7elw+vq6sLw4cMdHkrx0R1P4Y1POvDnD9sO91Bc5IEiFVaymvjir5CUfVYVZlmdFRBBrinzwOQc9541Fjef2Ij/OnMMZmIPnnjwfmxet5pcmmciDwZgEU2Ww7RSJodfy0gsRCKsMLE6IyOizRzWF1qQWHBAURRhe7B0gh3VNxWdlkhAGFPI4zx1bAUevXgS7pgQw8Y/PopN61bD51Hx2Bem4PxJVbj++AZcNs1KXFw8uTqbaBf2qvjyHOv7f9EUO8H70vQ6cgyRtAaZmkx0xOhIcSJv4iuT8Ia9GpIGz0apc0EnAMr1zZQ3ttNKh06i1meOE23yAOByyXk8bliQbHfVzS5cuBgqGJyuEXC4UZDEwjRNlJdb1lTBYBBdXV0YNmwYPv7444J2smfPHowYMSL7e2NjI9577z3bNnfffTfOOuss/OQnP0FfXx/+8pe/FHoMQ4ZtbTEs+tWGwz0MFwTOHB/BCx+229pqJBXZKnya1MNXAT1LPH1UGV7b0QcAmF4fRF3Qg6RhIhLQcd7EKny4YS1u/aelSCaS0D067n/saRwzdaatDyuyaie9WYlFfsRVoUkmS+uV858djBGRYg5oivU3udtzliZ/+fyYc2uSUEB0Ovd4crfnnEuJpcqAzetX486vXJ49T/f+/Amcc8pJuPnEEbZrVRfy4qElk/BhawwTqv1ZwnvpsXXYtL8POzr6cfHUWoyttCL4J48ux5ufWomRYyI+jCz3Zs9BJqqdAeVKQiEjpchHyKuCM+u6FSKxiEjut83r1yD/bgt6aE11xK9DIyYkEb+OtihVClxPS3fsqA+KyYt+XbGthGTQGPbihJHlWLuv19ZeW6ZjbKUfy/MSCf26dc9ShWVcuHDhwglKcaG+III8ffp0vPHGGzjjjDOwYMECXH/99QgGg5gwYULRBvLUU0/hmmuuwW233YZ3330XV155JTZu3JiOfIloabHss9rb28nPi4HuTjET3cWhhRhTtSjGifU6XvjQ3u5jBmLRPrGPeBQdfWKhm7b2dsQNEwoglBG+bKyGEeEKmBw4a0wou23Yo6A3wfHOG68hmUjANE0kE8Bbr7+KyuGjbX34NQaD2yOV/SkTrehFR0cC0fQ+kyaHJ6FBiWro6IghlpNtxTlHWVJHW2cC3px2lQE+jaEvOdC3YXKo/So6+k2bi0QsZaJVjaGjvd/Wd3/KRCuLoq0jDn9uhhfnSHpV9MQNW9TYqzKkTG57kCUNDl9SR093j805I5Y00YYo3nvzddt5eu/N1zGnaRJae5O2VQAtHfkdX8ZgxnqQKXDnA3DP/Ors9WlLf9//37EhBBQDSQNYMimM9g7LTaI7bsCIKTayeOZIL97OSZW4YLx1PQM6QzTn/I0Iadn+c6EaCXR0dCBo6GjrTtoSMls7e4Xtoz2d5P32zhuvAWVn2trKdIauLtEJw8uT6OsT+9aMfiTiop6eJfoQT4rEORkV3THKNIbenh6hfURIRbw/KrTPG+5Ha1SMwv/D6CD+tqsP+Xx9cpUXW9o+v4WlXLhw4RwH2tqxX40hNohcbihQV0evpgEFEuSf//zn2ajRj370I9xxxx3o7OzEY489VtAAGhoasGvXruzvu3fvRkNDg22bhx56CC+++CIA4IQTTkB/fz9aW1tRW0tneOce1GAHeDDoUqMAdgxJ3y4Kw4xhQSGiFfJpGFlTCaDF1j4sEkRFyAvALokZXV+FqNEq9F1VWZlNwPTkEWSFAZeNLLdZrkWTBoaFPNjfm8SJp5yO3/7yQSSTSei6jgWnnYmqSvtydkBXYYKjPyfCFk0aqKstQweiWcKbMEzUVvhQF/QgkuhGIJcgA6iP+NDB+myuF5rK4FUV+HIilUnDRG25D2o0acsK7ksaqK8LocXsgV8b6KM/ZaK+Poj9Zg8CefZm5T4Neixpk2v4dQVJk9s0+fGUibpKH/b2JmzHH02aqK8NYO7Jp+G5X/0ie57mnXw66mqrEdP7bedcT5Pv/Ei5rjJEk6YgqfHqCr5aWWXTMxsmR5nJBcuzE8Mmzm5J4aWP2jGh2o+r5oxEVZkHN57A8d03B5jzzSeNRlWlH/nf+eNGViESCaC+0o8+NWa7J1J7RFJaXVWFuLlfaD/xlNPxxCp7W4Xfg9qqKgD2ZOfhlSFUlvuQf4+PqomgLdkDoMvWPqa+Cv2GSO5riL4rAh5URcoB7LO115UHEA76AdgJ+5iaMKItfQDs5Pnk8TVYvjeGfNu6K2Y24JuviP74502swvNbRblaxK9JZTAuXLj4fCBcXoHa2jDCPrll56FGQQR57Nix2Z9ra2vx0EMPOdrJnDlz8NFHH2H79u1oaGjAsmXL8OSTT9q2GTlyJF599VVcc8012LJlC/r7+1FTQ9scHSqUcmnZzwvOn1QlEmTJsnSFTyPLJ4e8KlISJxJKV8s5l157XVUBJNE0Y8D1YcbcEzBt5mxE85fVGcDyh8NpGzaFpWUThNxBpSQWyEgvePYYeLYfcVvrP0a25+coMpZjLcdytxct8ayxi+MDrHFNnj7bdp7GTz0uLdMQuiGhSpIXVUIHYnAOn6YgaZi2DzXVShj8t5NHZscLAOccU4mOaBKb9vfh9LGRrBXg9ccPx0/f2wsAmFwTwPT6IGIp07rn8sZNyRoAoCchEr6mGbOAVWttbfKkQ7kGOS7RN1O2dRRkXtIRnzPdc1VAJ+4GkPKN6oCOOY0hgSDXBXWcMLIcv99sn8CWeVRU+jXs6nIj0S5cfB5Qiol6BRFkAHj44Yfx1FNPYe/evRg+fDiWLl2Ka6+9Vpq4Y9uJpuH+++/H2WefDcMwcO2116KpqQl33XUXZs+ejQsvvBDf//738eUvfxk/+MEPwBjDo48+WlDfQwlddQnyoYLKgOFhr/BCnFgtWl0FZS94v4Z2IhKlMIZ/mjPcFi285cTG7H7zv5cGt+QESYGaMejKAEdqmjELTTNmgTClSG8N8PxEugwRzmm2kUWCrDLGCBLLLBKb8yecQz4WQrOc6Z8iqwpEacuAx7JdU60w2sPZukQ8e54AK1ouHR+RYMcg2tkZJodXU4TJhGFyBPwqOmP2yZCS7jt/YuLRFCydXieQ3EVTrAqEvQkDJ4+uyB6bQlyHBaPL8X8r9mYf7l9Ml/o+vrHcltw7vZ5Ofgt5VTI5RV4QRUMfQb4ZYwVb5QU9chs6yku50q+Tk7qIXxcnhRBXYwDLtk4n5HKzG8LwEtufN7EKG1tEiclZ4yN4mSjOEvaqQ1Kh0IULF4cGpeiFXBBB/sY3voHnnnsON998M0aNGoUdO3bge9/7HrZu3Yrvfve7Be1o4cKFgq/xPffck/15ypQpePvttx0MfehBPehdDA0WjK5ARywlEGSqQhqL90mT8XZKdOMnjSrH2yPL8e6uLsxuCOEfjrHkAApjQtTZMDm8CkNSoIg8G7XNhcIYlPxobtpyjQvRPpqoZggIlapH+iPDIrEmt7svKIwJJFa2z0yuIBUsZ0ShDwbKto5LSLk1DtmximfFGkd+nJ9KGBwoTpLXDmtiQ0XbpUmHeW2cc4S8KqYPC9qkFNbxQPiLkFfH984dh8fXtqCx3IvLZ1g2g0un1+LVT9oRT1n3zE3pCdnCiVX4c04U9fyJ1WTkpNynkT7NAV2VJpzmO2TIpvdhSbGViF8jPd8rfBoMCYnvIxL0nJDvqoBOvhgnVgfwwQExn+D8SdUkQV46rQ4PrtwrtE+o8uPDjKDdhQsXJYsjNoL86KOPYs2aNWhsbMy2nX/++Zg5c2bBBPlIhBtBHhr4eQIxZrdjm90QElwpAKBMF9+q8a5W8mVb4dey5Y8zqA5YBDvs1fDfZ4+1XA5yiKyiMHBCfUFfewZVFYt2WMU88qK5sAisIXTDs1HhXFARuky7ReTyIqtMJLED0Vxi5JT0QhL5ZYxZx5OjscgQfjOP8HOI/VqdSIi9zNeZkqNkx23vw0y7dYiTBkZOaq2JAH2cVN9WQiC9vWDDxzhOGxfBsXVBG+kcWe7DoxdPxvJd3ZheH8TYSj9SJsc/zqrHuzs60dFv4NQxFZg5PIiEwW3lpuuCHoyq8GFbO03sCi6qMohnNOWQUenX0dJLF9Sh/Jupe7ZMV6SrOzJS3kms+shkHbIqgpQ9XU2ZjtPHRQSCHPaqOKYqgNV77YmKmmLd95SExYULF0OLUowgFxQiDYVCCIVCQls4HJb8xdGBfGcDFwePgK5gbp0YFa7062RkjCJww2vp4gcVPg2TawKYmi5i4VEZbk/rTnO7ye2Tin6aWeuyfEYp8SSGKNWwCoKQwxQil7ZYr0RiIfYhEk15NDdf6JE/DiI6rdjHlSH8Qu8cZKSYcU4SqEwUmjqH+ccpK3wCAKqikJFvjah2Rw07u8+8tkxRFRH0uWVgZKVDxoCxlX5cNKUma02XNDlOG1uJH55Zj2e+NBX/cfpoSz4D4K7Tx2BuYwgzhgVx12mjoSoMjWGPTc97xQwrGXnhRHtRlQWjyqkBS4uBhAfVN4uzxaBHLbjqYMhLE+FKP23BOBhxppApKZ6LCol2emJ1gJwwnT4uQk4ezjmmEiHC6m9cpVjp0IULF8VF6kj1Qb755puxZMkS3H777WhsbMSuXbvwP//zP7jlllvwyScD2cq5yXxHAzwlHkFWmKifLSWoTPQ2PH5EGI1hL7Dfnp1f7tfQS2grKYwcXk+SoKBHRcLg+O7Z47C9ox/VZbqNJOR7+AKZiKvdPSFLkvLJapb0iVFRMpordpElgnYNstxLeEACQZBYJpJYJ9FSKqqcaVfzEukyhJ/lzWEoTXVmgBkNcn7fCsWQiQTA7DlkIK+POHaenqjk75OR5zeT0Cg4ZyikAltK+AcmKtTVHkAgHV31qAqqAgOTRM45xlb5cfcZ3CQJ7QAAIABJREFUY2yyDs4UPLRkEn61tgXVZTrOGBcBgCyRXrevF9UBPVtU5db5I3Df2wNuQf96wsCKXy5GVfik+ubufom+ucAEwJBXJScY5T6xCiFgEee93VTUWicj5dS4B5OMUO0jwl6y7/mjyrFyj2iLt3RaHf6/v+4Q2nO9uHPh0xT0F+i97cKFCwtHrMTipptuAgC8/vrrtvZXX30VX/3qVwFYD1HDOLqSJErdxSLoKe3ElDPHV+Klj/KKeUhK6EZ89DIuhWjrPni0epw0qhxv7bBeUP8wPmLdg9xEwKtmSyFnIEtSUxkgGHVxQFUVMFNGtESnCYokMaZAUUybpCOzfX4EOfOxSGIz4xaFtUo+ueNWZFU8UEZGSwfaqOPJi+YiHUEuuG+JfCN9TJwBf/z1E3jz5T/j5LMW4rLLrxJIbKbwSQab1q3GuhXvYtLMuZh81snYtHY1Xvvjs2hvO4DK6hqcct4STDnrZOpUQWUsvTLAbJ+QhU/IA6U1yACwfs1KvPz6m5h9/InZZETZ/UaBI+OGIU6CKgMeLGmqsXlgezQVD1w4Advb+1Hp17IWfQsnVuHD1ig2pl05jk1/B66dVY+HVzcDAIaFPDh+RJicYAZ0ldQaA3S5bgohr0pe95BHFY4PsEgstbQa9hbuyiFz/JBHrXVQi4M1ZTo5uZxGJFiW+zScNjYiEORyn4aTRpULbh26ylDl19FMSFhcuHBRmhKLgivpfR7BmOWnWoozG6C0CXLYq2LB6HKBIEd8mhDhA6zoVaGlf//0ywdwUs0/4wfnzcNDq/bBpym2ZWePqiCeNERSSvZHkKRMdDI/ggyQZFBhFpGzcdV0VDgTi7SPhCDCef/axy2LXOaRWEaPD4yOFg+mQabLWytgyL/fONn3wLHQhP+F3z6F+//rDgDAynfehEdTsPiyK/J6Tu+TMWxcuwq3XmtVLtR0Hclv/ze+9c3bkUwMEI4XfvdrjH32OXhGTM7bp8y2jpLX0JUOwegI8pb1q3H7l7+ERCKJJ3/2Y9z38LIsSRbuH0adEaQnNvTNrlHXAVaUu7HcrscN6ApuWzBS6P+62cMQ9mro7E/hgknVUNPPtOtmD8MvVu0DA3DjPMuX/uQxEfx85b7sPhdNtuRME6r9aN05MJUcUS5qgQF5NcKwV4VGSKIjfh3dhHxDYazgZ1toEFcbKlch4tdIe76IX0c0Ke7TR3QyIuwl8xSObwyhzCMe6NnjK7GtPSYQ5FzteS50lZHlyl24OFpRijzLFdl+Bko5ihwkHsSHAzOHixGWYSEvad9UIfFx9RMvoczxXTgpR3PZ3wtj61vYsGo5Ql4NiyZXY/GUmhytIYOH0KFSNl+Zdop+WvIImjxSneR7AWc8ibPEbLB98hzyJJAqUWKR0eaKbhCW1CHfaYNx/hkRZJGsM2aXKnBuyRcUhS5NnY/shISaZDDgnb/82db++kvPi3rgHE31uhXvIplIwjQNpFJJvPD8H5HKqxyXSibx3rtvk8dD6YQzE4d8qArhR52Vwdjb169ajkTSGlcymcS6Fe8OHGdev7KHbUamIlJhSSlwchZkfUA166qKsydU4pqZw7LSDsPkuGFeA36+eCKeuHQKLp5q2dNVBTTcceooDAt5MKchlNU9L51eZ+v76wssbf/M4fbclFPGVJDHGPJpJOEr0xVpdLrvYH2dpfZ0GhlBL5esYjnxhq6VrJBNqw+S7Rc30V7/F0+h2xuJJEUXLo4GlKIqqaAI8oIFC6SexG+++WZRB1Rq0FWGUi3yREUqDgcWT67Bmr12z1LZCyTi1/BRq5idTy7LpqNRN57QiOb9B7By3fvAit/CwzimzZ5nEcH8fsChZ6y+crqUWY5RkWWWiYoKY6QJZaZ/ewQZtghyzicDiWrpDwYIkpzE5vaekTtY5DuHCKf7VpRMJDRn3BINskKRWCbqhDkAVREj4gMRbjrKLRDN9Dmcf+a5WPPu37LtZ5xzvtBFZpLBGDBj7gnQPTqSSUDTdJx3wQV45523bRFkTdcxf/5JyD/jis05Y2An1KizcgfinFD36HFzTsBTuo4EAF3XMWPuCTnbC5unPxOvsmweTt3jmbFTbfmaapNbNnP5d79VVEXF8HKfzSmGgeGyabU4Y2zEFtWeUBXAfeeNx7s7ujCrIZSVHXxl7nDc9KePEE+ZmFwTwMmjLYI8ta4MG1ssm7YKn4axER+2HBDLWDPGCpZvUI42gDwxMOLX0NonVjqM+HUpEc4/1z5N5sqhk04gEb9GRr4rJXroURE6AXDBmAos22Cvxhj2qjhnQiV+scpeAdGnKTimyo8NLXZbvMzeSi8u58KFiFKMIBdEkK+77jrb783NzXjooYdwxRVXSP7i6IEVmSxNGcOhjiCHvCp0hQnFOPL1voD1UpRVu6OqjAHANTOH4dE1Aw//G463ln0jAR3/eeEMfDIWWNfYhxlz78GYpuNoP13GyCIXFBHOuiQQl5cO0Mkt1CjrMoVI3sv0I9sfRZ5YHmHj3CKrasHHL6P16WMiIsL5xUk4z/g9FyZVyBJK8nwxnHvJl+BRFbz58p+x4KxzcckXrxD0r5YG2aJ2uZULJ86ci8vPPRWBYWPx8u9/m9Ugn3r+EsyZOxdr8hKtGLPOV/65UhQGZtojtwNRaxmJtbc3HTcLy377O/zu5dcwd978AQ1y5hzm6M+zOnPhjNDJn9lrL6xAiL7bAC1Jyui4qYmAJRGg9efCuWLA3MYwjhtmjxjPGh7Cw0smoi2awpTasux3/ub5I/Cfr25HwjBx47xG6KqCcVV+DAt5sK/HmtRcOMmSb8xtDOHtnQNa3glVYiU+AKTDBGARRwoRv4Z93WIlvpBXLZiUO00AjPh1MvIdIfzcAet5mI+qgEauXDbVluV5c1s4bWwFYoQf9SljKrChpRdtUfvzti7oIe38XLg4nDhiNchXX3210HbxxRfjH//xH3HXXXcVfVClhFL2Qg5KXgxDhbPGV+Llj0WvYoqoyyLIFT46egMAZx9TiZW7u7B5fxRnjIvg+BFhKwLGrAhYbkW2aNKUuzsQ/moUVxtwScgnCozW7Gb3JpIKNS/6ZEU/GRTG8yKXzEaeBnrI/2lg3IC9gIjVt0KQJ5Yei/34B8i3PbrIpIwtQw/z9ymXdUijpRINMsBwwaWX44JLL4dhphPjTKp0Nsten8z1j6b15VNnzMLUjN4XQDxlCuPO/Ca6cnDSZWTACST/ONJtxD0xe+5c6CMmoyyHvOROVD7rCWKRUqrvtMSC0KtnNO8sr13Q0wPkJM0i/LLEVbE19zpk+05PMGuDXjSEByKhJuc4blgQP1s8CYGcqK8C4GeLJ+KR1ftQ4dNw2TRLvrFgVAV+vfEA9nTH4dMU3DJ/BABLF33/8j3Zv795Pu3KUR/ykNUII36dTPRTGJNO0vMR8mpSVw7ZCtneHrqdIs6Ulag06TCgk6R8TMSPD1vF6PwZ4yLYQhRb+eK0Wvzwnd1C+3HDgli7T6xeKE6jXLgoPkoxgvx3a5AbGhrw/vvvF3MsJYlSJshUNKFYiBCRjbmNIfIhL4sUk+1+K8s7F5ls+3K/hh+cNwE/mWVizEd/wgfvr5FGwKzkMPrRrYAoRJHz/2wPPG1dJvRgETuxmAeRGMc51DR5IJP0RA5LEDCe42KRPw4RudpcgTyxjP3fZz9sMn+ZId+b1q3GEw/ejw1rV6XHIUZWKfJE9p3ebst6q88//voJPPHg/di0djUYG2jftG61TTJi5pNYMgidmWRQ+6WPNJ/Ym5lrTzBkebEVItrOxMlE5jdKfy5uaUEh+gYD1qxaiV8/ZJ2ngX0OVFHMG4ykb+q+oq0FZfcPdR2yE8y8dpNbZbypwYys8OFfT2jE1TOHZZPfvB4Fv1gyEd89ZxwevXgyJtdaz4MLJlVj5vAgPArDOcdUYk6D5bt/2bG12f4qfBoWjK6ARjyny3RFqmN2EkGmVnzKffLEQOq7V+7TCrfK80ii1oOQcmr7uqCH/L4eP0KsX1CmK4K/NgD4dQVnjo8I7QqTe1W7cPH34IiNID/88MO236PRKJ599lnMmzdvSAZVSijlctNeTRmSbOe6oAdT68rw6jZ7Sdf2nR/D5Pbz4VGZNMISJ1T3Pk3BCaPKMXLjfuzsjKNMV/DVtF+rCuCD9avx9eu+iGQiCd2j439+8RTqFpxIjlMlikjIltOpRfMsMRPGL9MgZ4jTwCemjWTbI65ZjW9uH5wL5I4IHlp9pCN0yNs+V5ub74SciUbaI8UD47dplnP63LRuddYl4rH/+xF+++zvoTZMIo/HHhEXjydzTCtWrLAcHuIJcG6CKQo8Hg+i//3fuOOOO5FKDlzj+gUnQuEmEYUvnAgPXDMqwp+XdAia3OXqwcn9Eccp9XvOa5UlYmbvzbz2LevX4M4vX45EIo5lD/4k65BhnW/iucTFvgfz2FaIsPVApcO8bYlJA5dMMgyTw6tSk4mBgjq5Y2Kw3C/mNtqJW4Vfw3fPGY+uzg5UVVZmj+fm+SMAcHTEUrj02Fp4VAVJE/jC1Br8ZuMBAFaUlDGG+aPL8cia5myfmSTC+qAHB3L0yTK5mkzWEfTIyCq9QqYqhWutByvkInPlkG1PSS+owMrICh/p1jFvRJiUh5wypgLNPQl05MntptWX4f1mMWrtwsVn4YgtFPL444/bfi8rK8OJJ56IW265ZUgGVUo4WBeLoSzm4VEZPMrBEWRqfKeMqSALBuzctBpQ5tjagh6J76lXI50pAMux4sFFE/FhWwwNYW82s15VGNavGnAr+P/Ze/MwzYrybvhX5zxb78ss3bMxO7My0zPd/cxCI4siCIIBCQGN5nN7k5h8Mcv3xSUml0m+xBgTElk0AuqniTC4IehrcMUFhqFnBgYEwWgkAqIDzPSsvTxPP6feP+pU1V1Vd/X0BAcGQ10XzNN16tx113KqfnXXvdTrwJ6d9+AVL9vKgoroxu9dp6vSCNEQNNAINZZjoM+n44Js16rNqCR4YJXzkWvBkwWxmjZ9DlgDQA5YK9eEnoqFBshBK+1zx0tEHbhn+90Y+nULkG17wvkSA5R33XUX6rU6ZB7LW2YZ6vU6vvylL2GyXkOWZc4YZ/6FllTqMiF1afq24QB+wYfsFnxwktjYJxGQrJ76gJIfT0vfJutnhSsb0v7+zh2om35SHjLW9PUTEOsZHcakvGx7+L5SgJ8fz+lKkCWAQpJE9On5NaGQJKhNTgbv+CQyCTSXErypf64H6CT+v1cuwbqeVrSUUxN6em5bBW/c0ItP3f8LzG8v400bewGoqITv/KoNcvXesxcCUF4iniR6y/2Mhx5ASZbrzMLeNoX/5uMJthID35I5+ndPod/MudA7Hp/Rva0l9luozm/H/350X5D/62tn48FfPBbkX7hiRuAbGlAg3gfZL6X/melFK0H2A4T8T0rPNdz0ifRVXE4TxR8jJZhuOpcN5sFHsdo00I+b73PzYhKWtnKKRV0VLOys4KcHxgEoqY5KAm2VNHDAX0wFNlS34t9KV6NeV14B1g9s5oGwBj2sBIyx/Oc2+NgVvuABgQVD3vVzDgZoeRthzqVitI4j6iEODWnDVfu8JAxtDe7CK3Jecknfd7xEFIvYevrpTq26PSF4igchGRoaQrFURK0mIbMMSZKgWCzioosuxt3b78HkZB3FYhHr8jEWcEGfjKovTHGAYU5CGvS5RocyIp3mXeIZSb7fzqlULCIHuOnWuW5wM4rFEiRqrocMhH63NY+h0WHcg0vqH+qgbwki4bo5ZRcRAuHYd8XfQCi6nE51eGSIg3LVJwk2zm9zdMEBiT8eWoA39PUgTez8Xd/bineduRDf+68D6J/bZqTX7zh9Pv703/8TEkBPaxGvytUOls9owo/2We87i7oq+NG+UO83EYJdO7nESWyBqdzWFXCQAbxT6Tf7spNiKqJRFGPAmQP83U28PvTyGc1BHgC86tTuACA3FRNctHImPnX/L5z8VABLu5vwH/tCb0cvpV/ddDLqIE8LIH/qU59CX18f1q1bZ/IeeOABPPjgg3jDG95wwpg7GdJzlSC3nEiAnKtY/HfTos4K1sxuYYN5/IBxmN+3sR+4734nry1yNdleTiEBXHvxqfjCw09jRlMRrzpVbTYqsEYo+U4TZXilvRX0Vbdg+WkbWAmYiFwda2DC6SD7lv9auhZcmxs1iBB8K1oEODrGXu6mr0nLIDcOBAJVilg+B8yEBYm0Tt1PHKjQ7dJeIu4f3o6hoTNQrVax68nDAY8BeGJBpqJZrVbxwRtvxvd37UB7ZxcOHRjB4JatuOyVL4OctRCP7r4XfdUtWLZ2gxkHd43kVV10IBf2AOM1VGo3Z15hI1ll+oTzVhL7yjigrp/4YNCW44BmmLemrx+f/+Kt+MxXvoXqZhqlL7wliRkdAjGd6kjYdES+HwZkx4CwVscJkmR08gEISBQY14y6Xj/FpNCc0S6EyMffPdylaYLXrJqJ85d3O8XPXNyFD716OZ46NIHTF3YYFbvfqc7Fe7/+GOqZxNs3zUNTMcWy7mZ0VlQAFgAmFPjKWc0mwieg1M24FPO+MVVkwIPMzV57efpRSGPr9VRqGlzwlO6mArv+cnrJXZUC6xN/7ewWdDB9cEbuKtAHyP1z2/DYyFjgRam9fPIGzHopTT+9aCXIf/7nf449e/Y4eQsWLMDFF1/8Kw+QS8/RSO9EumIrpWLaAHntrDIeesZ1ebSgoxyVJkw3zKv2pEEtoOe2l3BKZwW1hkRPawlXnNbjhMqlG5kOH9xX3YK+/gEIAcdbxcRk5kjAdPlV/VUMLjgH/narpYK+wZzWV35oz248uHOHA8yCHhA8IBDev8hrTzljrxzc+WCDA8L07xD0JWGdeTjkgEYO/n11AgqE6QO/zjV9/Vi1fiNmtBS1DNdpT8K1J3KY0GnNhn6s2zhg/q4UlcrE6nUb0d+v1HX0GPtJA/KpDzBu3yrvEZ6uca4j7vahDuTiu0uzBwEuceOWMLcB3EElvvzHjQ43VTdBzFnp6I1yB5WY0WHsIKABPAdIeRAblqU64n6QnDRJIn3F6zfzLhtDKbwOWBP2VehlQ+XSYCsEIDO0dZ2rZrc4t1uZlDh7aTe2zWxGKRFo0mMhgGsuWo6rtz+JrqYCfruq3FKeu7wbn/n+0zg00YAA8N6zlPrGm/p78YndVlr6WxvnhAwAmNEcC5FdwJ6fhwBZ6TdPT02hvVxgPX5MZVSt3fK5vBQxxtiYlLmATxFXebF2rpzVjB8z0uMLVnTjo8NPBfmXnzY78A0NqOiP/8H43H8pnZzpRStBPnToENrbXQOKjo4OHDhw4IQwdTKlX4aKxYlKpTTBaG166hXnLW4LAHLsWq1rCldsfmrLAfIfbJ2PG3f9HPVGhrcMzM31QzNWcqDBJzUMK5aKuPqTt2Dluo1BeS0B88uv/uJtwJwVAe00ce+fNYh9YPcu/D9vsQaAf3fDTVh6zlAAkrTWq7/xcxuq8Q/MgTWEIIk+5xLd5DUYsPmkPQbAS+/dqSTfPg+2nU57EAJEDT6D9hzHYYLScaS8pD4f3jAYLl6nCGvNnPa4bySCd8XGSqd9Hmh7uBI5DUf/PEaLBXx8G/UL/kElqg8sdSjwkD8uYqA6NIT6G6wkX/LfhJ1ZYYrpNx+P3jO/JOfAmeEkhM38fADCgxSQe+VIExcc5zQ3zmvDX5+7xFGX6CwX8K+/vhrf/skIls1sxhrileMbPx7BEwcnsL63Fefm3iEuWjkDX8r1eZuKCc5a3Mm2sa2cGmm1n6Yr0GiLeOWIGQZ2NxXZ9auzqXBcoPx4vG/E8ue18wKdMxd3BgC5lApcsnoWPvDdx538QiKw9ZR2fPe/DsJPLaV02tEbX0q//HQyRtKbFvpbvXo1Pv/5zzt5t956K1atWnVCmDqZ0nN183Yio92VC0l0waSptZRifntoyNEV0SNTEmSe7mtWzXT+viwPUdvTWsJ7zlqIvz9/GVbMVHpoAkCpwEW7U/+jhmH1eh3333sPq7OrJWB++bvvvitAFnqDC4JcANi9Y7vz/gM7dzgg6ViJ80IQVXeAlsa5iNJKbWlZOaV0msvn9IEpDdp+kx9ipAhtLf1zYKOVrEo/N0ymncFmrHuKAP5cIu5HBtR0/PDW+t3AQ4hXt6URSjP1uIWu2CJeOaY4fHBYy/QVwyEr+edo67JMvu93W9ENIbI7P8M6ueFT8yc8THAgnteF17cNYV/FIgOmghl79ZJLWcbqjNgkgJda84Bfsuo1jUyilAakISBQ9Oampj2nrYzXrJ5lwDEA9LaV8YnXrsTnrlyLf7pwGUppgkxKvGPrArxsUQfW9rTgfecsQnMpRUNaVQNA+YgXQmBwvhuoZWm3CqrSFIky6Kf2Mh9mO24YyLunKxyHV44Y7ZhhYGclJkEvYpxBUZwdzKKuCiuc2jS/Hb1tYbju6vw2nNIR5i+JRDp8Kf3y04tWxeIDH/gALrjgAtxyyy1YunQpfvzjH+Ob3/wmvvKVr5xo/l7w9FwB8omUIBcTYMXMJvyQXCNdvHImbn/0WadcWzllw6J2Vng9so5KIWpo8hvrZuP+nx/G4wcmcOnqWQYMqxQCgtgGIuAahhWLRfRv3qIMzEhZKgHzyw8NDQU+R4WRxhEABgUeqltPR/Ea+/66gU25xAyO/iMFd5x6BE2OuoNTgAQE4V6MAjBKO3bVT6/kY/PT5vuqFH4RznMAR1qPw3TAd8iFV57kGelncM2eu62DK+UlLQv4C2hLC9aoBwCTD0adgJNmRtqjaXMuzXy1gVgfxSXiOUhmXLLE/G4HVUgL4n27TVVnBPCzKiN8IBemOSzQtOoYvtQ6VOtQ7YkY6bGS9am92rCJOzTxJfM6QzqFJOHnT+TgUUwTzGyxtUgJzGot4j1nLXKk0BIC//CqpfjX+3+BSiHB+bn9xuKuJrx8aRe++Z8jaCun+MOtykXmGzfMwfu++Zh5X6t1+G5AV85qZlUsYsC5vRzfC6brlWMqo0MudTcVWP/NnRVe1/p4wPe8iFrh0MJONgjWb6ybjfd/5/Eg/2WLOlgpdKWQsCD+pXTs9KJ18zY0NISHHnoIN910E5544glUq1V86EMfwoIFC040fy94eq5+kE9ktLu57RUMzG83ALm7qYA39/cGALm1lLIBCzorvPVzIRG4YMUMbHvwaZP3yvw6cGFnBR+/dJWRYtF3QrdHkpd0QUkFV6/f6BjkrdswEOgh0Q2Rhhte078JmzZtwj2Ph2o+CquGYKh/YBB/f8NNeCg3Dlu8pk8BGUxPDcIYu3nqDlpux4Ek4VGKeUPg6qQAxAU4NrAIfcECe/321C1iwSqRZrrtoZ4W4gDS8sLxzb4K7c6N45oLbx0F/DxpAxwdqTU04Pe/by7Soa0zLrUmtKW0oI/58EJJfng40rQ5sMWNg25nAPp4rAb+zsPS5sC6f1A5ZiAXjoZgXDAy+boeTgeZ9T4iIrrgzEFF5XNGh2ADB8VBuYzqa7N9rg82vmpMhHZzMcVFK2d69hsCf3PuErylfwxt5dRIT/vntuE3+3pw908PYs2MovH3/IdbF+CD31MAr6WY4LVrZkECaC4mGCXejxZ0lI23IZrSJB510F/uyxFhUls5rt/Mge+upiJrGFguJMEeU0h4rxwxo8PupoLTbp1mthTZA9baHt7N3yWrZwUAuZgIXLxqJj7z/aeD8gs6ynjiYBj2/KVk04tWgjwxMYE5c+bgXe96l8mr1+uYmJhAuRxeS/wqpefsxeIERbtbNasZc9tLuHT1LHRWCnjmSA3nnzoDnYxPzNZSCinCydfVVMDeI6EBBgBcsGImvv7jEewbraOzUsCb++cCyPUWRRhRrZAIVsk+lAqqPL3ZUoM8IJReaXUCnXR5vVDyEjA3T4OHRACr+vqxPjcOG601cgDm+atlpLmaP/t/S9y4eXNeoFf1oRQ6ceYVbYUPtHweXBATSBcRbtCcDrIfhESTMUAraGg+bkK67YmA1WMdABxJuQOyXMQ/1QEmJoWnyRjj+Z0i4YFY2xBOAMgBYfrEI23GflqqO3xzyLh5cyJhvhMZN8bjgBk3DvrvmATdP6jYQ4ZfWoNYH92CvVFRQNiXiGujw/BbZscnN8Tl0nF5tQFT5xTBVkR4dWTUgoKyQUmVOGmpQEyNRvXV3HZ33y2mwNs3z8dbB+Zi3/79xnbmopUzUEwEfnZoAq9c3o3mUorRegN/dtYi/Pk3foJMKveb7ZUClnU3OcB5Sx5xb0H79Pb4qVx+Zsze0N1UZKXQnU28/2aWdinuMzoGnGuNepDfPYUXDz+1l1NWdXJNTwt6WsL9tzq/DU3FNADIp85swrNH64FXjlIqUPslB/96MaST0UhvWuLRc889F7t373bydu/ejfPOO++EMPWrlH4ZEmRucT5nSRcyqa50fn3tbLx983wsyfXR/BRVsWgqYHZr+EE/vGc35raV8LFLV+KqC5bhk5etQm9bCYDarLlFvljgvZNyrpcEcj+u4c1xXBrFbKoh5Yh0zYAkT0qVb+IP3rcTN91gw/laaWHIN32uaIg4LyKUpBnaIJs2ARkB0NL5Pi8akAs3jy3L8Q1MGYRE8RiC+HhQDP7vxKEtWeBgQZzmLM810mw/8Imi4QOihKlTldN+qgmgFBrwqxp1mO1H9+xi55vO+MEeGyJbcR4mDe6injDY3CnGjdKGNTr06ajDnq/SxPtYnkrrIIT86u/goCJ5PnRbYt9DCCinb3Ro6mQWhBht7qASO3gJEQamkbCCAb/SxJuzmgMu3L2e5w7tqD9utUayIeOZsrF1uVRIcNaSTrypfw7maaArlerAxy5diU9etsp43yikAu8+ayHmt5exdnYLfifPv2jVTAc8/vnZiwAovWiafPsUndrLBZbnrogEuZCIabttayunbCTXrohXDmV3w/FSxMRk2Ndc1MFqSZfpAAAgAElEQVSYG77ZLTwoX9/byub/2qpZbP6lq2eFDAJ2/H5F04tWgvz9738fmzZtcvKq1SoeeOCBE8LUyZQa3AJ1HOm56iALSJy1uAvf+omrSjCrtYgs1389Ng+F6CKyZUGHiv6UL0ji2zfijz/8NVz18W1Yu6EfG+e6RiEaJNEkpUQpSQF4p36hpSOM6oEIdffsJudQZzeP2AYf22x4V1IC9+3aiTddcRlqtTo+/dGrcdXHt2HV+o2aHbZOr/URXgTbV5qBJFFXlKlP00NDMR1ko+7ByF5jfFNweqwgJEyVkXHgaz0eUG6l7d4mn4PYgjHeCyEQlQDqfPpNSNA+DgF/IRF4eM9uvOttrzPeTdbefjtaF62BL/kfHh52vKhc9fFtGKxWo+0UHjKLA2P+OdffrhoAGU/wXjlMv8YAsfdAS9WDcggPKlJQsOrq0XDu3+zBIwSUPIhNIIR7HW4C8AT8RdzWIa4nHUjECVj1zhisVB2CPyBQUO7OuHCM/bDbtHSB9SYSP6DyLDIras53T2vJAYCZBF65bAaq89odtY6ZLSXceMlKfOU/9mHFzCacs0Spb/z62lnY8cQhHByfxNz2El67RgG7Vyztwjf+cwSAuoE9Z2lXVL85BoSPx0MGNzZTGR3G9JuPJ9JhHHzz+QVGvWJhV4Xl8dxl3djmqWkkQvX3P29/0skXADbObcPupw7DT6lAECjmZE4vWglyR0cH9u7d6+Tt3bsXLS0tkTd+dVLjOerbP1cVi7nyQHCdBihXbBKhFJZL6oPm8tUp+9qLlmOjfBzijn+GvO92FdZ25z0sLe56syF5K2odzINb0GPXnuHGx4NyDoABWhrlbtgGPAR1Stxz912o1a1niz3D1pOGA3oclQQXlLIqGYLvK+tKznJI1SQc8CcIbZ8OU97tCx4482GsSZ2R9hhpLstNmHi1Dh6Us+AYdnP39TythNuDZUydmbQHGJe+9lMt8ODOHY53k7vuuosFqzp0Np0rnF66+ltJIqk6ATd//DqOlW/Bt1vG9QTivR+0ne8rXRfnT1iBQf/7ERF1lFignRgvCLyjHFO/mQHC/i0BoA/MIfoWQiD1DumOehHNF7xv7JhahwH8jHJyzPsGnw9eHYUxfNZ+3nlewhHibvYaUqJSYIwOAaye3YK3b5qHly/tNvQWdTXhk5etxNWvXo6PX7oKzaUUUkr8zqZ5WD6jCd1NBfzB1vnorBRQSoUjbNm8oB1pInDqTPfWU+8j09132/4bwVY4HeRyIcGRiK41V+dxu61jBqe7qcCGK5/BqGks7mrCjOYwf+PcNiztDj1trJ7djFNnhlENe1tLISMnSToZJcjTAsivfe1r8brXvQ4PPfQQRkdH8f3vfx9vfOMbcfnll59o/l7w9FwlyOVC3Ceon/rmhAYBy3o6o8E8kpjYwEtt5RSVgsBi4rLmtJ4WpIlAQ0os6mrCmwfmofST7UjSVIW1HdzC6+IxV43KDRLDS2RDoFfbAW1uS4xIabjEbcDU04T0yp4+NIRSsWjbXd3Cgk8KKGOGWk6epDrIXJvIp0f6yd38bF+7zZV8v4Ir64IhF1CGn39U31JYyVisTl7H1b4QA9+6vN9X+pevGmP7KpRQ+nVSKbwD+KEPN8BpA5tQLNk5MDQ0xPKnQ2frcusHNxtplN9ltg/Vj6m8ocQBcyxfqwGEKgmh2oCwANRrj6KFIJ+Bx6av3HzeJZ6ZKwzvvL9jBRClO2w5QA6+5qg+sKraB+V5T3FA08szetwBj9qTTlAZe2AUIqK+EZR0D+/+k4QRiQuRu8TzSse8bFge/faEoyyhAk9xXoc40olQ0tF1va3GA0cmgeUzm3D1RcvxhdefhotWztRs4LqLluPS1TNx5brZeM+ZCwEo4L16tgJyqQD+/KxFAIDf2tjr1PXHp/MOARZ28m7Y2sopO/86KnH95kPj0/XKEQff3PzuiuQfl1eOZr7Oxd0VFpS/fEkXm/8b62YHeYAK9MWl6WKXX0Y6GSXI01Kx+Ju/+Rv8yZ/8CarVKsbHx1GpVPDmN78Z73//+080fy94eq6nmlLKqBIwqZgKvOrUbuzJo9HptHTBXHZD6KoUAKn01I6VWkspBASuumAZ/vrO/0I5TfC7m+Y5PK72QjzT6Gc6UZAY8J8wQQfMkh1uzkoaFdJuBG2dWgc59LWqF3QXmJlrNW8wBger+PRnv4Avff1ODG4+HWv6+smrhEakr6WMXF8bkBBKyRXfrtqATvSKXEviEJQies8U9DlgLQRk9EqZAmFKO6b3HPV6IEK+ufbqxANKKokkfGvaXgfHJcikEfonC3h0eVXvyvWud5RqtYofPnM0KF+tVvHPn7gF9927HX3VLVi5bqORiNNvVMrQQHOqb4dKoY95yJC8j2FrLMrc5ADh98OMvc4RgqkzEcE3K8ADYRpox22n/lbC9cCfFUYXngPwGlAzXka4+RcFsULr+NpnrMqEQ4fmT6W6wgVICvtkKkl5Elk/UmG/Y5rvEzERRJk+5CXfEsVQqyOqZ65oM145wB1sgFmtJbx1YC6aPbXDD7/mVNz7+GHMaVMRWAElYT5zcSd2PH4Q/fPa8Irci9JbB+aYoCDFROCKCOCb117Gk4xaw1T+m31pbsxAPyZB7mwq4BATl6C7qcBGHWwqpoFLuETwALmrEjciHGck4j1tJbZ8v6cyqZNy3+pij0QAF66wQWxomtVSxDNHQ2PH55JetG7eKpUKrrvuOlx77bV49tlnMXPmzOim86uWWCOJ40hc6E0udvwpHWV0VsIrlM5KgQ0G0lpOUWtkKmqcl7ae0o7tjx8yf5++sAMTRw+h9uQPsO7x72Bw8+k4pXOpeV4qCIzWXI8SenhpKGgNCLhFUS+WfuKmCSfRMrqVzNUae40r3H9Nvv7P48+XJD28ZzeGd2yHvOAcVKtVNJ2y2ujjseoBsJsebb8QBMRygNKT1FjQR1Qs6AYduDTjOpDv1/h1f/6ccCKD8tI88NU6Ht6zG7t2bEfy6ldgQ/+A2x5SN+uKzQOOUW8AsbbC7Su3XZ7xnsmnQC4ayiQ/qCnieu7XzN2uD8rV36dtVOG4H96zG5++4Vqc/bIzsPDlZzhlJaye8KMP7Maj9w1j3eBmnLF1s+GP5Tton22/Tg/v2Y2vPLQL551zJjBnpa1T0IMnRU+SB7FaCs9Ilrnvh4uuGD828e2xeaGEkh4mKI+BlDdaG59itG1fubRjAVE47zgWNPvtCb2jmCAkgdRW8xhOCu5aXvHH+V4O+8WCVY4OmCcChZTRe0ZsvYmMO2PoqAG/L8mXEGguFtA/r80BdOVCgve9fHFA5zWrZmEyk3jy4AQuWjnTeG36zb4e/NsepQb6iqVdmNFcRFMhQTGx7kdXzVKS6s7KtGBPXH2jFNNB5qMLHpdXjmjUwYhXjkoRzzT4UOC8JJr3ctXFeL9aPauFldCvnd2CGS1FfOcx1y5qXnsZo/UGRsam11Y/PVd11hORpjdTAPzoRz/CzTffjJ/97GeYN28errzySixfvvxE8nZSpOc6aKVUoKup4EyaS1bPwifv/4VTLh49qIAnDob+KfWVGrdEval/Dh59ZhQHxifxf22cg1ktJXx7+AH83Z/8Dmq1Gm6+/hpc9fFtSloKXsotADx0vxva+YM33oyzz9gS1Kn1PLkNnt1Acv4D/T9YFQO7YVB9xhAmcQux793BBUmChKyu4ZYbrsFnP38r0nkrSYmQeEziCtjNjeYfaxOnQ03LulJRwYJYEwUtksJtT9NwAxSwEmSyWQvhhvfedsM1+MKtX3TCe9OyB2oNdOebDwf6QlBunwgR6kVS2vRAZsEd33L3AEd0kNnbBi/wCSvhdmugfXLTR6/G7bffjuJ8G1VUSlVu966dePfbXo/Juvp+bvj0Z7Ho5WfE54/3gDuovPNtr0O9Xse/XP1P+JuP/hs2DlQNZ1oqyn3LIeC3feCqryD4fqbyyjHV4TUIv84BQdj1IJwrOahypOoRvedIH2r6McBG09TS3AjgZypMmHGISlZlRGqd+9L2azVj7ImQhQg9mMRc5SkeQ7Cuv8NAHUV/J9JV7eLm2lSHYA6UK6m1CNoDIZAmQObtv8VU4Ip1PU5QFQC4cn0P1vW0IANQna/c01WKCd46OAfXDz+FrqYi3p7fmr5m1Ux8/uFnzLt/lKtvbFnQjnuesIKlsxZ3se2YSsXikafDm6dSmkSDrYS0I145ptBv3jfKu62rMeClhbEVinm56o1IoQfmt7E+nV+7Zha2Pbg3yL/g1Bn4yn+EUmgfF33zP0ew90gN7Yyg8IVK09JB/tKXvoT+/n48+uij6O7uxg9/+EMMDAzg9ttvP9H8veDpueggp0KFFx1a2GHy5reXcTHjDqerqcBG7eusxC19k4jU9rTeVtx0+Wp87U19eOMGpcv1gz27cmO0zBgYAWrxSwWndyZwvxfaec/Oe5ByEhY5lTSB21T5IApCJNHIZvEN0V9w9b8+ALOSJBuyOkO9VsOO7Xd7tF1agNKt02uyW6VwwEbQVo+S0Z8VYcAE9Zx+khEVC8G339W1DeG63+e8PrDrto6G967Vaiq8t3PcsP/WnevCkHPJSKf90vSBUaXwDlOCPOdUEujVKIUYHhwiz5j2MCBB/SuCkOecUV8iBLbffTcmiQHo7h3bGT5i/FFe1C9Tb0ONxYO7dpCykpWKauAcwSxOcgxR6bjBSnM5HWSfeAyscv2tywdLSg60QoEmr/ccvZlgJL+aA+6QPhWI5+YE2x4w0ukcrAb4WGgewwoToblyU+wQ5K+dcQmyYMdN0+YeTHdd1ofgsAv13Ao5L6QhVE/A+4eeyhhxbW8rNi/oMGtMJoHXre/Fl9+4Dp+5cg1O61V6tj2tJfzZWadgaGEHrlzdgQtOVe7q3jI416wdraUUb9zQA0Cpe9A0tKiDBY4dU+zVxxOWm5t/MVDe1VRk953OSoHVqT5ejx9c/oxmXpi3bEYTm3/RyhkhgwAuXxuqxwxdfx8rEHyh0rQkyO95z3tw22234eyzzzZ53/72t/H7v//7uPjii08YcydDei46yKcv7EBrKcXvVufl1rMNXLJ6FpqZU1znFCfEmMubNLLxJbkUlU7W1X0DKBWLqAHGGE0lbuNTdDduckM7rxvYzEpSYou8XUDDDUR4dToboiNM4HWQ49LcMN8HSTRkdalUwsvOGHLCW+trd1+azYG7mJ6wBVTuAwvu+B3dnwIciKUXmMIp6zDG1OmrWHCj40pc/b4aGnL7ykoL1Qbh18kBR/2eowaRzyvOo4fwATLpWy6/UkgwVm8EagTs/IwEPvHHPjZ/qFGfZl337elDp6NQLGJyUpUb2HJ6hA/LD8eLLq7rnczHYt3gFo9OKBWF/l4ZsKrfYT2buMUVWBHcoZbX2eVomDWC4cU/1GmwqvwJM3RidTIHZvZLE+EBK37Q541ioflm5lUgncYxwCqTO7VwIeSD82Ci9NL58lwv8tEIw2iWyH+GEmQe2Gra3JMCIyywxpKhXnCNkSykiUDD82nWyCRKhQSYcMe1kUmcvaQb5y6b4QRVOa2nBddfsgI/fGYUg/PbjfrG6/t68Ogzozg4PonX9/VgTpvyKrW4q4LHRhSYW9fbgkIior6KD087LHc82EosMiAX2rqpmB6Xq7zjc1vHu8rrbiqwhnZz2kLPGYs6K5jfEfbVmtktWNDBG16+EGlaAPnJJ5/EGWe4enZDQ0N48sknI2/86qTpSpC5xeKcJeqKprmU4k39c0x+nbn6iCnhdzYV8wlzKHimJ68rqZBI0xCsLl+zHrd8/ov4wle/iWpujKb5LiR8+Nd1Gwccw71lazdEFi7e568Ab2hjjIwC/T8g8fXrBJXUuLQ1nwaYyFggCndT1SGrh3dsx5UXvhybNm3CvY/bsKEGUMLqPDqAkrZf2HZHJU+O1Nbm61wH/JpNWzWcA/xuu+i7Fsw5BpMExOrsTEri+s8F3BTg6L7afe92XHHhKzA4OOhcQ+rUUU7RVCni6MSke0VP+KMqFk4bqBoN3YAdcOryqP/lxr6tnOLpIzWUC6o1fB8K01bh5KoUGh2qX6mwIdJ37diOV738TOUT/ueuH9JEANXBKt5/w0149L57cdrAZmzIIzjG0rHm+Jq+frz/hpvw8x/sxrlnnwnZu8Iprb437zAheR1kVs9eSzm9RFUPfGUpAQTfnJ2TPFgNjHnNsIdgNdS3pWsNPUwIQ8vnxQffhhd3CYr6WKZ1uoaBgm2PHoeAikiQJFmoQiYY2qYt3JrKrzOBBFlK4497OsFj9KGBm4e8BFn3jDee3M2miH/7BebmdErDwCx8UkoTjGYuCJVQ4a+DHVwg99YRPljS3YTFXa7rufW9bfjU5atREG7gkPeevQg37nwKpUKCtw2oSLMD89oxv72MJw8pFYR3vuwUAMBb+ntx1d0WL/1mXw/TOmB2C++Grb1cYPuvs4n3hAFMH5QfrwQ5HqWQj4xYYHzMdjfzoHxdL+9N44VK0wLIfX19+Md//Ee8853vNHlXXXUV+vr6ThhjJ0uajg5yUzFBX29rABxmt5aQSYnJTKJEJknseoY7fbUUE7x6xQx84eFnjLHB+16+CIBaRHwjQqoKQJOUEgODgyjOX+l85EKEmypgFz5quDcxmbGGM3qRD6Wf+SbCOAQN3DpJortHRBVW39bfhMM+dCRgzmMqhVYP1vT1Y8maPmw6Ram/0E1e772+1wc9hLSdMWmuwycFfaSOMNKWK+W1eohemYSv05FE5r+1Jbui7aJVVoIsKOC3wGzV+o3YOK9dbe4yBCZNxRSiIHBkwgWdtK+kdKXTbiRBzYt9wVVd4cCQLUvHvrmUYlJKlPMnwnvP1hnOI0PbN5bMn89uK+IHT9ewpq8fS9duML5GHUmstKBn1fqN6B8YxGRGdTP5OsOhDsd+1bqNeO25Z6CjUjSHusO1SWNcFkhFcxLhbYiu2xaNfT+Z+TY9RClsuWPdtGiaoX2AKumPgx/p0K+TA3FcnRzQ0oepNAjEwd9W6ToTAfhKRFx7zDj4dYrw4CUiPGqygReL2HqdHyacdkLdyMXWpQDDTqH3HPWO4uVJ8DebMdoQuYqfV17vBX4qpgK+YHQyk2gvp4F/40y7H2VkXMVk+uGcC6lAUag1jqYl3RW895xFTqyDNAFu+o3V+MLDz2B+RxkD85R6xllLuvDvP9qPR54exdLuJlyWqxf81oZeY4+UCOB16yPAubWIZ46ExnilNIlKiv32xdSQ4uobBYwxHjJi+s00TDlNMX1tLn8W4wP6hUzTAsgf+chHcNFFF+FDH/oQFixYgCeeeALNzc340pe+dKL5e8HThStmYPjJUGJG01mLO8FpYnQ1FVBvSEw0Mgcg83pABVayLIRAd0sR1118Kr792AGsmNmMly3KQZ1Q2z/nZid0f8ZHyDJ0GCmIv5ipxe843CBFxJ8CvHQkEQIP3DeMr935XQxs2qqAubCSmpA/H5hYCZjfx2zbCUAqMKDT8foQA5ROe61Ek9bvmAhS8MnQoLrJbhtC4DhVPTplEigaYG83IinINTClJyNXvlRK7uJMy1den4CV5mr9dq0mwauphH3v1A3rDaKvugUDg4Nhe8jYl9OE73NKU06tgxxIzPIH7eWCORTFDJIoAHok53tt/ybMPdOqWMTUN5gq3TmOUGWkkQFSWN3c8G6HB2YwtOwb2itO+P2Eh1rdhzHajBDR4Ynmx2ZF6g2E61+c5Oup7K975pe7RmoQ5xqkRYyNJS9xtZ8PU6e3ppobsoiqArMl8OAb8fXaz9drFks7zAIioNSl7Y2RcPmwh8Pp0ubtUVgwTcrT1MhUgJPAQ4hQ0Qh9o0OlypcADVfaqcaBCcLCHur0DW44EWc0l3DhihlGdQNQ68a/vGYFnj1aRwe5Lf7NDb14+mgNPz0wjktWz0Jvro5w0UrrXm3DnFbMaSsHbue0wV2RiwLGpLaY+kYpZYVqXU1F1CZ5DxmcdJrDNa2l49dvPpnStADyypUr8cgjj2DHjh146qmnMHfuXGzatAnF4snVmBOR3jQwBzfsegpPHpxApZDgjEUd+PqPR5wyp3RUWKvOzkohDwcdg1Q2tZVTLOtuQmspNdcUZ+chPQUEVs0KI+Pw0ll12ucWRW7RMf5NAyLh+zrgBrtwiVDvLrYhwqw37gayZ/cuE/b5pjzs89K1G1h+dFVUquNIwFzOnStNy4YtlSYCmTnlaABCvD4IugBQ8AU2OSCWfW47nTO0899zgGisjFOn7WENetyNKBJhjmxudLOIG0HR37a/TFCVhIAn6R4QuDa4tNUT3xvEdZ+6BSteeabTHjr2aSLIgu8aUUoyxFYHOWyP7z6RAkptQS9JeQ9nQQiBXcPDDt///7bPYe5ZQyGgNC/ziJKjTVOaKCma+QZDAXLUfSCllMm4b2wr5XQHjtNPNd+mJ7XmYLClEzZUCEa6qMfNp+G11/wtwv5SerI8gGc5NHNFgHZuzA5Cf32uBBmOBNkpy+Av7kZF1SnYw7W5faN1go6b1yCE/WK9IvnfRNxOxU8GlAdlI7QBtj0RTGpArJ8SRjdIQOYgjO9DjjiXraTw7pNMSpSTFIAPsiVjWKraU0yTAAC2lwv4w60LAnewv795PpZ2NyGTwKtyI8KmUoor183GzQ8+jXIq8O6zFgIALlk9E1/90X7z7m8PKnWPZd1N+PH+MZPfP5dXX4iHzi7gpyOhwVylEJda+ynmlaMzApBnvhgBMgAUCgUMDQ2dSF5OytReLuCu3+7HJ3f/HKfObML2xw8FALmzqYAf7xsL3m0qpjhab4DzCumntlIKkQj83XlL8C/DT6GrUsDvVnUwD4kkTdDwlPH14kJTzFURe6rPaSTBVePxLX4ahDgAhPAWLpbhJielxL333E3CPiur/WU5QOZosPnGV3GsPTy4LCQCtRwgU/BtpSaC3RBjxjsxIzy9WFBpHC3pqFg4FbllQMpI6apS0OKZlI73DXoEMEZsBMhIGe9bSzvWh4oPmYMmwEqVEwETsneqJJh2ut4ggPvu3YHLXnlmKC0lAN0CDN4lngv3OPUNO/a+bruZ55JKXC1tfZi6++67HL537tiOV501ZHXBvfGPznGftsdrQSSoZQ0rAWMaHARV4WjLiOqFXlOE11c5lTBgi80/Vnt0vgACA009R303by41t85gDTIlbXl1sEnIM5cOB+7CGvkcnRuoo8DqVLuJd2MZX9942np98u1RWJsRwQPQGPhU7XFpa16kN9mswbY3PhHaAN8eXhUHLIjVNwJcizjPGbEDluLRzcukZG9NMwmUCuHOLphxoPSnUyeg/EC/cnm3qw4JgT89cyFevXImWoqJMSJc3FXBO7bOx5ceeRbLZzYbL1lvHZyDd331JwBU//yvwXmm/GME+Po+qHXqmiLq4PS9chTYcY8ZBr4oVSz+p6fOSgGbFrSjUkiiPgpjE4n9bgEs6argJ2SSntJZQUMCQ4s6sXJWizthhUBBAL63QyEAwXyIdlF0+fDBAM2XpDwFBFQCZKSoTHvM5sxKtO1vG1JavwXD1ZbTT4942gAjhdcbol0ApZQWgHoMMMJfJ9Fx1T8dsEqBFinrqztwEldHWprQljObkQFm8cQtOHHdc6BoJMh0I7KLvivRJFf/TjvtH7R2V/qdg2EKsn23dcz4RPZNU8b3BrFx05aAJ1/dgY4VVQ8xAV4Y/mk+HXsqndb1NqR0wapHRSAPTV0sop7zvWnLVtNeDlBSIq7LNY+2X1xYabb/hinrB1XhvhPwKjCUtjNuhtYUAVs8Pv1ko72F6wonuYx9xpEpBNNfXgFujTTfhM+H4SekweXrORde7QskQgaqCrwRJU9b5HS40NkFT4qq1ToC2lo1JrKOBzNOhAd+PT9loMcrgnlyLNpcX01Fwz8ESckb+gG8sEipuoR7VZIICA/3yci6mkmJEqdiAV44wul802d+KqQi3PChPH7Mbik6ahVJkuD163txyepZTtnNCzrwgfOW4OGnR3HGog6jvvFbG+fgb7/9X6g1JF6xtAvLZjRDSom5bSU8dVipVCztbkIxTdgAIgCmHfikPRZsJWIYOPMlgPziTnxMdV4nRyVeDeJtg/PwV3c+hsmGxO9vmY9yIcFovYHUfLgEeID/iITJD3XduG9x6g831NGT0tvgoovf1JbybkndnpC/wcEqbvrcF3D712zY53ruKV65e5pab1OpE4R108AaroGZfTclC2aSCKARSk04S3kOMETbTozuaJ/7QFSS3xztmN5r6khQ1b/UW4W7EVlA6V6R8zK6Y4FYyi+dM1QSS+cOnbfOWDG/lTeITxsd5L7+Aftc2vZzh5JjGlF6T8x7wuqCU/1mn44FMvQ7VAeBTZs24f03fhqP7B7G6v5N6M+DegiExl4+XUddyKft1a3F2QIIvmWdfB1STl1IX8m7z9UDrYPMJZ92oNKi/3baY+s08zM4CoRqA7GDLh036nlIzzknMqBzy8YANraVU+R7/WJ99fp9G7bHfBcMQIxxIQRTgqMtYdy8+WVZKa8Ae5hQUlE+sFMjYNTqIPu3iRxt25KQF18oYoQrniDGSpC5ec/tefn+5tFW40C/NXLb4JHJpAoCxrUlulcHuSrTz29kMg/H7T+RcVUXhniaCFQXdGDTgg4nvzq/DR+7dCXqDYnFXZWcMvCesxbiH773BIqpwB/mwVOGFnagrZwaifEb1iq1z1evmOkEOztveTfXOsf1J03t5QIrbHzRqli8lFTi9OG7mgqsexOTgo9L4uwlnVjTswblNHH0j1KBwOAv+nFBIDBMMJsZc9XIfElq0fbVHXI+vA1Of6CcbuFUi7yzIeZgw0IpQxpCCAwOVlGZvzpfIAifVJeVEHel07wETG8I4QObiqlQBmbCSgzcxdWqWFDDMwfEkuKcIR01mKNj6gIuuwI69DMpeHAAACAASURBVJJYnSqfqlLQpABIQupx3wXcK3KRj/Hw8DC+cMe3cNrAZqzp65+infaPQqK8qiTS03tGWF44eaT9TP6unTvx4K4dqG4+HavWbzQBdQRgAL+as4K8y2+M/m9/09Y/Yx4yKF+xMaR/r14/gI39VUxMZsHhzufFV3XhXK7RDVg47wtzSA3mEzhgFvJtbQy8fA2ovCcWlMZVLJyxZyTimUTEbiD3ysGof4Vl/b5wHwQ6yNASZJ9qLln1gJkt5+eH7bGu1XRNNt+AWE8kzoFy9qACOueYm0ABx6uRvuGIKTaF83Aqt3XuzZZZxz27cgH+2zM8+rQZAY2hA+8GM8+jdif6AaeDbNfssA/9fVbvLT7nMUPcLJP5vs2AciaXPdTAjhtNDSnRxC3m0IKckDbX4+ZAFpRXhoQ0HkMmgeqCDlz3mibHK0e5kOBDFy7H1360H3Pby9g8W9V07vIu/Pt/7MPTR+vobirgzbkbW60jrdPrI+7sZjQVcbgWSqF9TyEvdHoJIB9n4vRmOisFHI1FuxOuDBZQJ8SmYoJCIjzlfBEYBwH2NO2H+uQ+LlU+PGWb8swH7S/z+tScyCy43hRChD5i80Xet4iPGvyA2bT0Ry786zYChjhplE+bSGh186MbBOEhzf2tSrJhu1ITK7lLErWg+IY+LrgTQb6EvQaNSU0BC/ooDQ6gObQl706HSladjUhQ4zV6XSewc+dOvOY1r8HERA3FUhFXfXwbNg7wPnx90ClNOy2vdhoS9QDyXgx8Cyigfuklv4aJiRq2XX8NPnjjzTjnjK1wS6nE6WDHxofmcW7rEg9sOGoEZJ5zQUj0d0LrdKTq3i2RySflHAkywzNNaZIgTUJpvEPb2yi5dUNJ4sLvR39BEdwT0ObmlQaOXN2cCzHNu48rzPh462Hs8GGmBHng2lKEgC24rYodbJj2ZEQA4K9NHHiMu7H0+CeVcvYbythaBMiMA0/mqOPPCeRtZev0JK7IwWpkX/Il+eYGwh97hH2ly/tCEVe4QngRYIEwRNjfuv2BSzxN2ytuD1PhGp0knLs93a/c3uvRpuPm8aIEcaGsuMDVicg4ePuxTokAfM2YRiZRTjkugfZKAb+Th+net18ZA3Y3FXH9JSvwxIEJLOqqGA8Zr+/rxSPPjOK/RsZx6ZpZxqf0mYs78Z3HDgAAlnZXcEpnGc8cnZ73jRcyvQSQjzONM37+yoUEK2Y1Ywfxg7wov7qIut5KE3AfNOe2kQWleXlfBzl2EtZ0giqFCBeF/NScMWY26mP0wKq+nuLqA78hhpuCILiDATqw/eIaTdmysdO+Vwubrw3MVH9wXh/I5kx4iS1I3HV/IyMGcwEHYb7DtyCbLG1D/lNJkH1e3E2ZjhFVO/HVIO666y7UajXHWFK7VqPJNwzUG7QC60Tv2b7BSpDjv0XAy/0778H5Z1ldXt3fmTf2evOPjY8Dfuh79P38ty+dt/VMoVfo/U3nZnjvk8+rwBsEZ3BKDxm2L8tp2K/03ZiHGQc4wu0v+oTFTeYwwdN2DB0BXjpN+8Uho79F6SyIhjbc9dCOmx1jmRtYqedknch5DsGTPQjwtN3SxyMA0GoqgSRfhIDXe2xJaH1t74k62Cg6jhs+XSrcZvL2+IFP9PNwPHnwnSBBFqrhCW7Nj9AW/JwTAo6Br26n7VtXdJNwe5uZW/4hiJGIa9oeH/pmihufmNoR01Usf7E6AWs34hJ2VQFtfTw+EAjHGFBuMP2gKpmUOSZhrmuYLADoqBTR2euqRMxqKeHvz1/quLUFgD/YMg+9rSU0pMRvnDYbQgjMbi1h84J2g5v+7y3zcLKllwDycaYjDEAGgNev78G9Txwyc+n/HVIRdDhjAL2gBR9uvgCGPiHDzRPQoNH9vFyLc1KW2Sg0DWG4svxpHb3QoIS5QsoXOR+c+htMwJ+/IcIFPYBthyONAi9dkwjbDS9PRPKNgRlcrw/0TbuxEF3fsDqvtMufXjim5kmGZYQdf+5dJXUQQb7aPDQNOo52cXeMEYXA0NAQSqUSarUaCsZY0n0XcFVGFB0BKYQDVl0pPH88cdvpNk7zMlGroVgs4rSBzVYKT9sP/nZnWvri5C/Kt2bcl87Tmcj7xubbFr7vlqbflQuo+fIUuFWKdF6Fvez6jI7zzc1nDZB8YMLRpk9o39ObGV8HmTvUaipqTQjXA389jILVKUC531f626LfmltnKKXz26P+Dr0b2MAn0gWlYBgnNIO+IvzY9tDgHCFv8TWK/zvoK633K7z8Kfal6dB2yzL7EhecRCRIfL0OaJ1yH8HH1T14V2w8QFRGpCHfqQCrMjJdST6VWlMy1m7E6xMZ10Fmx4GpE1C606N194mUMKprNDUyCe6CR0CtiY2M+/LD1FRK8VsbegPVyT85YwGeGBlHe6WAuZEw3S9kegkgH2dijWUBrJjVjKsuXIZ7Hj+EgXltWNPTYspP+lJeT/JmkuB1BQVCUBqzItYgcboLVMIsIvrULIWET51buOKul/S/4YYogNCt0xTSRUcaJe3G5++IVHfvmN4gyO9ColQsjEsyeBu/oODJ8hIFYEx+ltlxF5phpqwFPi4oU/xxkmLpBv5waLpgyABhwittQyKA/moVt912G2796p1Y278Ja/r6+fZI6VjOa3BPwbojqRE8kJnKGLGa83LTl7+Bwc1bsXh1n9VB9uaV019CXfHGxiQOnMn8EZa2842Y37H7CAbEuK8FeqjqHe8QKLwC5omtI1dtRTkSLMA5BOWVqsOEeu6CvkikQ0RAD/keuHyKEyRpnwvAqFqHNxIi58PJzetEIF5w6gZc/Waa/LEwFKQb+ISr06mRWa+i4BuudNqnHVuvqfqKq2LgCjSsIZkvWeXUUeD867eHJlfK6X5vaZIHqfHesIdvOlf5jZO7waS8UwFN1IUptMqM9w0ilLYjL6vsSODlh7SzSJ2aTnCwAd9WAf6AFZufLO0pwDer9wxmHZIS5UIK312H3j98zuuZRCujFzylL2nmQQKBBuNyKxUCfXPbkAiB0fr0XMc9n+klgHyc6azFnbhh51NGwf/ytcq1SiERqM5vx4Y5bU75NBGBvo8EWAfm2lo4/AAYnSko8B1YEcuppT1+MguUN6nTRBmthYtIuHBZQOfRZuqWkuh0Rcr7/Kl63c2WdUcl+Pyojiv5I02sz8tECDT0c4Pt7MJGpQ+CoR34JM4fSCEsQJ5iwzC/nXw1/r47N9vHMTdnbqAMqn+oE/XYoPuqWq2ic/Fas2ixhioMLwJwwLojnUYoffN50aBPj4XmRfauQLmQ4Gg98w4ZZLMRIc0Y+GYPqKQQpU09gVDatM9danx4a05fmc6V4BDI0mYC8giBpiIFn+F3T5cVChzp1awGGlydCqy6T1x9f6ZOuOsHnYc03x1P+7JZIYno0oI8/5Du/mvLM2oqeo0EXAmg4NdaCiypkM7pWw1iwQMtffjgfRjHQaxLgVffoMAxaD9CdRT6jPvbnZ/gdXPzg00o5eU9HU21R/hzVpfzhUW2b5k1JFKnYB7ocfAFTt70NnXqg5pPXTC86G0t9EUeqkHog42vrw2pPaGER0Bfkm/rjevx05RJ5UIuCSYhr57YyCTaK4VAUpym07+ZAHJps4d/M6lCgfuS75Mpnfxa0idZ6m4q4gPnLcWpM5vw8qVdeF1fL4CYTptdiJ0k1YLIAcSYj0t/8rrXaiRfAPft2oVP/cs1eHjPbktDuP9S2v5GoU/N3NWpEPz1lKbF5fh12k1YOGW5TViYd6gkxYInV4XFNQJ7eM9ufPr6a/HIA7YfXD48niQ9vLgLHeWVSh84UKpohPkieiXvlxV5PSGvClD5Ulv1Dm+Qcuw6HWNAd0gAuGCV1qnaSQz88t2IAkfqhcC5ePb73kvOLUGsPR45Dgy7pEOg5bSHgFWVZ2d5GrQTBlD57aH0TTYFiuRPOld8QJBwtAUFmrYObXkeXvcTWhQLaj37BASsuocpm4iNATOEgfqGAfy2sKtrbPOd6H2UtrEHiNXpgnJyImTrdFojNBAWHm3NdwTwCzjAngWxkn5DoQQ+0BPW4wN37G2d/niG9hsGOPrAOT+QumNsU3jQCut0Jciu1FoLS1wiGlB62ZHFhwefds9zcKPu26D41LYA0/LKoXnxCZDDlP+AY0Ug3MNMncw4cH1lvcbw/cKt5MH3kJcL54QGfQx/zGlCJMLYNzj1IT5u3Fhw+s2TuTs7DkucLOklCfJ/I120aibWz2l1FNG5iQ7kEdqYDyARvH9k9uMSrnQJIKfPJHMkD488cB/e+79ej1rNeiBY09cfB2R6gSIF9GKhrblN2XxR8K+nzCLvS0GY+mLSX/o3VexwNniHRp6v+SX8AcDD9+/GH7/5CtRrKszvittvR7VajUpuqf6se5gIeaWAIFxmtIcLd26o/vIBSE6bAWvhH2osYgFBfAmANSgUXp40bbDtsUuXA4RNvS5Y1fnKsIPjXThjzEo8Yr+FmkN2Ifdpk2iEHkWfjr7u5RILnDzadj66tJXxkJzSxzIFVYDd9AC9Uaoed6S5BBDQg5pLl/EFLoCetjLJY94jwExKq2fvblvxw5QBlDL8NqkaBB23xMvn8D7Nd+uzZblPwj9MCO9fwws7/FQpLJy/AW1vrdGJ6lTTdTJuvKUldwzgCHSqw3HQgZB8HGNu5bw3NMTSHnooH7RdAZ8B3wl8XWajg+ztSzGDbb9u+rfPd8y7A5CrRwSDSu1XKO1wb9M0Aul03oeB72Vh1Qm429SwTrtquA/C+SOjfSV4VRKh57MvbY+HAufGgdOR1/RDTiTSNIGsNZyxS5PwcOQGAbMpkxLNhQRHvfzJTKKjUsSh8XqE0xc+vSRBPs5kwSrzjCnPX7eJQBqjaatJzQNnPzdhPrrv77oH9bq2+q9jz/A95n31rw8rHI5UkmRR8AobPSiureA3FkciEZHq6DdjRiWulMqCh1ACpvLvH74H9Vrd9MNdd93ltFfTtL/zfpf+5qT5glPWRmQLQRIFIH4bU0qbXZBsnb5usEQotaW1H0uCygEN/cC0h9aZWLDqAn7NpfD6UEBzyUoFGdp+O2kfci4PHfBNAL9/QODUE2JjT40OaShw+55LO2UkQe7Gyku0dJZvjJcyHj+cgxqthwF0Th3eruiCadtOOz7OMYSV8tJZzt9S2P/Tw5Sj9yz5ORl+bx5VBlBZ2jkJIrXmgGNIh+9bc9Phre8xtQ4wfKtvhdN9paoH9JCRt8fJdcG6QzvXQfaFK1NJcwMdce9fnxfh9KHkbypB9sKgTm8SUtohiyHghxICBGoQUOu+PqBy9LnEqUEkSahkkAgRCIX0txzQZ8CxaQ9i7QzVJPVNLbwnsdZw+6NABJOIcI2IGfHbddWXtotgbtJ6Xa55yfJk7taWS+UCh3ZOnvQSQP5vJHaTYBYFQE2w8OPVOmMxOmF9CVyprVGD8DbrdQObUSyWkKapF67Zbiw+f/Zpzp0gQFiGZUMJS55PZhPdtPwNxALnsO3+GzEjI6PjCk+qk7+6cdMWFEtFJHk/DA0NBXUGLsoAR4/Z593yROp090AAWjc3bINeyEy+AdkIyuq20XYZ3Vznq9W0QzdnPj1a3m+jbk/i1S8RHmrsBsvlu/TpV8EZHaoytK/Uv770z86DiIEr0yZ4NGhHs/raiAdVcQ8CSSD5dDZWQfsorEUIq3aiQY+ug0pcDXAmhwkeFLu1+Mav9j2b7wRyMfNQMnzD2Wi5uUppUwmyz+sx7Qa4A55LggXq/m0DTe54Whqx79qn7dbpgyf3PUCveyHo0+V8gOOoIjF1usIFIp2mdUKtN4HdibQhpV2f3n4tXp0kj85Pv1KzZjJ7RGzcGJwZzFl9qxKoQeSHxlBVQRtAeu2ZCpQzTxJhfS/bshFVCi39DeoM86xE3G8PWLCq6cb3Rz8/fnD1c93xdBO3rApw/U2fEtr54TioU+q9NhyJQhIaS55M6XlTsbjjjjvwjne8A41GA29961vxrne9y3n+R3/0R7jzzjsBAKOjo3j66adx4MCB54u9aaeYBJWXFMPZLEkWfxJkJQ/6o3PLmishuB/0qvX9+Nytt+Ir3/gO1uQeCCjFgEe98Xk7YiKADLy+nPAWXEfdIb9ti26Ukv+Y7SLnMkkXVip14yVg9vp53cYBXPXxbdgzfA82btqKarXq0ANcHV/1moAjXaIbtgOQFDOBMZ5toguQCQ0LKgTb9+74e3XCBU4x2jQFoFnX6ZSxnesAwUSD8phah/CMETVhXhLpSHjplTIz3vSWwGlnADltJ/pz2K9fOE89vhHXhwVc2nqj81VjTHMcMGJnBf1+uAiA7gYq3O/K45+2x2kXs2HrMvpJlksFdZ30XU6KSH1m05QwtNW7FpRSwB/97pk5SfnnfPX6N0qsOzfQGwGfLrtaG9o+Dyr/2JI03U5/HuhysTFMTTvdUeVoq3z7RAPH4A2h9ysfxLrt8tvJg3K3rCNEYdrjN5S70dF/c2oQ2iuHL0FWHig86a8AGBL8fpw/8Q+MdCmS3sfGgVXdt/yMdpPeC7n5w+s3R74F0H3KzffHQYNyz90xMa4MuYzdDAf9Db7tUx9U6Wpg3+DUyE6m9LwA5Eajgd/7vd/D17/+dcyfPx+Dg4O4+OKLsXr1alPmn/7pn8zva665Bvfff//zwdpxpYf37Mbue7fjwlechZaFa5xndvK6SZ8Q/VPSrp3D+Pwd38LApq0OiGUlRAivmwC9cIVWxIODVfQsX4ejTPjrmIrFD/bsxsO770VfdQsWreljT9n6V2xR3HPfbtz5ne+if9NWrFy3ccqwtYDSl35o1w70Vbdg8doNrDTBkeqYK1XOjZjqaLoQr+nrx5q+fhQcPVn+t75eopuYCP5vy0oRLggUaAXAEdOT3ouQgYBXx2YitvEIAervVpcxUmuPtjFGJPn08KXpDA8P47P//k30DW7B4jV9gYqFkBKPPLgbOz73AIaGhrB+4wDYPoSVToceP2QAqATDH+2rBGFbFU+kTqIjHx5KXFCu/m/hHaVdSFzwpXkh05CVXnHzih6m6AZKpbn0MBGqhshwzWDa5htecaAvulXR9hyLNgHfgnyz9ObDV42xdOw6SdcO7pAT3CjpfDLGGjiGbRNOnSZXhOMQ1hlrv+XFHDScSvMDlYe+/HEJaRMK9ABHKUdArL3x40c2Nm0c2qAgzuVQqwcc69Cg2iGcf4N8D/Ab1QMPIVvAb/uRSspd2u6/NN8HpvSQ4R9r6JKsU2L6NmynD2L1Ac6fP7Zvw5GgawjlOxwH0ie0PUA0CAmrjmPaEtbp9zdy2hxxc7Dx2lmMAGEuMuDJlJ4XgDw8PIxly5ZhyZIlAIArrrgCt912mwOQabr55pvxl3/5l88Ha9NOP3hgN979ttehXqvjpo9ejb+9/tPYOFA1z4UQgZGab/2v0yMP3Ic/++3XozZRw00fvdoa0h3rA6DXM9ATXQaTVwgbccff2PxFIU0EhoeH8c68bcVSEX97/afRP+9siFyflNLV/DiqF0LReNvrLkOtVsenP3o1PnjjzTh7aLMt712oDw8P40/feqWp8/3XfxpbFpwTbCx0EzJSN7J4+KAiZtjh08ukdD5aujhwXhJ8SSwnWdWbcgDuyHOauCVDwIJYXzqtRpnXNS5EHHQHagp0DB0aggGrqnHa9/Lw8LATgvpvb7gJm08526nvkQfvw7vf9npM1usolUr43K23QsxZlfMS0g6AZv5vTK3D7xN7mArQQZBrAD8Lyl2w6h+kXP1m4ejUOrS9WvVcccoKmNJU1zhx7neJqzxCm+uT8MAats0HPVb1wF5xcuDXp+fUQ75BunJRIEx9SUfVHSIADswzup45cE175YCVBmrgqHgMN/6gLvKMjaDpHQQ4FTIHfDP9FoJY5LQ9IQq3XpP3HeCcr4c+vqHzw+2rvD3BHkH61ggjtM6q3xYLSlkJv0/b48nn0W9nIXHnj2ln/izz+oq7QYvNKmGekfHMeefcpdn2h1COqzPsKTUvOSzAah7E1DqY+my+hw/0rYoXU0Xq9oQNUfOb6TRe8s20U/L2RfbQHLYoFaE++cmUnheA/LOf/QwLFiwwf8+fPx/33nsvW/anP/0pHnvsMZxzzjlT0ty7dy8AYH8eG/xEp3u/+y3UazVkWYZ6HdjxvTuxcMky87yUClRSgQMTDbOQNqSErKQ4XMscX8j3fu9bqE1MKFo1YPt3voXeUxZDSomnk1GMjIxhjCCvUipQGk+xb6SGpjx/fDLDsziCiUlg3+G68SYwPpnh6eIYRo7WsX/c8nL08CHs3bsX+/ePm8nekBJZJcUdd9xh21YD7v3unXjlwGpICRwYGcN4ITXl9xbHcbSeYf/IOMaM71WJu+64Iw8JnLfpu9/C+lXLUZooYt/+CdTyDhirZ3gmHQ3q3PG9O3HhprUAgJGRUYzmu2wxAfbiKEbrGUZGxjFeSDA2meHZdAxHiwn2HZ3EvsN1lFKBWiPD3vIEAGDfyATG8ggt5VRgrzwCAKb9k5lE0pxib70EQH3EIyNjkACeLo7hyMER1BvSjoWU2FsYM3188MAYjiYJCuMpShOKxv6DNRyYaGBiUuLZwhiO5GO1b9846pmqY29xzIzr/pFRlNLEtNHNF6iXU7Tm/B2cmMS+/TVFrzRmAN7+gzUcnmiglArDHwDs3zeOhlTgc28yavJ13xYSYK84asZkZP84jhYEsortk/1H63j2yCQmM4lnhRqzCTJv7/3ut/Dq6pq8X/cH30mtVsPX7vgqqr/Wg7GCkrnsTRUv+47Use/opFoyx1I01VSd+/ZPYKIhMVbPsC8Zw0RJ9eHI/jGzczvtHBlFpZDkYz9u25n3S0sxwd4sH/tDNewbV7cqtJ0j+8cgIdS8whFMlJXfTz3245MZni6Nmc1Jj0WlYPt83+Ea9o02lNcawsv+fePIAIxNNvBMYQzlQoKRkRGMTKrvaqyeYV86hvFiglHyXY1NZnimOIZiKrDvcA37RxtqzEn7dV+VyPzWY6w97Oi5X2tI7N8/Zmnr72dsEvsO1lBOE0xmEntLim/6/dRJe0ZGxswhQtOuNyT2531Va0i0NoqQRwvuN1sn32zOt557zxTHUEoTjOwfN+ukXmsA4PChQ9hXcNtzpJZh/37VV/WGRLlWRHG8YMY4FULRLoxhtJg4655eI4upcNqTZer7PFLLsG9k3Ky1us6RsUnsO1BDuZAgkxKT+fcZtCcdxZFigv0joyaAi5pD48gknPVdfxN0HKSUaCun2Ns47IzDWD3Ds8kYxksJ9u8fzV1nwYznkYLAyP4x1EYPAwAmMzVudr7a9XpvOmrWK71H6Hmk56ym/aw4itFi6vCt53OtkTn7kp5DPm3dh3QcAKCi88mcnWhkaG2U0FRIzPyh7RydzExf6fJ7yxPmOzYp/1boGEspMVFOUakVsX9kDPW8r3TfHq038OyRSSM80d/+vgM1s4fRb8Kvs5AAe7MjTl9NZhKlWgFjBYF9+9X80bSfwRHsH8twlETo1XNlZP+4a/wbwQflVKh9lszZRiYhxlPUGnBo6zVu5GDdOWWNT2Z4pjSGkf0u7XojQ0u9ZPbYQ4cOAlD7crmQ4PCE9W5RzyQq9SJGxiYdvDM2mWGfGM2/Vxt0ZKzewD5Rwf79E2ZdelqMYqwcBiY5kamnpyf67KRz87Zt2zZcdtllSNOpO4k2aqoG/rLSppedgy/+642o1+soFovYNHQ2ZnR3m+eVYoKmYoLkSN2Al8lMYnZbCaWxScfR9qYzzsbt//Yx5YqtWMTWM8/BjO5uSABzelvx09ohNBOrz0oxQU97GU9nR0yoxtF6Az2zWzAxmWG0MG4+utF6A729HZCHxiGP1M3CUEhUP/0iO2ykA5OZxOzWIs4//3xc9+EP27a97Bz09PRASuDJyUNoLlqA3NPTjqO1Bn7eOIIWEt72/PPPx4c//GHUchpbzjgbPbNnoaetjJHkKMbzj3S03kBPT1tQ5+a8TgCYMXHQtKdSTNAzqwWj9QaeyuvUNJqKKQqjdRwpjKJcSDAxmaGnpwMAcDAZNUEumnIaAEz7JyYzzO2uYHarDW85o3YQmZTo7WnH/lRgxqzZeLx+0LS/p0cFgRmfzPCzyUMoJAK9nRXjYmu8PIbkSB0TjQy9Pe2mDfvFURyamERvWwk9nU1OfaU0QbmQoGd2i82fOIhiIjC7tWjKV8br2CePIhECc+d0mLKjxTGko3XMaC6ip9vSfgZHUJ/M0FwqoGdWs0O7XEhQTAV6eloBqIXqqcZhlNIEPW1l9HSo9sjDExgvjqOeSfT2qjH7yEc+YsI+byFjpvqnB5vz70RLkM8//3zIri40F1Mkia2z0TSBWg7Gejsq6MnDjB5IjmKsnuFoPsat+Xz/eeOwmWt6HACge+IAmgopag079rpfimN1tJYL6Jmp2l8rj0EeqSteSTv1nDhab6C3V9WZSYmu+iE05wC5t9fSrozX8aw8ipZSanhpNE2gfnAcxTRBPbO87JVHkGUSo/UGZve0GzA/Wm9Gc1EFPuntaUVzMQ3meG9vBwqJwGTTBCYPTeSGWLb9uq8qZH6rPrHfT1MxRc+sZtQbGZ6oH87rbKA3/36Ko3UcStQhQ3/fgPv90PwZ9UNmTdHf1WQm0Z1/J+OTGXpnNqO7uZi35zBa8rb19qr2a74BYLSeoaenDaU0wdPyiFknJzNbZ8cvRs1aq+tsqTXwi0zRnpjM0JN/y3qMC4nA0XqGntmtaCmlzrpH+5a2J8vb2VJrYG/jsFlrdZ3lsToO6L7KJGbm36fbHrs20XVsdDJDb287MglnTdHjWRyt43AyasB3V5P6nuk46HFrKaWYUT9kQJz+VpqLKbprBzBaSDCju9vMQz1f/Tr1epV646nnLACM1hro6VF9qL8HOm61RubsS3rcYrTpONB8vRYCMHOoUkzMJdSpQQAAIABJREFU/KHtnJjMzJwFYNZ9n7Zupz/G3c1F9LaX8UT9EMbyvtK0j0xMYrw4bngZrau1/HBh1OxhgAKDPT3tQZ3FVKB3VoszxvVGhtmdFTQVE+yTR9FUtHv47NktKIxO4sBY3QBNXefe7HBw89Hb2+qMg+nDjoozZxX2KGOikaFMaefjebQ45vA9NtnAnN5OdNfUekrb2dvdZPZYAJjR3Y1yIUGlkKA4Vjc81hoZZndVgCN1B+/oOp+RR0zbAbXv9PS0Yq88YtaI2bNb0F4p4mRJzwtAnjdvHp544gnz95NPPol58+axZbdt24brrrvu+WDruNLq9f246uPbcP/wPbjo3LNRmL/SeS4QGszpgBb+rciq9QP44q1fxGfv+CY2Vq0Osrm2YK7h/OsmbewWtV6NRZoSXghZkaBareIfPnYzHtyZ6wPnuqWZZxrkXu+51yLVahWfvOVzuOOb38XA5q1YftqGuGGGEKhWq/jHj2/DA8P3oK+6BcvWbgjaod6ll2HhtWdKrn+crnCuGoXznvInLB0/1vYV14ev+X9wdelGOwPo+HshqPMry1M6Kmwb/aQv8+gY6jzfT2eSALXJDF1N7qcsAEw0JBY085847+ZMokTOpdbCWLVHh33+3L9/C+sHN2P5aeGYrenrxwc/djOe/eH9GBoaQv/AIO594pDhydbPqw3QFnB96HuwiOlZar3duMrI1HUKgPUyAuSqAtK97vRVMCxFn1M/1/UcYS7DhcuLVqMSzCQPv6/wN70iple19Io8CSc5AN8ji1NT8P+Ynmys/b4Osk4xS3vA8k3paNeHodGupu0FFGLqpOoAkmsn6St9bR62J3INLum1efjt2dEh1+MBad6gUYA33nNUQ5hbbH+/4uYTVd8IjA5FuC8ZFYsI7UR4UeOYO33jCYRpp9bxPZ5reToc2pVjbN/kVF04zQN2yYLtK1pCqzUE+tp6D09cF5MQVK3DbQc3DnrUHXUUrccNOLu4ZOhaCu780a3g1CCEcG0jVJ16jFzaxlMN04lqHGK9+cKn5wUgDw4O4kc/+hEee+wxzJs3D9u2bcNNN90UlHv00UcxMjKCLVu2MFRe+KSNvpbPbMaenx/xnorAVQ/9MFylXaC6qYrSglWMblwYQESA+ejyiR4aSYioYj28v6hBzdoNAzhtwwAAdbK10zbUrAwWrrwN/QNVdC4+zUhzbdvcZU7/tbavH2vzw8HEZEbohfy6VrNuwA1ug2f2N+dnBqDgA2TB/OsADPe50pUj26TZnEODMX7Bsxuvn3xfylrv2zd2EHlbmkvujYsQKuhJZ1PRy3f/1TQAketU20rtpmtBTLVaRfPC1ZhsSExm4SYlhMDavn5svPBs0w79sgsi7UbkWjKHddLkWz3b+eGWS/L2J06e4oca42meldN+L0Q001e6TincrSQG+DmwSnWQNa+mTl1W2jkUpc38osmJDOi1gPbb1LTd7ypqOEm+CQpKKUyIAWfO/VvsW3YBotXjpusBfY/2YUYexICmpRHW763ioN46KBV2TgrdHxxsdNcxCr5dEvxhwucxpD298MQ8beJCzcmPAP7jou3yaCjLmKcFYcfUkxRrGsfSHde8qTnr7UuCKStl0EZapw/4A7KwuvC+7Y7Zw+HNq1x3m/uqWY8fpk76teXYwwOxtA99vsNWIj8EMTrI4A5BofGjqVPQL8Ny4q+FJ1uKntN/malQKODaa6/Feeedh1WrVuHyyy/HmjVr8Bd/8Re4/fbbTblt27bhiiuuYE84J0vSE4Y7H1tXPSrpjTiYdFqaEAVM4RdA63x4z2585mMfxu6dOwMjCQgLyNzF3G4UOmWSGNR4jdTSAZq4jZy+mwiBHzywG1e979340F+/B3t27wppIwLS8t/Dw8O4+cbrTJhszhMGlTrRAwLnsSA0PNP9dx3u37XTofrIA/fhMzdei53Dw6ZOToqoDzy+UYIeC+3zkvZQTGIRtk3xOJlJc4Wo8tQmF0pQNVAP6ZfSJOpGJ+bmjJ4ZXGAWboKcP2J7ILR8C+YAQ93Wce7c9Lu0vJRxt0B+/6ZCBEaUuj2ZRyccW53Pz/fdu3biMx+7Fj+godxBjN2OAV3dDdeXCoZ10sNEnB75O383dM+nS5JQ4NzuB/v9AFOMD/nXHOolPVi5dSduQ/OfscBBfLJAWJDWwDkIcK7yHL6ldxAyv2lZd001ZXUz6bfvL9e0vClC+oRZ9/xhsKHAedAXQI0p+tB/g7s9oEWCtdbkh/uVvxceH21AMOu7Y3TIANMYPghoM/k08IkriLJrlDsO7lzTiTPkNuW9SiUscPRvJgTsWPuMc4d++xb3ios9qASZcmMxzLGTAL9GSIQetEw7A+JTGx0ex+f/vKfnTQf5ggsuwAUXXODk/dVf/ZXz9/ve977ni53nlLjBhsilFPSECD1hwrLcxIist059D+/RIZRruOX6a3DT5z6PygLrDUSfPv1Nx90QOOkV2YQj14E+LfN3nnH/rp3407co3gDgG7d9Fl/+8pfRuWQtKR2PEkS9JNz00avxDx+7GUNbNrM1O2BdunmAuzBQLwk0BPUtN1yL22+7DdVq1fGqccsN1+ITn/gEzj//fHaxoj3oe1UYrWfom9vqbY48mBQCGG9kmN9RDp5JCEdfS42HcEI7KxqJXcRoPiKhipkNVi+uEjCGP5q/sXoWXVBLjOcMAaYs04d6I6JeHFzGQhWLhgQqBV9Srum5VapvUTqLuAaaoeqFrdMfZ5/28PAwLr/0EtRqE9h2/TVYbEKYk7o96bSaLZ70zxSR7GZLmxOT4MYWDP2nhI2A6NZJ5oGw0kX/++HqFKYPiRcHItUKr3CF+YcFq2RDddRAhN+HrlcgSkOSMvRQJ52+JV9twKObHPBNpfCkr7SEzufFGc+wF5wDI82nIISqAPlyWHpAoHU6c4vSNHxydXqgHGGi08ZfYbRKINdOnzbtQ1eMGvJtgaPPjd2XXLWO8Puhf9O9TR2m3DlL2xkA+wiyj3x6hh86xm70Om/chPbKYcW82oVcKBGP1Cl4PMG5gRUIx4zS5tqSiPAGQojwltq0M2Rv2oeaky09LxLkX6XEuZMB9MflLZXRCTP1Bx3QSIT5APaYEMoZ6vUa7t2+nV3lqESL0vY3FtZHpv7guC8J4Yeuf+24525M1usmX4d4DhdWuljC/L7rrrtyTxgqPPT9w/eYjcLdc12pG+vDN79acnS74IWgrtVMCOq77rrL5NdqNQwbKbLeZFyQIPLOaaYgVqhN2QdxFBx42RAS6G721SCU+z4KQIXg3QaqazRmPooIKCfPaX36mev6TqkpTGaeykj+u8goiuoF1eHRHLUobRiXeFzgE/8gJaAss2MhS/2kD6t07I3UWvCu8nzVmPB5Pk/qykvHJAlhHrvJcKet7Wfqns4FWhoghnzHaMc2GaqmM3Wdeo6TOnOPc1JK1oVg4OKQcMPOMViXX05kQNAyNvGu/8iNkgBZP2ydrrRdsH0Uk/Bztge0nTSf2h+4Ul5X/YtNzNgKMn9c2o5cMDrm3J7ESdspX7SvggOPQyeyRzBlo7QZvuOu8ui+6d3UmrU/HENOSOAnre6gnvu8C5BzitOesL/tO2ydJFurHbHtgdtXU/Efm07c3qL39hDw82u0fRbWGRn+4BBk2hnb63zapmysZS98egkgH2cScBdKgF6rh7HjuRCLdgOJ5bs0EvKsr0pDKJew9fQh9zQdAd/mOaWdG0P4vNDLLXoS5qQ3gF1wtpx+OtKCBXvFYglDQ0PuBiIikiQAQ0NDKJVKJjz0+oHNnu/UfFOVvsQkXNjpxKYAjIagLpVKJgT10NCQk+9H3vN5FVKiXHAjyWnDIU4NgpcgCzSVUnZhL6ZJMD8yAJWCv3l5gUOOWacCmmEEQLU5uBJkNZ9nthSD9tcbmfEw4fMTuzL3N+l6Q2K8nrGqMbp+ysuklMaSmuaresNNPVQZEbnBih+W244ypz9Maat5ouZogYQwpxsRp6cb8Gy+gdh1vzuvQvmf6quMgAy/TnVAIN8GWydAr5cNbahNuyGBkq8LD7suhVz5wTly2vBoe7z6v7kDjCMRBwjI9lRGzHs0n+PVrzPMC6TwzO2b054pQKytP5wfPk4oJLSdlF9ufZ/6mtp/pv92/DoDLIjV64Jfp6snG85buuZm3sGGrdMbb14Q5eq02zo5vmlfee2M7GNCPyP9zR+C6LrjEbGrqc2SVvUg2EcYsMr1t9seQjoyDjbYSgjJxRS0g9YIinkI7SSM0GjaGVKJ4xH94kmaTjo3byd74k5I+kP3T2v66i++UPq0w5LqOtgCwTV9ypvG8I7tuPyCc9C3cdAxGKSLH3d95k503nk5t2Grvx3OgvzBwSo+cOPN+M7/vhV1KfH2N70B1WoVj+0fg76IoZIkf3MayL0kfOYr38CG6lYsW7uBSJDdRdhVFZCGhi2TmCt8mq9DUO/asR1XvvoVBghXq1WVf+92XPl/2nvzKLuqMv/7+5w71JRKZR6oihDIQFKZIEmFxIANNBBpjY2KBidatG1Wa7++Ks4/ae3V3eiyF078BFsZ7FaEbrVJFDu0NiqDSEEIMthqXgUWBLqETBCSVN17z37/OHefs4dnV92b1HCr8nzWSu6tc8/d0z1nn2c/+xn+7E9x4oknBvuuhQ1Te5zUT9bWqwk3zslx/xgRfEEQWoPq1smXAVBQcC4phXmGWQdVZ8B85NdZiAgnT232BMeBWGFysz995CLGdIiZ8CMilOJEO2menwobRJ5QQyDWSTEpz64zH1ESB9pyOsy2BDkBLOQYaLa7p6cH//Eft+GWH/0EZ248M1tIGQ8iTvvpCjHmNqp9LTMPXmNescYQVeHDbW/1NVug2y1I5jBfSLDrTK7lSmwvSsxTcpGvX0mFDLj3rFEPI3C7ZTtNSfpjOeO5c5MeNzKEb1PI4ttiEjFziqeFr56bCM6U9kfvNPsmI36ddj/9XltOh7BmWn7xaTyTuPE0lQjmOeZYudp5p3i/SlZQz841owuFhG+rTqeUbKztgeMENrufzHGrThWIkJL53XAOjW40iMAlxNeprwvmm4RwNjlvHtWvzMKGk0mIeO20sVZOCd1X3LFM3gmdyxxnygntxjcSIiDXSfbzmzZGyTZcaLXmXi+hFSK3mk4ELvuO7l61GvO7T8ParnaUYgW3VsAW1h9/eAceuPtO5C96DTrmZ/bApr0g90ByP+AmfvMUIsKpq1Zj9doeHCpVcHpnEsfUSpVrFPj4zh148Je/wKqe9Vh2WhLNoqenB4WuJSAk8TDzlgaZa2u2OuW2or2IBUjGb9GK07G2a7LVj+Wnr0mP60Q0mXbC7nO5AnQ4AqJePfshx/zIJLotnJY3VsoTvokIlVh5dr+8UwQAKC9Khy5nSnPO1hQDIKVQcAVkAv6/xx7CjtuStNGmVp2QBKh3WTSjFc+/POC3xtF0EiVOdAunt1pt0deKuUug2wLAs8E2y3PbbkZpSY8lrWE1xVrAcct0y163rgdq7qmY0ZbtlnDOfWmhbj3sp0gXKn55mbmDtWMR8Q98y2bXMoOwP9fv2eOGsFa0nEWRHmfH0KyHaROQaadB7sKGHyv9VoE3dzAFR3PeC0xjnrlQpvn32xqr0PHM9MTWIPN1hrCfBfrqNG12zfvU3m1I+6kCWmtmbjfR14+uk9cg+5n2zHPcZ6HZHzecqFu6uwvhNt2VtYZ0bmfKMF8Bx8QieD/6c4AbDSJ7LrAFeAeJrS9rR2yNlTneg2vK9SLD/R20NtdfxKrqcyrwDHdbmCoqjN+tWqe3Y06ha42PypH9vLXcKWODCMh1wq16ktVa5KSKTT7hbJDTsgIH7BsgZI+lLzpekNDCgOXUd9PX8ZVv3mrEHB48Hqh9hmsa4T8Kgg8to+W66N7eXvw/f/HmNNX0F2+8FSvnvsoqwXzABxamVeGOrPbp41zaZ10Ilxu+nt9qII4x3bEdDpkXhFfb9oJBoxR5jnv6LNfuNyLy4jlrmpjjSjHxn6sqBdfWdMcDD+AT78nSRm+tOjTqejkb5GIuQudkO94zEaG/4sceJkrsr80FTKZB9h/IXPzSbHFklx1VBXDz9CQShhbu/Ie9+1sQkuQE7kIouRSZdNXKNlsyy65lkZxcy75wp7d9E62lcRxagONDaiWCFnNtKP9cty1a0IxB1sIpLVs595uxyrD7xjwCjQdrMJwbIyx7wk16Cu+kFnofNLdg5rFEKPcX6QqmL4W5wLPbnVqWEdcfOwyf+buZW/ipI5RzT5idCO3KZXX7Rjo5R8DhhFhzHufmxpCyRN9rup/2wsav0xyrTIiDrVio9lMbSrl1uqVz7Q3FAdbXkLlQsfoD++nLhzAdTEDknuHVZ0C2crfK8MbK+E5WstYg22dnIeSUpz4zbkujHf71o09z26GfqZxDY9ZPphxvjq5eo6GHbgMgNsh1Evo9tXClnAmfiMKhegKTi3cDsDd1MoEkwo7fIn0Dm059AwMDeOj++4yz+NikQz5AnEHg2q0nueS4f5mZTnGlUgkPP5C1K32AAJYNcio8OA8+VntTPR7SonGOR/qmNyEi7D9S9oa4oznP2MPCHYSk3IgXyAEgx7Rj4YwWRoitttspJyKgKe+XQQQwJsKoKIW2In/bu2287xf3ojRQQqWSOC5qhzTzoVkLlVjh4ECFtVl1u5+Gt2IeD9xvRgAOlSu+RoQICvZigIhwuFzB8jmTHM09/3CIyI7PbZYTwzelUJQIrAXGxsLViHNYdsJkH9dlW0NAvElPUBhkytaNVM6iQe+GsQuBKnlGcDaFVfMDe06x62EKcdqYiRamHwRxcyrMxbhRT2Rqis3++HWa85u3SE9bZNs3u1poF+6wpRF3FvH6L3NXMuhcGDzO1531Mys8lOBlKLMjV7toPttUOob8uLg7PGat+tlpP2f4+5TTrJpH3KfsYGY64bHiF6Hm+bajo33uoOHPiNhkK9x96vcnaZv/SXU3M+KFWG/OcKsy2uIusAAdp9o9qleDfrs5wVkrG7nd1UZBBOQ6SS4YwPy59Xaju/pML1LnaGhFbtqGabSmxrsBqvXlIvITSuhXZTv1FYtFrF633iyCFdZDHq6mvZi7ss9e/Omcc2AyneIKhQLWnMEnh7EmM2ZiM+v0oyQkH+UYlR4nsBZyvLlCIfId717BhGaLqit27zj4iA8KtgOUZmpLINUmMaHbCJ5pRHKYPAEeSJyuWovMxpHyNdEbXvlKFIsF5ByHRj3h10opVnhFR5MdrSJ9wNrl+FoJ3R+wmnIiwqH+2LuX9IO7mHOFOPJsp8MPB0JHc55b8wRsv8ly6hqs7Ii515Pz/eO63YnGMbLOdU0d7LIGsxPU75NXU1hL6q+aujjXnH47qIkFI8R6wjfniFl99WKXw6jTFChTKcURepTdVoDfxXLL1v002+0t0o1vmmHUWI04+eNmYtqP26KNK3wz5wwx9ub7TMixyyGADVtnQXY5zMdWw0K7jHnG2FgBrJO4frYlb/l2s/hTo182Qk6UmVBuHrd+Y2tB5lc/qMkI/DHRbXOPh/rJ90cr0NwvqFQ7bUskSf+TOPGDm2+E2p05AJIl2JB1vl0INxeF+tNIiIlFnaQXgHmjG0Is96D27Jd0We7JgQVYGkvZnEMMjZRrT5oWR4m97T9d/x3svPdn2PLnf4bpC5bjxTQ3O799Fnrwcc43oYeZuUq1HyDJa09PD/7vv9yK+3+R2CCvPG2tVU+l2j/OtpPf2uXb6mY8o2qbOfvcjqYc9h4qWccIwKz2Ima32ULrrEm+gJzYa/k3O1HEanPjWLGCMwcByMEX4Am+Qx+QCPu8CYTv6AYA/ZUYUxzBcf26dfjOd7+Pnb2/tGyQQYGHaYDWQoT501pQqhjZEoF0gWeirxXP1pjCJiPT2wpw1wj62nHLz0XMb0RJ/GouS19bMYc5k4pevR3NBStzpl4ce8lJjBuMu1ZDmhxOAAoJsdyuR+aMaB8368jeK8SKLME+MiplQ665bTTeWQ8+3X3r3vTnA/McM4GR9V3Fzwdu4g8urnPO9INg7tFYZbtKtubSFr6zDets3jOF2NDuGyc4mwseV+nCKUv48bbxf9vqq6NFdOu0riPzt2IEN7N9yYLEN0kwlUWu06FGKW6nCGGbaqtuf/fA8+dg6iSr7W65YaHUvGaT437htqOjXWuqWLMq4G2TQ+YbXH9ME0w3vnbaV+enT3a1bZkk/dh9vujFp3FY7wi4mu/0/OpuTTrO1ffOpTKI5r9xEAG5brIf3SRihaNq0g4412j6oArcAMaFpO193BvAfOAWc4RSxTY/MB+F3atWY+miBVi9cJ4VUcI0g7CawT5A7LS9uq1WnFB3pW6tvv1zlp+2FguWnZ6cwz0Q3Qe882r2082Olq2cnWx3EaEcK7QwQuXk5gIiHPH63ZwjTGqq7VbhtJwR8cfjwPkcRH6SkKRsYp3l8hGxiUIKuYgthwieZjUXEc7euAFnb9zgnc85F4aY1Vas1mubO3Al6GvFS50NoK3JX2VUlELX5CYv5BwReaYnRECRaTchEaB8Z7dkfN103QBw0pQm9Ff8B1Ks7N80cUjjNeK6nRy+BllBKXuOici3p7YJ2Fqb95QhrFn3iSGguQ/7pGQnfrUx8diCnC/ohbWilMXGZsyygvGrjbnQ/1/XGQWE8kTYUkpZC8dMrxd2gMsUAMb3QgItM4/5mQ6zM7iy7eozIXGomLauqYLZDlO/aIfU5Ppg/4bZe27csnKUyuYLV3ji4iBzfj5Wf5h+ANm95i4E7aL42NggLVByNdjXrFW2cY6pQbZLyBKcuHJD9tPUps3Vn5vyAenr3/mCNl/gwsDmKArIJH6dnBlEFs7NnhsI2W4NP/7jCzGxqBN9wVgrRxhaXueCSTTIQ9svAb4m6PGHd+CWb1yDnQ894NVpihfFfOR5bpsreL1VChjabKeUkHZC3zihxADmw8y8Yay4p4GJVb+txMoS2rJ3QwvwelWuXM0d8du4EZIt/2bmydSUI08IixWvoeUg8NnlcgRWY52YXtQ2exDAtrk5H6GdCbfWVuDTTLcVInZMZ7QWahZ6Cclv2tvbi6uvvjpNqhJi3pRm7xiBD30XUbKAmeSYgeRzhHZOQI6TPrU3+WYTbQX/vmvjYjdXFxMr5kzyPgvZjrcW85YpTHafKDz80APpuGi/Xc5GOknAAud4tU2OYELwU2RnGmSnbKMw3gbZvdcIpRjW+KY2yG77jHfEHA/ZWpvl2POBfW9qvwH3Xk5Q7MPW0nIa855dp2/mZbY7md+4Och0xss+IWNuMrexQxrkkOBsOwBm2ulU6KOA+YZRdmjHL/RrZXN+diw27IFdnxm2P6H3zDVmOsaZyqLk2eG3u/ZZyP5uFGWZbMNJSAwzEHM8GedY829u1ymp072vzR0B8zj5QiwZAigYTBnD6I+JqYV370iCLUzb/XFMRtJ2uu3O2p/WCVPe8QV+W8bISue001ydjYRokOtFXzCmGBeINJHZ++iL0bkgnBvA3LZ6bOeDafSJW/75K9i2bRtozmK3GQCAtkIO+w+VLBta83NzZWvZ4tXhpOfbPyaYD7OQxsSNTeoW4tltptqRUOIGuwhSCm5ueKo+WJrzkSVY6kmUE3qJCCe026YTdQnIxGtWCzk+JjFn2zwYRcYZL2SiMbXVNwsAgNmMaQgAzJ/WUnM7oojw64d34P995xYMDAygWCxmqblrJDRWERH6KzGmtdpTU1sh8mJAA8nYFt3MhUiuEdfWmog8zTSQ3BP5yDdJSRzual8cAYRf/+pB/J/3vA2lUjIu//ytf8MJi1eyD97D5Rie809AkwMA5RhWyLWIEmfBoJBdkwY5+SAHWFp4qs5ZOU+trt/4NshpsAW2zuxYSKDUD1YVEFbJKSd7eNvN4+scyqxDsQtKt5+pYAS7bLNv9nvlnWPOnZywZv1tCDKDza8cnNBpJYcy/re0vMg0gO54Z6Ykfp2uHTeYMTK39pNnHpwzw/20BCqmb67wHTA85O8x0kKs/rZdpx0z2o4+op/dIUdHU1qwFioB5zTOZMReTNgLmNBCgAggxgQr6Y8t2oYeQ4yokl5DflKQqlkkPKsOvn18lQ2FaJDrhL1ggGybwzlZ2/DEzL3glmFuz9gppbmUzRnFHKXlp+1zLl4urqb9MHMndl1O1j5OTjQfZpSeaWNrb6zqAaAa39c/HvKgNtGr8gEnDXFEhIFybCXEALIxDmluve10qk9I4kwmprYUWOEul6NgAhGvbIKfwvoo4DSogJ/0ZDAiJCm7BwYG0ggXQ2mRXUJjFVEifLgmMLMmNQVMRnibaiLyzS4APvtfFH7gB4aLqS95ffTBX6JUysblwfvvY+6I5PxJxRzmtvPh/FyNXzkGTprabP1OEZElZLhluI8gNiU5kgd1W1POE2yTe9591BvfY8YslBbJFiINoc+cd6p1ag2VD186J0S5deajLOwYp001BUS7TEODDIQj6XDzGzPXmW0067SFNds3JFNohMrzy3aPa8woK+bnigyzGlZ7b8MJsbYNrt3WoBBrKIW4Plh1muUpX4g1n21WW5xSskWJeZQXMjNTl+w3dp/Vdn/4hnMLgVQodz6xxkrXqQwB2SiCMSNOP+HuUU7JBOY8q5FeybCy+7rlcFGrzLrdvxvZSU8E5DoIbXNo5xH/Qq9OOAHtgLmVZZoIEPkppXUEgayM7H0+yjxS+UlRGW0xJvPAo5TtorOVy2le7IeTfS43yev+J4KIH+EgZIvGef5PacpZcYmJCGUFTzAlijwN1WAUonqEWD5yRGgCyNehQSbwJhZjARGw+oz1KBaLaYSL1IGvDtiwbQQ0F/w02yGa8zl2DPMRYW67rUUv5ggz23x74pCpi0IdNuJI0m/3nPFKa1zWnuHbbwPJNZGLCCdMdgRk7uFNyX3m2lQHTSxTSl22AAAgAElEQVSIcHCg4j/AVPa5eS7Id4DUzj1elJEocwC05wxewMgEg8B8YPUzaYMXmjEg9FqOYvqY2wejfYo7SS/rKeBgC0fLmwoYfNnBUGxMG806k5fqe2WaWGSDZbcvMNeyZ9jzdYE167CFOM5nZCgh1je3y0aFDfmp+HK439hqn/E7ZHWZO7XOIss6d3Cli/k7mO/Ma9YUvk1zAtPR0TXfYIVJ/XsHBUdb+ObMN+zskm454Sy+Zpxqu5/us5UpWwFRFHljpf/yzDf8n8EuO9DGRkBMLOrAWjmaFylpYQ7sjeuHWqkeR7YCtG4AwEgpfS/esOlc9PT0oPfpA2y7zBvJrqM6TanMAcncWgnJINwkH9qCDGlBvG1HZpJPNUau9sZ5TY9bD5OMWClMavK1hYC/jU+U/Ks1TFnI2Y2DULtNMaCF79rOJeKFu7GACFh1+lps3boV99xzDzZu3Oil5h66DF7zGxF55hWDMbU5rOLltq15B8UIXGS9HBFrOx6qqxQrvP68M7HQGJeuU1di94EjrJaXu6wISUSRGYWidcxdROoPuMQHeho6UrFjOCeaTr/eWPnmO9pD3YsCYswfYdtXvl8aPR9wNtUvD1RQinlzLnN73DzujyN5x/VDWzl1ZnONazKSPdXtOv2yyZjf7HHwhTv9Xim/Tn26qRjQv4NXhvG1kMkIt7BPnEizss3yzEUO+xsH66S0Tt5hO2tXJjyRlXnNuz6Y4/Z7f2xzkf0cNGNmm23ldz6MV/sLWZu0IIxsIeCaE7ALReYe9eq0TDOzqk1zFM58Q+9e+5gRMsyx8n97o5u+sGpck2mdZKYCd+qksHbadCw1j9dhZTjqiIBcB+bK0Sa7YIhZOYVWVG6oFXv1qaoppVfhtBPa/RqNCzYX+dF3zevfnLi01onpAvue2w60joe0II62QTl9BAybQ+9BbJbnN8u9n2Lla1fTSZMRHthdgADFXO1a3lzkmwYMRlO+dk0p4GvDx4oIiUDV09OTao51au5aIfCpqvMRYU47byfNMTNgU10PEdlJL8y21LHeAZD8pua4/O9L/VVbeHcng7fBJiIUc0Dn5KJ1LAlD5jsdcgIvUaKdLzKPMHM3KT0W+7G09WPe7X8unT94YZXTYrnHqaow4Bxrk7mUFxwB8oRe62O3HkZr7UWOsMr2+8NlV0zqts9VZNumeu0K6MlY8w2vPua71jj4dbrPKv07VFSWrt4u2zQ9GHqLnPt5fHO79JPMfINsgdLUlmb9CdQZmCvN3yTT5hqxpEO/CSe0kh2xITKOpzGjjbLNBtomI4YWPrBQCrUj5NDoygf6A85MJRHKAXKe9eYzlLUTrumZW80M6Ai8phzDlm0XbdRZ5yQ7ijTGnu04wrxhMnSiEP6HntSUZycX6wYIGvgH7LSMz60pyVrBZttN6YrX1OCyEys/ydeyBWl+wdc86P+N+pH1P+e05VCpEhT6XaG3EqugIx0XZ7ceoaelUPstko/4kGAhXPvT8QJRxCYnqa8M3sSipZDD5BpD6g0XEfG/c70mMMWcf49EBJRjhY6WnHOc+BiwANqb8uy97g6XrsvVxFO17W70ECLCviNlf4EJP6pLUrRiHt56Me74zAc0U0DVxyDv9IfsXbOkP0mdytkGzx6wasg6zXnPbEquGk5E6fcefOKT0LPb1QgDySKmwArfoXLMtNzEy8GU9acmZzzKRoBrikK2K0JkttERYgeJ+OEd14IjbAHRXHxkQqwpOPIa18Gfc/57/ZflSAfDfhhZf4JCfqBw+5mcjW2WOtu/3wfrA4c7AtxChVsIA/YOktUFy6xjaKWd3wrbpNQdN4LfL12nZ74RuJeCWusGQgTkOnDNIDQE44awbq7kj3xEmNZa9MKOmeHf7BWiWSuxF5KrSaH0saXLsG+P7MYIeZBre2AnnJs1gdp91u94JxZ3AlXuF62xdIXsXORHHMj6Zh1mbUXDQgUfXixEe61eWkdBI6+cByPRuB5bGYTa7XtHmuZ8hCbGATJfpxOlG5oOSO63IxWFmW1OVBGl2AVCOVaew2S6MPTMhSgVhp3WICJfEx8BmNZS8HdQlG8aREkTvbCF2YOVnw/8liRayybPx4Dgh3Oj6r2c8wSzQ6UKQGAFD064cuM6E5JFvhnOzP4u8WZe3gIhefXPVVXBiY+dwNvVhsJY2u3j5j17uuSFMT+RTfKcYNN1kxl7OWRG487pdp1WWm6jbDszoN1yTuirpU4TfdgU+kzbfDL6U1t5VgOMF79su85aonL49duLCb4/yd9kfe621hXyOXMS81xeg2zLDZHzudmPpN12wwet0y2Da3eD0RhPqHGAedECzGoofeVvwJa8H2nCcipQ/A1galPM8oYKTu9ec2mYN6NOy4kFSD3IuSD9FKgHMELeGFoQcr8LXzudtoX8h1MhIiyb1Wa3gQhHyjFmOZnNIvLthPUN7N6s3LmDMRxb+BMNwrELt0Tk/Y5jxZSWAusAWYyiujTIkxl76ERT7CemCSWJqSiFSVz+cYTNhYZydNIoJCEhT3FC+sWKF745u2ctPLn31mBaIs4EClB+ODciAArtTTlPmztQUXBMqnlhpPr//iNle1eK+DrTxBWOsDqUfaR7LoGJ3xxlTsjuDplulC3EG/Oo0w63n6aDNydghBcC4OdrZWuQh6rf2gnUixIYyUaMss2Fje2PY465X57X54BwmzrMGUJfyNwhZFM9lMbXlGGThVA2VqE6OYJlM9rcWsvm7wNTluCua16AsWQPw0zHnmOoqpRzi8hqs81o/N/YPL+REQG5DgaNcxicrKvvjcw1mTaXN/C3LmjwF7UtLGff8R+hsDS05srRtQfWfeQ9yPmsdv7x8CTrpeGttiVPjulHRMhHvn0uIcmwNtUxYyhEjIAMIM8KDmTFkhXqJyI+8Um9NIoGOcTUOpwFidHYAslYFZhrOQLYEHLFHKHZ1SAbZdl18olMkvvdP66g2BTkUcSHczPtVc3+JA5m3EzDa4nceNJVWRX95dhzmCMQJjfl4GoaC7kk/TwHJ6iXYl87nQmxxlwDW/hw+xMya+DmwkT4NkxGqmW7ttbps0LVEKfaqtNvt2cSR1lbuDmY4KYOJ+tzfYwVKIPCZXaUfRZYwq/9RdaOnC2bt9k3Fx+RzsoDxwYZhgbZKpv/bf1nq31ubGiKrSYpe5yzMvjntmUixIytaY5iPpftVociZBj1MWWbjqUAP7aDapD1q+lbZbXbP+7VwIxto9HYT6gGQl9P3A0Tuki9QPXpllMm8OrrKJSv3px0Qje3GZDecooxJi5LyFZ+GYTkZoyVO4FmfeQ0LJ5dINP37Ez7gtMTgCsQRADrDEnEh2drYcKChc6NqPbEHwJPPsdvjU406rWF5mIsE4Wz93ELhJZ8zrcpru56cAvGZs5GnnjNZ+zECtfkyDclIUqc97x7k5JELqXYiZDBCFrZ38rTFFeUQkdL3io/IoCiZGfBFcyKOduu0azLFdwqSmFGW4GJhEGes7F2FK5FK2fVaWnlkiNueLrUCRmJgsRuyyACmtcOv5+6bD/DqXEOK3yTN+/zderj/rnuOdnn/LPAOsd4DlqJbBih1MV6LjFKF0JiRgPAjq5k2bnz/WHvF6WcSBjVk5Rtx54KsUz7kvfGcfDvLVLh23j6KvNvuw+D2f8TwAYOMNurlLJ2mK3vs5kBVWZKwV0HtuwNptnWn438KJEoFnVgak6CE6czsWvyRggac7Iyt1ByjCRsTjrmVpF/o2kBODuW3RhmGUbYIKcMbWKRZ2zXTEHd/C5nc2R/L3vvZuPTN3wzo9EKbW1zDnZudIfe3l78/K67MWvx6XjlSWd77XJjvgr10dFc8H6HnTt34te//jU2btx4VDGRJyoRETqYVOAhLfz01jx7P3EpzImINQ0hhO4f/nzOGVHPB74GOREyvbTcIYHSqMM8FitgbnvRak/yvFVe2vAIyT1bdtYZERJTFbdOpRRmtRWduOjVz8h2pNTaxdBuhic46+8xc6Fbji7bNb3Qiwb/GWJ+bpftvrcdnH13vMRUzhbSuIWAW3fSN/KeVVbZbqg8ymJjc9rScNmhfgYWDsy4mM+U5OOqyaLxO2fKKQo+nznlj21ikJ2rw5y53zNbbgvfftlumWSMrV4gW/IB2b4+Jlyd1rXECO7m/7HRT7d0/jHMZwbMvmNLyNw9E3IAbDREQK4RPQmYN322MBvamsby7CR9zLBBRmAFGBBALfMIysrkNTmuFtoWppPzkzvEC9Kfvroe5HrBwONPfgqxIm/bc6ASezGMI/hCs+4Tt+VpasV6e3vxute9DgMDA8gXCliybZslsEVEaGZSNgu142rme3t78Rd/8RcolUooFovYunWrCMlVEgddf5oNxcAO2byHzIJaGY1wFBHiin9uLsebF3EpzM12WmVTsgPjRmtJhF7FCuZEfpa6CmvfzDtFRtXvu/MEp2lLbKe146Wtta3ECuXYjVaRnOM5KVbne9+3gYnKURV4I7JtrbXgppQfpUeXxeEPob3zaLbbE771N5Syw7zBUcI4bQjudjILAVugMp8BihWoPJvqzC/QawcALzydtuMuONeQboupQebaYpoy1hZjWZcQSnyirHHLHut80o6h6jHfm/2xTRX4sTWFflsmsc7w6rEWE+BNKVxHV7MQbofFFMo5bXomQ1GwzkZDVGk1oicY1iaN7ItDE862pM81tMpUiz0WX3biJFLdtmK+7N+4yitD34ymo4VZZy2aYvNvYm4QwLHRI6AUA5MdDRtRxJpBKOVnEwNgZSO755570hTIOkW3SXM+8uoTjg1zzAcGBrwxP55pKeTQ0eyH/isGMgCG4HY9CIlJhksEXvNTZGz1AT5DI1Fi9+s7ufr3K5AI5S/2l1GJ7Sc0Ee9cqBQT15n4sHpEyULD1cSHBE3XES9pd2IaclpnuzW36HnPtcsmJJkRpzT7C4GBSowOQ8utayrmImeONudUTvAf+ve3xt8UInXZbl+rb+0teaSDFIrK4pq0cPbNadmwtdZDaWLdIrKY+Pa5gzk0xoo3jTN3PF3h16xfMUK5CSes21nq7LI5h0aA1/KGFgLc89R2dLR3ndPz65QoWSHWO+4bOIdMSkOZAe36/N/Q3PUIOwA2FiIg14iekOq5YMzfPRchnQAyD1iyrpj0Qop4D+WQwwSQrBJdBxTKJGRra4V7sGSrbF4bHrqEa3diIcvOWtevwDsCcZoxNpsY7AfExo0b01S/hULBS9FdyEUN7xw23jDHvFj006ILPm2FqK5oKqzmN0eYwaXOZpzu9PmcU1/ITIPXTkeY1uILyDkCTp3ZxraTi5Chv+PW6QqqQNXEIh9hXocTtq4qVPnfUYzwDbQWcpjSnPcEqVIgtF4pVpg1yRGQq4oO03Y6KY48U6+IkrB9ldh1fAYOl2PYlpqmQOcKF74wpt8nAqIvjLgZFs1ni1vnnsMlT5kD6Ogmxrm67FCEDHJMGNzPkY2V1x9ocxTeobES28+JTHA2nNfI/MQMW+f3zW0ZmxMAtnbaLNsshdfy+guFwcg04mZSL7utvI+SbT45VJ3cuVYGRLNkY5HlrAOCu91ZX3y7ZystN8aHBllUaTWiJ0Z2EecIoBpPg+w4Vdj2wIbNFKomF+BvXH2+04Sgw0YUuFntUD36GB/flJtYuS0YIkI5VlaWNKpK5W42ML1AcB/aRcbTHkhurqHsh3t6erB161bcfffdWLRqnWz1jwI9PT246aabxAa5DupJKAPwWQe1ltclApBj7pMpzbx9M6eF1gKlS2shQkveD883t70JxRxZdr+6ja7MTNXyue1+zudQOzRybR+oKLQ7YfEUfCdSAjC33R9zIqBUUWhv8jXIxVzEapYJ9u+RzL1+spWIkrCU5Riew2AEYOVcO0NqJrzY7UvmTluzqhUaZkQFwJynyVNG9FdizJvkJI+Bb5uszSBcTbEu2xOciZCMuuvInY2DDbODqR0aFZ9mvKKUda2ndsIwNK5G2aZTeSj2v/2sdvvjCIhkfsHekTVEwcwx0CjbXiAYyi/4mJFQ7EgTvgKNqo3ihNhQMixOTjEjnthlO/1P++P/xmaZ1lAZ700NcvJdzgGwsRABuUb0omjngw/iod77cMLS1Th1xenVzwa/YJLjmTBs39DZbZ1dpNWVFjETVxqtwmlfdRLlBEu/TfxFn9y35NkLAowtIhIHGS480kCsMK21aB2j6lZjkzPJ5SJ/NTq5Oc9qwHJEKNQQgUKn+j1wpDzkuZre3l7cc889IuAdJaeddho2bdo01s2YsHCOfiGIIjaRy9RWPu703Mm+3TMhnPiEe7Lr7W8u4QgnCLt2ufpcdv5CwBmRgLIC2oqu6YVionIQTppqx39O+qMzCboaZN4chShpo6utS4RsP+KHVqq4PY0iXwnACZTp3KnIsfulNEKGK1DqRC6ukJIsEpxrIBX07Bbq1Nmelrcq3HEJUUJpud3nD3dcl+ZrkJNnngINmYTFNkdxEp9wQikjFJuHTe28/h3c881d4IiGjsphywR+/RUnnFtmy2sr0LKjvN3z4CFh7dZYZirIlHOWiYX3LR/ifgfjbzszYDhzcCMhAnKNEAG/fmQH/s973oZSKXEAu/qGW9C9anXw4vG3xGwzA3srwli1GUdrDUtDRIhj17uY7wdXRnZfO84Q1VdPU8XclPrvCPb2LFW33vIgLx4ql/Y1ZAKRy9WX5KNWocJ07NNOZieeeGLN9QjCSOPG/h4MouFK5FKflpujEit0uimvq6/cHMZqxIk3MYmqZXGa26GcxcxzCeSZeXGCvYZrS6wUa2KR1OsLSWz7nNe0zWRvSesy3Xr0d7WA4wrxrmAPJKH/mvJchCLy49ZHmdZ6MHM/q+1MO7J224XoZx4nCJMXKjBzErc1qNX/VSasBrWfRls90z9la+etaBDG9RXakfV+Q6Ns9nj11bVBzh609vVk/sacVjj4mzDKMStmtKGcU4YXfkg5N1TIQPPvbKFClvDdyIgxZh08+uD9KJUyB7CHe+8DMNgFY188BNupQgev12dkN4DtROK+V4rRkKBqS8Q+YNyL2HeG0NqOXOQ65iTvC44gS0icWLjtWS4uMeA//Ij4reMQxRzv+X+siJOZMJFIhLtjL8cV+I6Gk6c1YxprdsE7/XKCfXsxYjXIrcU8YhV7guxgYSJdtDDta70YpUC17VyEHQU/JF4iGBPy5PSVws5ypUrM1suFyOTM8LJcGbYRXkjgryig3dXAk+6RrcBINMh+NAxO6NJ1mq/Ze/38M48nf3hRlIxzQqELLYUTI7haDvLm89T09eH0mMrVzmfCt3m2Mutnyq7NrIM/nv2amQJNC/B+GfzigxPQtRwAwIoZbTnSIfAbBpR2tg2yX2fm52SbdfgideMgAnKNEBGWr1mHQiFzAFvVsx5AWMvLbeGYjnT2xGHYGKUrLXfi1mX4D8Bkq9BefZufue3Ye7jsZ7VjnOAIiRaoqeBO/gRFhIUzWrzzQ04/rhcyob6HMBevdTgQJzNhIpGPiJ0HxoLJTAQPIBDXGXxmwKY879DYObmIVzjaaQDIUxR0HnYJaaddwVMzUI5Zx8gmLkNhdeesrZjzhCTXpwNI5tQoIi8VOIFQdqI46PmayNZ+R4Cx5W/3kxtDpRQ6mnNWeDAtZ7rpqkGJf0nFsFHV5+v+2v3x2xESeHV/OJMR/colCjFtjQlIzSA8wa1q38xlUXTbldogk7/I0G9srS1Z3/PKdtuS9tkfQ/O6M+R9OxuhUbZ5HQWF7+qrGZXEbIfp0Gkq5+DaYLP98Y+7V5kt15ht9OWgRkNMLGqEACxduRrf/Y//QO99v8C8ZauxcFlig+za7GbOBvYEAJBzkeqSYW2VmCstbnJJtif8ydg/n6zPdG1ZyBs7VI8Cb0pRjhXamPS3RU4LRBRMQ+zb3BGb2StEMVf7g68etGOfaYPc19c37PUIwmhQiBp/+5ITSgs5qst5kYjwiim+XXGhjjjnREBrIHwYFy+9mI88W2MAaGOOESVRQ1qLdursKOJ3wgh+qDh9vLkQeYlPFJIFha0tjNLotm45nNY6HxEmFXM4XPbta2PPJC4JlTdQie3rixGErfYzO5i6PI1+5vkOltkzjNVcuuYO6Xu7DYr8+M1GZuqAlpePA2w7vWf9sRYkph9RyPTCfJ82mDffgHUuv8McWnzo47HKnGDdkn17bfIiobB1su0jWO54jBxiRdxq4LlKBOQa0QLu2rU9KOYi/Mcdd2KgrNC9ajV7Ez328A78dmcvNp9/Nnp6etKJwVqtwVh1mTdXVch+/OEdeOTBX+INm85JytACshMcXn+fMHRAeqpOFF0dTVZMYX2fc6YUZeVreokCW3axQgvzwDlSiTGzzY8pynnKh+hknImGC+3YJ2SI42JjUO/vMKWlEHy4NgqcKcVwJfGpx/46Ij88W3Kcj5gzo7XAOhJyDo1a4G0v5jzBiLeRDpuGdLjZBasSsrsrF1ESns4WywLKDyRRhVqKeRT7s8wy+qwc2anJk+dS8tTylS7KCwvIRToK2+PqsviQqaFEOW7kDC28+sI0+VE5qq9e7GVDbgu11y47wTJZhCEiBoTYsFBOxjEa9Hu1RLnS70xnPEs5Z5yTi0zRls8MGBbc2cPGjoaRGdAw62jkmUoE5BrRq6IdD/biDRddhP7+ARSKiaPe8tPXWOc+/vAOXPGuS1AaKOH6//tFbN26FaevWZt+bq4QVbqahvE54de/2oGP/eVbUBoo4V+u/RK2bt2KaacsA1BdCTtXlal9zo7Zn+l6KkphWkseM9uK1vcrSqHFMaVItnAUO7nyNm3+RAkAJ05p9hyNCkxYqMFo9If+RIJzXBQhefQ5mt9hPNwnXNKHYSu7DgGZiFiNcChyxgmBRfpMJlsiUdLP2e1Fx2Y3/BtxmuWyUr55GiUaPrevESWh7/rLsSewcOPSlCM/62BVeGop2Dt2EQEglSpj0uMR4XBZYf50e2wIQH85xqxJdkQjdydVH9c7m64jt1LKj1SiNZ4B8cp/DiomQkYiDYbCo7qLDLfu5L0hRFrHA1pesxyudHJsqo16zPLS1Nn2l4NtBPysi6bNiP6dc5Rl/CWYv5FzHTDt4sxOzLem6aiVCtyw1240GsNQbRygf+5f3HsvBgYGEMeZo55rG/Vw730oDZQQx5nTl9ZAJ9qDwIVUJSLCrx74pVdGrroiN1eCdvvIm3SS8uz2sbbGRCjFjCd2tRwv5Sr4LbsI/GqfD7FEI/qgFI4ecVxsDCbq71CPc2691ONb2JQjNkJILuJjsYfgQujp+c1LqR3x9sAALzhXYkY7C6ASJ/bNdp3JHFxRsWeTymnnW6oJa2ZPstuvoDwHbL2z2e7YVOuWuVpu3ZU57UX7GPlCqSmguZkBD1diP2ELgL1Hyt4iIBWcHaWQFsC9aBVgYi+n3+W136HFDZeZ1tVOh4VY/amrQWYc/YiPcqXhFh/JcUODDDhh6/jycmm7eNxrLC2L/LZY/TXG1tK2NxgindRI8qOTl6ltVc9672Zc1bMehWLBcvpKrplk1cddSO7NtWLNOq8MbTOllILrgxMRYMVhRPiiV2DSvIJP56lvRv9GJDZiRiGQrUsYX4jjYmMwUX+HKSOY7r0eE4tCjk9rX6gzpCQHAay5WYRAhAzwc6cC57+RRLyYVHTn8URJkovctNd+KDsg+x2Kjta2EitMYuI6A0n4TKvsKFmUcLbTbU05X1jVzniWlpVYMxCqDoC7ECCitBwOTrB1FUsEbfcc0iD7u69e2cb/rlNk8qyGE786wc16m37PEqDt389qNxfFIi0bMC8L/VUrxrK1DWAmVUnapr+YCtrMeJplm6eYwnfyO2d9MM03Mg0yGhYxsagRLeCesW4dtm7ditvu+Cm6V6/zbJCJgO5Vq/HZr9+Mpx9/EJvO+ZNsS7R6ZbNet04Zp65cjatvuAW/fuh+vK5qx/z0/sOIFfgg+0TMlo15+9rHPV+86v3CBfXnrl8Fhaacr6op5OpLoSs0JpzjojD6TNTfod5MgvUQMoOoh3pTgXMQJc51/vEIBaZobwu8SkRMiEwkczAnOOcjoKPZnpsLTFZAAFZCp6yMJAayK1DrkHjTWgueBjm0KHHNVLRgVqnGX87KTl7d3UcdpcF7LlXrLFVsEZmNvVz93w0hV7UetDLmJd/NymJNFuEfS8qz+6NU4hxoLgT0l7mEKMrJikje/1w9voQaOxpxjR8hhPx3ZGinjfLt+r2irbaYwnesDC20UbhyNcgNqkIWAblmMgG0p6cHMxYsx4HDpeQTZpW5ZOVqvO7cM60YoIQsdmX6veofdsSL5EJauvJ0bDhjHeZXw/5ouyZFvkY3IvtmNdtiZvtJyuEnHMAXvCMAxK10CSgyW5mtbAxkYTwijouNgfwO9TEckW44wbFeirnI8vPQJHOn38aYEXiBJFKFZ+JW3X50j0dVrZ+roefKCEFIBFhXKE+eMeT1KYp4LXwcA5MD9t1lpWytMFXDjDqCXVQ9nwsh11qMcKRsS1ZcYAT9VQWgyTAb0VpeV5ubKVb9bITJ95hzYQuO+hzPSTEtmk+p7WlnyXhvlD1Y9A1X+DZhnUNNYdWQFeyoHHyKbC3Yu23UspLZTwKMzIDGOFqa5caigZXbjYVxrQLIvD2VUnj84R24+uqr0dvbm23nKD9ETFKGe8P4KzQiwq8f2YFv/fM1eHTng1mdBPZi1N/nJpFHHnoQ3/7nr2Dnzp3p8YiAhx54IG2zrtMNAJ8cj9iLhMDbD89gHghjQW9vr9U/oX5kDAVh+ImIN7GA4jWxzflweEsvSQol4Tfd8HfTWwu1C8jkmyPo45wokyM+ikc+T5jUxDsvEshyGiQk4URbXZvqyH/W6fNbCjnf9EJ/zxMcFfJkO14mgqayIipYpZArsGoNqdsaP2eBFmJd8w0taHpmHS3Q6L0AACAASURBVKmAardC7zB7zpLpOcbxiPdRMp3nWOGezL5RKsRaSjujt/VEzvCF9ayebDHTuAo10SDXiHuj6m2Bxx7egQ+/+xKUSyUUi0V86aZbsGj56cxNl00MQ6Vn3PHAA/jEX74V5VIJ3/7alzFn2zb09PSkQjkrDIM8W57HdiZtK5VK+OdCAduq5ex69CF86q/eZnnGr6hG4nDn7YjRVgNAngmMDwCTmQlxtJEIDMeOjKEgjAy5iE/kwplSAHwyJar+x5nKNTOJVepxhtbf5LTTXIKTiID2Jr/8ljyfARFVocndNS1VfGfECLyAjKovz9Rm3zZZl2ceUwBaPIfGZCXg7shqYd2NkMFreU1NqS3EJsKqrf3WDmmJfOBrkIfKgKdPVkoldeb8smNla//Nd9waKfIE2+R/N/Qdn1SFf29ih5bTWmhl/FaZ4q/REA1yjZiJPJK/k4DsDz9wH0qlUuplvrOafjoUZDu0VjJvjF/+4h6US1mkDO25HpEOweJf6NPbClg6s8069vAD96E0MIC4Ypfz6x33e57xidDttzkRkP32FiIKpksdayaq5/9oImMoCCNDSyEXCJvJh85sLfqPaSIg5yhbAO2MNzzt9BU8hAIxSpHmgheGDQC6OpqDmm8ubF0MxkkvsIOpoFCICPOcTIphDTK8pFRRQOgDAQcHKqg4Qhtrg1x99W2KMwdALxW48rMUcmFazQo8Jz2mTl22K5Rnb3knfr+PSb+5BGhJ/fxvytlrm3bfBOP3MTXfxu/QaIiAXCPuSlavepavOQPFQhZt4vR1661zrDKIgmFpzOMbXrkR+UIRUTVShvZcz2yP/GDq01sLaHY0Daf1bEDeSI2ty1m9boPnGc/ZJes+cJNc6zA4sYwUE9XzfzSRMRSEkWFSMceaUuQCSgcuQRIhEAmD+PjN9aCFNSapKlsnp7EGBgtlxwjI1VfOtyakmuR2MLNTbeGuEsPPBkv8jiwhcRZ0HQCtNln1MUlIqoV7joEwNci+ltePBELW52bZXOITBc6MM2ssm8HROVf/6ZpYKOMct2w/nF2C6QAZ0ohrh8ZGZOz3w8cJUeRepMkFs2Tlanzr376PRx78JTZu3IiO+d04XIo9m2UgM7FgyzeumLU9Pbjq69/Gow/ej9eel0XBMLcianFEWX7aanzuGzdj366HsXTp0rSc1WvWep7xpUrMOo6Etv2Gw4llpJionv+jiYyhIIwu+YgCSoraBeGWfIQOxjGuXoo5XztNFLCdrhOFcDIXzqaaNQsgPq5zKBpEOY598w1KonXE8B3SijmyPcqqZZcqsR/nn4BSRaHN0PRrW17yImRoR3tey+uOC6sRr5btRj3JkpO4ZSc6Z9OsITvOm4wAcDTcfBw8XXYi8MPD7Kf1v2Ov3aiIgFwjbigSveqJlUJPz1r86VkbAAC/ff5Q9QzG8xa8VhnwV3FLVq7GkpWr0T27zTjXXPEO3t7e3l58b/udWLZ6HT74wQ+ir68v/awpT55nPBEF078Ox6Q42ojn/7EjY1g7I52Wu7e3F9/5zncAAJdccon8LhOQfMTbiHIkWk7/5Fwd0SoGgxO+Ew3ysW86l2NbmASy55//fAxFXuCfS4SqDa7zpVj5IeSICP3lGEdKsWcnXIwitDT7wurLpYolaBMAqmY6NBPOaGEwdnITZI5pvpZ3oBJbSVXc/lp1IjG3NJ/ZmQKNTxRSS9bBiLJvcIlPgklIAERkLxDcfrpa4+x940axEAG5RogiNuahArHG9sl37DK4C4G1a0ovUoVWY1soqmYKaS7mBg2lph2sdDrsxdu24cQTT0w/bw04fXATTkRAoZEjeQvCGDPSDo29vb14zWteg4GBAQDAzTffjB/84AciJE8wCrlwtAoXovpSatcLpyxJlCjHLnxXYiZ1dPWfF98fvNlJPsc7OhIlqbY7jDB3+lnJZYMFEbo6mhwNcvLPNW0hAmZPKqLLOK5DtbrROrQtL8EXDHWaaPu3JpRj5cUHT08h+1g5VjgSx15cZ1U9gY3f7AwjU3T6vhIrawGmy1aw7XJ1mcrVZhvv+MyA/qKhERHJp0Zy5NsBcfY+2UnKm+yIWQ1nF6m/Kis6wd0JyXaQm+HIRTtYxXEFZcM5TzO7nQ+k3xyw6eIy5gmCkDDSDo333HMPSqVS+rc4TU5MZtURIpMANOeHyRuPoYkzX0B9WQpD5CNf0NaRJrznI/lZX4FwXOfmfISy4rIAgs1SGEFh8YxWT4Oci8hPZqOSRYwrDMfKL5uMf54mtlqY25xcwGymEtsa8UR1pnDqzDYralQay9ipU7/jomrBPbdqMpFo4V3ttE5XbfdTjwEnlJvtooBQTASJYjHeySURy1PMlSC35RC2NrZJLxrvZP8mJwL6KzFmtw2ehUo7WEW5HPKGc97g7fC3oHSzhkNrIAgTlZF2aNy4cSMKheyeF6fJiUldodiIMLV15DaAubaE7H6PpmwvAyCqPjqekx6ffrsYSAU+e1IR5YryBPmmvJ/AiqpCs388YrXzseJThyvFpQLPVF9m+3UkKje6BYEfcyLCEcb0Qkew8GIvK04ja2pw3aO+eSdAqCjbzCZN/AHHHtk47qbxRvWToWyQCY0bxUJMLGokInLypOuLxd660XEiPc0yAlEs4MdQJEq2W9zg63pF2j5ErGHtYPXd//xvnH/2q9DT02PZIHMQ+C27kG2yIAgJI+3Q2NPTgx/+8IdigyxYjGTMeTfiA5AIgcPhnB16fnGmFKGkKrMm8bugk4o5zJrkK5DcEG+A1sLzdfKLFd92OjnqZ5XVUgAX7xlInqvuznNIQdVSyFmxsLUjovtc1mWHbNC5sH3ma/I+qbSilNWezJSCz9KnlLLyMGSKv0zm0WUnbXXONVMMNxCjJiBv374d73//+1GpVPDud78bH/vYx7xz/u3f/g2f/vSnQURYuXIlbr755tFq3pDoFJ7m31B+GLTEmU8BzGo4VspLAUoEHC7HeIVpM4UkLA3ndTuzrTio/bGmp6cHbScuTdNUDwURYS4TTogLUi8Igs1IOzSKw6QwmoTM8IaDmYzmm4gPM5oooOrTrJ/q5AMAgFbGHIWIWI1wIpT7x/M5XlkUx4rNOgjw4ey0aaarReU1yL4ckCjVGIG3WjZ3HIHj5VihydkB19n78q7mG/DMYPRbpZzEIvp7jgaZywyYRvzwej/2jIqAXKlU8N73vhc//vGP0dXVhbVr12Lz5s1YunRpes6uXbtw1VVX4d5778XUqVPxxz/+cTSaVjOuN63+UV37XL0Y4jxGiYi1M4tAmNZiOhUAMZR1w/T29uKuu+/GmnUbgDnrvTI4mvLRMWt/GzXWsSAIgjD+mMpooQm8ZvJoEp/wcft5x3RX+Ey+zwurTbnw89RLcAIAUJ5NMRFwuFTx7KqjiNDOJYSB359UxuCOO7vRRmPYZ/n+I2XMNcw3tNNhku3QFJB1ZkBnMaA1y+QKvYnQ7IaQU0Z5dhGNaWgxKgJyb28vFixYgJNPPhkAsGXLFmzdutUSkL/+9a/jve99L6ZOnQoAmDVr1mg0rWbcFW62heJfpEcqMRv4+oT2oqeRJRCmthR8mxyl0rKP1kt+SnNeBFxBEAShoQmZ8hHRsISWmzvZF8pzEWESI5S2FHKs301Hc57VcrNa26qZZGvR9yPK5Qgr59ha7kJEnvMfkDjluw6TqXbWlYNJ2wKHzvdllbZiDrGbMRAEIjfTXxId5HAp5pOQwLZl1nBt1HXYxxpPOAZGSUDevXs35s2bl/7d1dWF+++/3zrnd7/7HQDgla98JSqVCj796U9j06ZNwTK1Te3evXtHoMU+Bwdi7D9URl98EABwuBRj394jqDRF6IsOpefteWkAL7xYwvJZLejr6/fbfdD++/k9h3HKlCL6+l6yju/bdxB7J5UQEWH79u3o7+9HHMcYGBjA9u3brbBtg6HrG61xmijIeNWHjFftyFjVh4xXfYzH8arECi/tP4K+/GHreKK1BPpeHBlFT3zoRfT1+WLQIeZcwH9+A8C+fS9jT/MRvGQI8pVY4Y97XkZXvgV9RzIh+eBAjOjwAA4fGMDhA1kZ/f1l7D+cw0uORPnCnkNo6S+irz9rY6misG//y3ihtd9aVBwciLF37xHQ4VwqpwDA3gMDONBfwbSmHPoqmZyxd88R5CJCf4HQR1mP9+07BALwx6Z+q+zn9xzCiwdfwgvPP4/+agCBvQcG8FJ/BUcqMV7IH0417/v2HkFFAaVKjL7CEavsQ7kIbQVCX5yY8Rwpx9i/7zAUCH+kQzg8DIlu6mH27NnBzxrGSa9cLmPXrl342c9+hmeeeQZnnXUWHn30UUyZMoU93+zUYB0cLiYNVBC9PIDZUxOb3sOlCp6tvITprUXMntmanldq7seh3GHM7+Lb7dLSUcLkZt+pYNahIubOSbTpmzZtwrXXXptqkDdt2nRUfR6NcZpIyHjVh4xX7chY1YeMV32Mt/GqxAr7c4cwe5ZvPzzSHOtYTT+0H3NmT7Y03UopzO0/gJPn2XJARznGzErsOViGWtDRfwBds1rRYcgI5Vhh6qF9mDN7ilVn20AFz1ZexJzJzZht+B4dKhwGDg7ghCnNmG34GfWpg2jORVhkyC8AMK3/AHIRYfbsyVbZHUcOQAGYM2c2JlU144cKh1E4XMKRssKcOe2pwP5HdRCVWKEcK6uc6f0HUMglu+a6jUfKMXaXXwQAzJrVxspDY8WoCMidnZ14+umn07+feeYZdHZ2Wud0dXVh3bp1KBQKmD9/PhYtWoRdu3Zh7dq1o9HEISEC8ow9jWuDHBFQT16N0MXQatguSdpfQRAEYaJCNH7DibqRKoBEPujq8B0dm/MRG+s4BOcwGDSZABDHvv10FCVRKTx7aCTmHi5uZC59LhHQVrC9qzJZR7HmFpyFZzlWVlSRRv7VRyV+19q1a7Fr1y488cQTGBgYwC233ILNmzdb5/z5n/85fvaznwEAXnjhBfzud79LbZYbgcSJwLYTLlf8uIiJgHzsP3mzY6vc09ODD37wgwCAq6++Gr29vcdchyAMN729vXJ9CoJQF4Txm7E1SRHuP/NPnFpbBKmhyub8nADevrcCP014BD9sG5BouRkTbADhpCJTmnOeDXJ/OWbjOgO83XOSajxnHWtUMXlUNMj5fB7XXHMNLrjgAlQqFVx22WXo7u7GlVdeiTVr1mDz5s244IIL8F//9V9YunQpcrkcPv/5z2P69Omj0byaICJLWxwRUIljJhQbMBwL4Vbmyh3plLaCcCzI9SkIwtFARGz2vvHASGaaLeQiVpsbkR9GNtEgKz+iRjWxh1tORSnWAZKIT8ICADNbc15231LVlIJz0uMj0toOmbbmubGugVGzQb7wwgtx4YUXWsf+7u/+Ln1PRLj66qtx9dVXj1aT6qKYI8tuiIgQA56XakT8arJepjX7Pw2X0lYEEKFRkOtTEISjZc4Ixl4eSbgEW8NFcz5itLC8AEvVpBxupKyIEtML9ztKhVOHe+Frq6/txZy9k05RGpeZS1nNtZ0QM+Y0CkpRXdkkR4PGak0DE5H94yUmF/wFxqXGrBcuVuRIp7QVhGNBrk9BEI43hiMMXQguAyDAxzQmAJMKOe+zRNvs72xHRGyWwoFyjJmttm+UFr79VOCJSWlHi5/191Cp4tlhExLzDTc+MgDkIjUsstNw0jBRLMYbRMDkJt/BLiJiU0YOB+KsJzQycn0KgnC80TyCAnInk90W4IVyIj7eM1Gy0+0Kt7kcsXGdm/KRlw6cEE4FTiDMdhKgESXlTG1xBW2g6GYdrP6fdwTnRkAE5KOEAExjUmZGFN62GA4k5azQyMj1KQjC8cTk5pGL2xsy1+Q0rcVchHkdzWwZr2AiahQiYoXeOe1F1kmPE6YjSnbS502x63WDGpjHfRvp5IORUiweC43XonECEbEXIx2lgCze/8J4R65hGQNBON6Y0jL6cXs50wiAd3Kb3lrAzDZfs5yPeA1yFyfXgBfKwz5XYTvpPKNBJqXQ1IBh/kSDfAzwKypCc53euOL9L4x3du7ciXe+853H9TUs97EgCKNBPXbPYS10VHPErSQVOC/wcmbDiQaZb6Nbjg54MJI770dL47VonFPIRVaMv1rgvP8FYTzR29t73F/Dch8LgjAaDEdSlbZiVLPNL4EPZ0fwE5PoDzgtd8VJEqIpVRTaRznFdC2IgDzMNOcjL8zKUIj3vzDe6enpOe6vYbmPBUEYDYYj2sMMxuxiMDgNbxQQhAl+whLAz6KniZXyQuY2AmJi0QCI978w3jnttNOO+2tY7mNBEEaDuYHoFiMFaUE49o9zGuQoIi+JGhAOjQs0pomFCMgNwkh4//f29qYP6xNPPHFYyxaOX8zryrxmJYKFjIEgCCPPcCQjq4dQKvCIiD2eD0SlKOQi1n66Oe9nDGwERECeoLgOQzfeeCM2bdo01s0SxjniiCYIgnB8QUSY1lrAy/3+cS76RJFJkQ0kWQe545OaGlMUbTydtjAsuA5DEnZKGA7EEU0QBOH4YxJjI9ySjzC52RduZ7QVWJOJkJ3x5AZ00ANEQJ6wuA5DouUThgNxRBMEQRCAJNQtZzIRCkPnpp7WnDDKNtW10ph6beGYcR2GxAZZGA7EEU0QBEE4GkK2043ooAeIgDyhMR2G+vr6xrg1wkRBHNEEQRCEiU5jiu2CIDQkkkp57JCxFwRBGD1EgywIQk1IBIuxQ8ZeEARhdBENsiAINSERLMYOGXtBEITRRQRkQRBqQiJYjB0y9oIgCKOLmFgIglATEsFi7JCxFwRBGF1EQBYEoWYkgkWYUAru4ULGXhAEYfQQAVkQBOEYESc6QRCEiYXYIAuCIBwj4kQnCIIwsRABWRAE4RgRJzpBEISJhZhYCIIgHCPiRCcIgjCxEAFZEARhGBAnOkEQhImDmFgIglA3kvZYEARBmMiIBlkQhLrgIjaceOKJY90sQRAEQRg2RIMsCEJdSMQGQRAEYaIjArIgCHUhERsEQRCEiY6YWAiCUBdcxIa+vr6xbpYgCIIgDBsiIB9njHQ6XOH4QCI2+Mi9JQiCMHEQAfk4QtLhCsLIIPeWIAjCxEJskI8jxLlKEEYGubcEQRAmFiIgH0eIc5UgjAxybwmCIEwsxMTiOELS4QrCyCD3liAIwsRCBOTjDHGuEoSRQe4tQRCEiYOYWBynSKpgQRAEQRAEHtEgH4eIx70gCIIgCEIY0SAfh4jHvSAIgiAIQhgRkI9DxONeEARBEAQhjJhYHIeIx70gCIIgCEIYEZCPU8TjXhAEQRAEgUdMLARBEARBEATBQARkQRAEQRAEQTAQAVkQBEEQBEEQDEZNQN6+fTsWL16MBQsW4LOf/az3+U033YSZM2di1apVWLVqFb7xjW+MVtMEQRAEQRAEIWVUnPQqlQre+9734sc//jG6urqwdu1abN68GUuXLrXOe/Ob34xrrrlmNJokCIIgCIIgCCyjokHu7e3FggULcPLJJ6NYLGLLli3YunXraFQ9aoyn1M3jqa2CIAiCIAijzahokHfv3o158+alf3d1deH+++/3zvve976Hu+66C4sWLcIXvvAF6zuNzHhK3Tye2ioIgiAIgjAWNEwc5Ne+9rW45JJL0NTUhK997Wu49NJLceeddwbP7+vrAwDs3bt3tJoYZPv27ejv70ccxxgYGMD27dtx4oknjnWzLPQ4jYe2NgKNcF2NJ2S8akfGqj5kvOpDxqt2ZKzqYyKO1+zZs4OfjYqA3NnZiaeffjr9+5lnnkFnZ6d1zvTp09P37373u/GRj3xk0DLNTg3WwdFg06ZNuPbaa1Ot7KZNm8a8TRyzZ88eN21tBGRc6kPGq3ZkrOpDxqs+ZLxqR8aqPo6n8RoVAXnt2rXYtWsXnnjiCXR2duKWW27BzTffbJ3z3HPPYe7cuQCAbdu2YcmSJaPRtGFhPKVuHk9tFQRBEARBGAtGRUDO5/O45pprcMEFF6BSqeCyyy5Dd3c3rrzySqxZswabN2/Gl7/8ZWzbtg35fB7Tpk3DTTfdNBpNGzbM1M29vb0NLYBKmmlBEARBEIQwpJRSY92IWjlw4IB3rK+vr6FU/o3qBNdo49ToyHjVh4xX7chY1YeMV33IeNWOjFV9TPTx6ujosP6WTHrDzD333IOBgQFUKhUMDAzgnnvuGesmCYIgCIIgCHUgAvIws3HjRhSLReRyORSLRWzcuHGsmyQIgiAIgiDUQcOEeZsoiBOcIAiCIAjC+EYE5BFAnOAEQRAEQRDGL2JiIQiCIAiCIAgGIiALgiAIgiAIgoEIyIIgCIIgCIJgIAKyIAiCIAiCIBiIgCwIgiAIgiAIBiIgC4IgCIIgCIKBCMiCIAiCIAiCYCACsiAIgiAIgiAYiIAsCIIgCIIgCAYiIAuCIAiCIAiCgQjIgiAIgiAIgmAgArIgCIIgCIIgGJBSSo11I2rlwIEDY90EQRAEQRAEYYLR0dFh/S0aZEEQBEEQBEEwEAFZEARBEARBEAzGlYmFIAiCIAiCIIw0okEWBEEQBEEQBAMRkAVBEARBEATBYNQF5Keffhpnn302li5diu7ubnzpS18CAOzduxfnnXceFi5ciPPOOw/79u0DAPzmN7/B+vXr0dTUhH/6p3+yyvrCF76A7u5uLFu2DJdccgmOHDnC1rlp0yZMmTIFr3nNa6zjb33rW7F48WIsW7YMl112GUql0gj0+OgYznH60pe+hGXLlqG7uxtf/OIXg3Vu374dixcvxoIFC/DZz342Pf6ud70LK1euxIoVK/DGN74RBw8eHIEeHxuNNF5KKXzyk5/EokWLsGTJEnz5y18egR4fG400XnfeeSdOP/10LFu2DJdeeinK5fII9PjoGYuxuuyyyzBr1iwsW7bMOv7hD38Yp556KlasWIGLLroI+/fvH+beHjv1jte3v/1trFixAsuXL8eGDRvwq1/9Ki0rdM24fPOb38TChQuxcOFCfPOb30yPb9q0CStXrkR3dzcuv/xyVCqVEer10dNI4zUwMID3vOc9WLRoEU499VR873vfG6FeHx2NNFa33norVqxYge7ubnz0ox8doR4fG2MxXuNR3gqiRplnn31W7dixQyml1IsvvqgWLlyoHn/8cfXhD39YXXXVVUoppa666ir1kY98RCmlVF9fn+rt7VWf+MQn1Oc///m0nGeeeUaddNJJ6tChQ0oppS6++GJ14403snX+5Cc/Udu2bVN/9md/Zh2//fbbVRzHKo5jtWXLFvXVr351uLt71AzXOD366KOqu7tbvfzyy6pUKqlzzz1X7dq1y6uvXC6rk08+Wf3+979X/f39asWKFerxxx9XSil14MCB9LwPfOADaf2NRCON1w033KDe/va3q0qlktbVaDTKeFUqFdXV1aV++9vfKqWU+tSnPqW+8Y1vjHT362K0x0oppX7+85+rHTt2qO7ubuv4HXfcoUqlklJKqY985CNpnY1EveN17733qr179yqllPrRj36kenp6lFKD32Mme/bsUfPnz1d79uxRe/fuVfPnz0/L03NXHMfq9a9/vfrOd74zsp0/ChppvK688kr1yU9+UimlVKVSUc8///zIdr5OGmWsXnjhBTVv3jz1xz/+USml1Dve8Q71k5/8ZMT7Xy+jPV5KjU95K8Soa5Dnzp2L008/HQDQ3t6OJUuWYPfu3di6dSsuvfRSAMCll16K2267DQAwa9YsrF27FoVCwSurXC7j8OHDKJfLOHToEE444QS2znPPPRft7e3e8QsvvBBEBCJCT08PnnnmmeHq5jEzXOP0P//zP1i3bh1aW1uRz+fxqle9Ct///ve9+np7e7FgwQKcfPLJKBaL2LJlC7Zu3QoAmDx5MoBEM3r48GEQ0Yj1+2hppPG69tprceWVVyKKorSuRqNRxmvPnj0oFotYtGgRAOC8885rOK3VaI8VAJx11lmYNm2ad/z8889HPp8HAJxxxhkNNWdp6h2vDRs2YOrUqQDsPg12j5nccccdOO+88zBt2jRMnToV5513HrZv3w4gm7vK5TIGBgYmxNw1kuN1ww034OMf/zgAIIoizJgxY2Q7XyeNMlZ/+MMfsHDhQsycORMA8Kd/+qcNN28Boz9ewPiUt0KMqQ3yk08+iZ07d2LdunXo6+vD3LlzAQBz5sxBX1/foN/t7OzEFVdcgVe84hWYO3cuOjo6cP755x9VO0qlEv71X/8VmzZtOqrvjzTHMk7Lli3D3XffjT179uDQoUP40Y9+hKeffto7b/fu3Zg3b176d1dXF3bv3p3+/c53vhNz5szBb37zG/zN3/zNMPVsZBjr8fr973+PW2+9FWvWrMGrX/1q7Nq1axh7N/yM5XjNmDED5XIZDz74IADgu9/9Lvv9RmE0xqpWbrjhBrz61a8+6u+PBvWO1/XXX5/2aag5STPUeRdccAFmzZqF9vZ2vPGNbxy2vo0EYzle2lznU5/6FE4//XRcfPHFQ17TY8lYjtWCBQvw29/+Fk8++STK5TJuu+22hp63gNEZr1podHnLZMwE5IMHD+INb3gDvvjFL6arfI1eZQzGvn37sHXrVjzxxBN49tln8fLLL+Nb3/rWUbXlr//6r3HWWWfhzDPPPKrvjyTHOk5LlizBRz/6UZx//vnYtGkTVq1ahVwuV3c7brzxRjz77LNYsmQJbr311rq/P1o0wnj19/ejubkZDz74IP7yL/8Sl112Wd39GC3GeryICLfccgs+8IEPoKenB+3t7Ud1fY4GYz1WJv/wD/+AfD6Pt771rUf1/dGg3vH66U9/iuuvvx6f+9znhrUdd9xxB5577jn09/fjzjvvHNayh5OxHq9yuYxnnnkGGzZswEMPPYT169fjiiuuGJayh5uxHqupU6fi2muvxZvf/GaceeaZOOmkkxp23gLGfrxMGlnechkTAblUKuENb3gD3vrWt+L1hbf6LgAAB4VJREFUr389AGD27Nl47rnnAADPPffckNvSP/nJTzB//nzMnDkThUIBr3/96/GLX/wC999/P1atWoVVq1Zh27ZtQ7blM5/5DJ5//nlcffXVx96xYWY4xglInOx27NiBu+66C1OnTsWiRYvw9NNPp+N03XXXobOz01oBP/PMM+js7LTKyeVy2LJlS0NuJQGNM15dXV1p/RdddBEeeeSR4e7qsNAo47V+/Xrcfffd6O3txVlnnZWaWzQSozlWQ3HTTTfhhz/8Ib797W83pMkAUP94PfLII3j3u9+NrVu3Yvr06QAQvGbcOb6Wuau5uRmve93rgtvCY00jjNf06dPR2tqa1n/xxRfjoYceGvG+10sjjBUAvPa1r8X999+P++67D4sXL27IeQsY3fEaikaWt1hG2+g5jmP19re/Xb3//e+3jl9xxRWW0fiHP/xh6/O//du/tRxefvnLX6qlS5eql19+WcVxrN7xjneoL3/5y8F6f/rTn3pG41//+tfV+vXrU0e/RmK4xkmpzEnsqaeeUosXL1b79u3z6iuVSmr+/PnqD3/4Q2qE/9hjj6k4jlNHojiO1Yc+9CH1oQ99aNj6OVw0yngppdRHP/pRdf311yulkutuzZo1w9PJYaSRxkt//8iRI+qcc85R//3f/z08nRwmRnusNE888YTnpPef//mfasmSJalzUCNS73g99dRT6pRTTlH33nuvdf5g14zJnj171EknnaT27t2r9u7dq0466SS1Z88e9dJLL6lnn302LetNb3qT+spXvjISXT4mGmW8lFLqzW9+c3r/3XjjjeqNb3zjsPf3WGiksdL38t69e9XKlStTR+NGYrTHSzPe5K0Qoy4g33333QqAWr58uVq5cqVauXKluv3229ULL7ygzjnnHLVgwQJ17rnnphfhc889pzo7O1V7e7vq6OhQnZ2dqWfylVdeqRYvXqy6u7vV2972NnXkyBG2zo0bN6oZM2ao5uZm1dnZqbZv366UUiqXy6mTTz45bcdnPvOZ0RmEGhjOcdq4caNasmSJWrFixaCetrfffrtauHChOvnkk9Xf//3fK6UST+YNGzaoZcuWqe7ubvWWt7zFimrRKDTKeCml1L59+9SFF16oli1bps444wz18MMPj2znj4JGGq8rrrhCnXrqqWrRokXqC1/4wsh2/CgYi7HasmWLmjNnjsrn86qzszON7HHKKaeorq6utB1/9Vd/NfIDUCf1jte73vUuNWXKlPTc1atXp2WFrhmX66+/Xp1yyinqlFNOUTfccINSSqn//d//VWvWrFHLly9X3d3d6n3ve18aAaSRaJTxUkqpJ598Up155plq+fLl6pxzzlFPPfXUyHX8KGiksdqyZYtasmSJWrJkSUNGR1FqbMZrPMpbISTVtCAIgiAIgiAYSCY9QRAEQRAEQTAQAVkQBEEQBEEQDERAFgRBEARBEAQDEZAFQRAEQRAEwUAEZEEQBEEQBEEwEAFZEARBEARBEAxEQBYEQWhgTjrpJLS0tKC9vR1TpkzBhg0bcN111yGO4yG/++STT4KIUC6XR6GlgiAIEwcRkAVBEBqcH/zgB3jppZfw1FNP4WMf+xg+97nP4V3vetdYN0sQBGHCIgKyIAjCOKGjowObN2/Grbfeim9+85t47LHHcPvtt+O0007D5MmTMW/ePHz6059Ozz/rrLMAAFOmTMGkSZNw3333AQBuuOEGLFmyBFOnTsUFF1yAp556aiy6IwiC0LCIgCwIgjDO6OnpQVdXF+6++260tbXhX/7lX7B//37cfvvtuPbaa3HbbbcBAO666y4AwP79+3Hw4EGsX78eW7duxT/+4z/i+9//Pp5//nmceeaZuOSSS8ayO4IgCA2HCMiCIAjjkBNOOAF79+7Fn/zJn2D58uWIoggrVqzAJZdcgp///OfB71133XX4+Mc/jiVLliCfz+MTn/gEHn74YdEiC4IgGIiALAiCMA7ZvXs3pk2bhvvvvx9nn302Zs6ciY6ODlx33XV44YUXgt976qmn8P73vx9TpkzBlClTMG3aNCilsHv37lFsvSAIQmMjArIgCMI444EHHsDu3buxceNGvOUtb8HmzZvx9NNP48CBA7j88suhlAIAEJH33Xnz5uFrX/sa9u/fn/47fPgwNmzYMNrdEARBaFhEQBYEQRgnvPjii/jhD3+ILVu24G1vexuWL1+Ol156CdOmTUNzczN6e3tx8803p+fPnDkTURThD3/4Q3rs8ssvx1VXXYXHH38cAHDgwAH8+7//+6j3RRAEoZHJj3UDBEEQhMF57Wtfi3w+jyiKsHTpUnzwgx/E5ZdfDgD46le/ig996EN43/veh1e96lV405vehP379wMAWltb8clPfhKvfOUrUSqVsH37dlx00UU4ePAgtmzZgqeeegodHR0477zzcPHFF49lFwVBEBoKUnovThAEQRAEQRAEMbEQBEEQBEEQBBMRkAVBEARBEATBQARkQRAEQRAEQTAQAVkQBEEQBEEQDERAFgRBEARBEAQDEZAFQRAEQRAEwUAEZEEQBEEQBEEwEAFZEARBEARBEAz+f09xUC2Bz9QvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "forecast = model.make_future_dataframe(periods=365, freq='D')\n", + "forecast = model.predict(forecast)\n", + "plt.figure(figsize=(20, 5))\n", + "model.plot(forecast, xlabel = 'Date', ylabel = 'occupancy %')\n", + "plt.title('Occupancy forecast');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The model was able to generalize well, however, it struggled with peak occupancy and very low occupancy." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAKACAYAAAAMzckjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde3zU1Z34/9fnM/dJJvf7JFxCIJAAcouI1oLISsWWalFEuipSbdd1++1aH2397nZZ27pb+quuu6vd7W7X/VldIVrdSnVdFK9YRVAuylUCJOQecp2ZTOY+n+8fkwwMkQEkl0nm/Xw8WpnPbc45mSTvnMv7KJqmaQghhBBCiKShjnYBhBBCCCHEyJIAUAghhBAiyUgAKIQQQgiRZCQAFEIIIYRIMvrRLsBoczgco10EIYQQQohhlZ6eHvNaegCFEEIIIZKMBIBCCCGEEElGAsCztLW1jXYRRlWy13+AtIO0QbLXH6QNQNpgQLK3w3isvwSAQgghhBBJRgJAIYQQQogkIwGgEEIIIUSSSfo0MEKMtLCmsb/VzXt1Pbx/0kG9w4uqgF5V0ClK5L9n/DvDomdukY0qu43LClOxGHSjXQUhhBBjnASAQgyzsKZxsM3NH086eK+uhw9OOujxBi/qGf99sB2IBImzClJYYE+jqthGlT2NSZlmFEUZjqILIYQYpyQAFGIYaJrGW8e7+e3eVv5Y10OX5+ICvnMJhjX2Nveyt7mX33wUOZZtNbDAbuPqSRksKc2gIi8FVQJCIYQQcUgAKMQQ+7jRyUNv1vLHkyOzy0xnX4DXarp4raYLgNwUA4snZ7B4ciaLJ2cwIcM8IuUQQggxdkgAKMQQOdrRx0/fquWVI53nvTbDrOeqielcPSmDBXYbBp1KKKwRDGuEtP7/9r8+3uXh40YnHzW5qOv2nvfZ7e4ALxxo54UDkWHj0iwzSyZnsrg0gy9PyiDTYrjkugohhBjbJAAU4hI1OX1sfPckz+5rJax9/jVpJh1X9gd8V0/KYGb+hQ/TLgO+c7kdgHa3n48bXXzc5OSjRhd7ml30+kNx7z/R5eVEVwv/ubsFBZhTlMqSyZksmZzBwgnpmPWSDEAIIZKNBIBCfEEOb5BH36vn3z9qxhsMf+41S0sz+eGXJ1BVnIZOvfR5ebkpRq4vz+b68mwAQmGNw+1uPjjp4J3aHv5Y14PTd+6AUIPoHMLH3m/ArFe5oiSNJaWRgHBWQeqQlFMIIURiS5gAcOvWrXzve98jFApx99138+CDD8acr6+v584776Snp4dQKMTGjRtZsWIFzz77LL/85S+j13366afs2bOHOXPmsGTJElpaWrBYLAC8/vrr5OXljWi9xPi0r9nFnS8c5mTP5w/Jziuy8bfXTmLx5MxhLYdOVZiZn8rM/FS+fbm9f5GIi3dOdPNObQ+7GpwEztUtCXiDYd6p7eGd2h4AMi16vty/mGSmLUReniYrjIUQYhxSNE0792+HERIKhZg2bRrbtm2juLiYqqoqNm/eTEVFRfSab3/728ydO5d7772XQ4cOsWLFCurq6mKes3//fm688UaOHz8OwJIlS3jkkUdYsGDBOd/b4YidqN/W1kZ+fv7QVW6MSfb6DzhXO2iaxn983MJfv34cf2jwt05ZtoW/uWYSK2fkJETg5PaH2FHv4J0TPbxT282BNvdF3T8hwxQZLu6fP5iTYhymkiYe+V6QNgBpgwHJ3g7jof7p6ekxrxOiB3DXrl2UlZVRWloKwJo1a9iyZUtMAKgoCk6nE4gEbUVFRYOes3nzZtasWTMyhRZJx+kL8r2Xa/j9ofZB5wptRh5cPJFvzilAn0BDqClGHcvKslhWlgVE5hBu7+/xe/tEN40OX9z763t8PL23laf3tgIwqyAlOn/wignppBglKbUQQoxFCREANjU1UVJSEn1dXFzMzp07Y6556KGHuO6663j88cdxu9288cYbg57z3HPPsWXLlphjd911FzqdjlWrVvHjH/84bq9MW1sbXV1dl1ibsS3Z6z/g7HY40unle9uaqXMEBl37zcoMfrAwF4tBpbP91EgV8Qv7Ui58KTedv65Ko94Z4IOmPnY0uvmwuQ+H7/PnMg7Y3+pmf6ubx3c0YlAV5haYudKewpV2K5W55oQKfi+VfC9IG4C0wYBkb4exWv94vZYJEQBeiM2bN7Nu3ToeeOABduzYwe23386BAwdQ1cgKxp07d2K1Wpk5c2b0nmeffRa73Y7L5WLVqlU888wz3HHHHed8j4GGGuvdvJcq2es/ID8/H03TeGZvKz/c2jBooUeqUcfjX5vGTZW5o1TCS1dQAJdPg78ksqDk09be6PzBHfWOzx3mHhAIa+xq9rCr2cM/fhRZ6fylSRksmZzBktJMpmZbEmIY/FLI94K0AUgbDEj2dhhv9U+IANBut9PQ0BB93djYiN1uj7nmySefZOvWrQAsWrQIr9dLR0dHdFFHdXU1t91226DnAthsNtauXcuuXbviBoBCnMntD/H9V2t47tPBvXqV+Sn89uYZlGVbR6Fkw0OnKswtsjG3yMb9X5rAyaYWan3m6PzBT1p6iTdh2OkL8epnnbz6WSQPYpHNyOL+1cWLJ2dQYDONTEWEEEKcV0IEgFVVVdTU1FBbW4vdbqe6uppNmzbFXDNhwgTefPNN1q1bx+HDh/F6veTmRnpewuEwzz//PO+99170+mAwSE9PDzk5OQQCAV555RWWLVs2ovUSY1dHX5DbXv6UPc2uQefunFfAxuVTsBjG9/w3s15liT2TJaWZwGS6+gK8VxeZP/hubTcnuuInpW52+dn8SRubP2kDYEauNRoQXjUxHZspIX78CCFEUkqIn8B6vZ4nnniC5cuXEwqFWL9+PZWVlWzYsIEFCxawcuVKHn30Ue655x4ee+wxFEXhqaeeig4vbd++nZKSkugiEgCfz8fy5csJBAKEQiGWLVvGPffcM1pVFGNITUcft75UT6Mrdr6f1aDyDzdMZc3s8TUMcKGyrAa+XpHL1ysif3id7PHybm03756IBIWdfYPnR57pcHsfh9v7+PXOJvSqwgK7jcX9w8UDu6EIIYQYGQmRBmY0SRqYWMle/x31DtY+d5BuTzDmeHmOld/eMoPpuSmjVLKRdzGfhbCmcbDNHekdPNHN+ycdeM6RHPvzpBp1XDUxPRoQzsi1jvr8wWT/XgBpA5A2GJDs7TAe6p+QaWCESAQvHWrnO78/gu+shQ9LSzN56pYZpMmQ5TmpisKsglRmFaTy3UXF+IJhPmp0RgPC3c2uc26TB9DrD/FaTRev1URW2uWlGFhSmsni/vmDxenmEaqJEEIkB/mNJpKepmn86sMm/mbbiUGLHL45J59/vGGqDE9eJJNe5UuTMvjSpAx+fM0kerxB3j/ZwzsnIvMHj3Z44t5/yh3g+f2neH5/ZAHO1GxLJBgszeTqSRlkmOVHlxBCXAr5KSqSWiis8VevH+ffdjUPOvd/F0/kh1+eMOpDkeNBhlnPDeU53FCeA0CT08e7td39AWEPbb3+uPfXdHqo6fTwHx+3oCowt9DGktIMFk/OZGFJGia9BOhCCHExJAAUSasvEOLbvz/CK0c6Y47rVYWHv5zPn3154iiVbPyzp5lYe1kBay8rQNM0jrT3RfYk7p8/2OsPnfPesAa7m13sbnbx6B8bsOhVFk1IjwaEswpSUCVoF0KIuCQAFEmpw+3ntuqDfNQUm+bFZtTx9C0VVKTG75ESQ0dRFGbkpTAjL4V7F9oJhMLsaXZF8w9+1OgiGGcCoScY5q0T3bx1ohuoJcuiZ3H//sWLJ2cwKdMycpURQogxQgJAkXSOd3q4edN+artj89gV2Yw8v3YmM/NTaWtrG6XSCYNOZWFJOgtL0vnR4om4fEF21DujO5QcOuWOe3+XJ8jvD7VH92yelGmO7k5y9aQMsq2GkaiGEEIkNAkARVLZ1eDktucODspZV5Fn5XdrZ2FPk90qEo3NpOe6qVlcNzULgLZeP9trI72D75zopskZv7e2rtvLU92tPLWnFQWYXZgaCQgnZ3LFhLRxn9BbCCE+jwSAImm8fKSDe/77yKA9fRdPzuDpWypIl5WlY0J+qpFbZuVxy6w8NE3jeJcnOly8vbYHp+/c8wc14JOWXj5p6eWfPmjEpFNYWDKQfzCDOYU2dKrMHxRCjH/yG08khX/b1cSDW48PSvOyZnYe//y1aRglzcuYpCgKZdlWyrKt3F1VRDCs8UnL6fmDOxuc+EPnnj/oC2lsr+the10PP3sb0s16rp6UzpLJmcxMC5GXp8kqcCHEuCQBoBjXwprG32w7wa8+bBp07gdXT+CvlkyUX/DjiF5VmG9PY749jQeunkBfIMSH9Y7+gLCHT1t7497v8AZ55UhndGV4cVozi0sjw8WLJ2eQl2ociWoIIcSwkwBQjFveYJjv/P4IWw53xBzXKfDYDVO5Y17hKJVMjBSrQcfSKVksnRKZP9jh9vNenaN//mAPJ3u8ce9vdPp4dl8bz+6LLAqqyEuJLii5cmI6qUaZPyiEGJskABTjUldfgLXPHeTDBmfM8VSjjqdunsGysqxRKpkYTTkpRm6qzOWmylwA6ro9vFt7eoeSrrP2gD7boVNuDp1y8y87m9CrClXFNpb0p5yZV2STHWOEEGOGBIBi3Knr9nDzpgMc64zdbiw/1cjzt83kssLUUSqZSDSTMi1MyrRw57xCwprG/lZ3dIeS90/2DNoX+kzBsMaOeic76p38/N2T2Iw6ruqfP7ikNIPyHKtMLxBCJCwJAMW4srvJya2bD9JxVpqX8hwrv1s7kwkZ5lEqmUh0qqJwWWEqlxWm8n+uLKG+qYU6vyUaEO5tcREnHzUuf4itR7vYerQLgIJUI4v7k1EvmZxJkaQYEkIkEAkAxbjx6medfOvFw3jOSvNy1cR0nl1dQYZFEgCLC2fSq3zZnsGXJ2fwN0uhxxPgvZMO3u1PSH12D/PZWnv9PPfpKZ779BQA03Is0R1KvjQxQ9IOCSFGlfwEEuPCf3zUzA+3HhvUQ3PzzFx+tbIck17mZolLk2Ex8LXpOXxteg4ADQ4v79b2RAPCdncg7v1HOzwc7fDwm4+a0Skwr8jG4tJMlkzOoKo4TT6jQogRJQGgGNPCmsZP3qzlnz5oHHTu/qtK+Julk1BlHpYYBiXpZv50TgF/OqcATdM4dKqPd2q7ebd//qA7ED7nvSENPmpy8VGTi0feq8dqULlyQno0IKzMT5HPrRBiWCVMALh161a+973vEQqFuPvuu3nwwQdjztfX13PnnXfS09NDKBRi48aNrFixgrq6OmbMmEF5eTkAV1xxBb/+9a8B2L17N+vWrcPj8bBixQr+6Z/+SSZljyO+YJg/3/IZLx5sjzmuKvDI9WWsX1A0SiUTyUZRFCrzU6jMT+G+K4rxh8J83OiKBoQfNzmJs56EvkCYN45388bxbgByrAYWT86I5iCUuatCiKGWEAFgKBTivvvuY9u2bRQXF1NVVcXKlSupqKiIXvPwww+zevVq7r33Xg4dOhQN/gCmTJnCvn37Bj333nvv5Te/+Q0LFy5kxYoVbN26leuvv36kqiWGUY8nwNrnDvFBvSPmuNWg8p+rZvCVadmjVDIhwKhTuXJiOldOTOevloDTF+T9/vyD22t7ONzeF/f+jr4ALx5sj/5xU5pljiSjLs3gy5MyyJT5rEKIS5QQAeCuXbsoKyujtLQUgDVr1rBly5aYAFBRFJzOSE43h8NBUVH83p2WlhacTidXXHEFAHfccQcvvfSSBIDjwMkeL6s3HeCzjthforkpBp6/bSZzi2yjVDIhPl+aSc/15dlcXx75w6TF5WN7bWR3kndOdNPi8se9/0SXlxNdLfzn7hYUYE5RaiTdzOQMFk5IxyzzB4UQFykhAsCmpiZKSkqir4uLi9m5c2fMNQ899BDXXXcdjz/+OG63mzfeeCN6rra2lrlz55KWlsbDDz/M1VdfTVNTE8XFxTHPbGoavB2YGFv2Nbu4tfogbb2xvzCnZlv43dqZTMq0jFLJhLhwhTYTt87O59bZ+WiaRk2nh3f6F5P8sa4Hpy90zns1YG9zL3ube3ns/QbMepUrStJY0j9/cFZBKjpVproIIeJLiADwQmzevJl169bxwAMPsGPHDm6//XYOHDhAYWEh9fX1ZGdns3v3bm688UYOHjz4hd6jra2Nrq6uIS752JLI9X+3vpe/3NZMXzB2MtX8Agv/styOxe+krc15jrsvTiK3w0hJ9jYYyfqnA1+fqOfrE3MIhrM50O7lg6Y+djS62dvmIc56ErzBcKQnsbYHgFSjyvwCC1cVW/lScQqlGcYvPPc52T8DIG0wINnbYazWPz8//5znEiIAtNvtNDQ0RF83NjZit9tjrnnyySfZunUrAIsWLcLr9dLR0UFeXh4mUyTB6vz585kyZQpHjx7FbrfT2NgY95lnG2ioeA2WDBKx/r/d08L3tzYNmkh/U0Uu/3pj+bAMgSViO4y0ZG+D0aq/vRCWz4782+0PsaPewTsnenintpsDbe649/b6w7xb7+bdejfQTn6qgflFaSyakMaVE9KZmGkmxajDpFcvaKVxsn8GQNpgQLK3w3irf0IEgFVVVdTU1FBbW4vdbqe6uppNmzbFXDNhwgTefPNN1q1bx+HDh/F6veTm5tLe3k5WVhY6nY4TJ05QU1NDaWkpWVlZpKWl8eGHH7Jw4UKefvppvvvd745SDcUXpWkaf/d2HY/8sWHQue8uKuYnyyZLugwxrqUYdSwry4ruX93u9rO9toe3T3Tz5vHzzx9s6w3w6tFOXj3aCUBpppk5hanMLbIxuyCFdLMBg07BpFcx63WkGlWMehWDDCMLMa4lRACo1+t54oknWL58OaFQiPXr11NZWcmGDRtYsGABK1eu5NFHH+Wee+7hscceQ1EUnnrqKRRFYfv27WzYsAGDwYCqqvz6178mKyvyg/Jf/uVfomlgrr/+elkAMsb4Q2H+4g9HeX7/qZjjCvCLr0zh25fH79EVYjzKTTGyamYeq2bmoWkatd1e3jjWxWs1XexqcOLyn3v+IMCJbi8nur3896EO9KpCZV4K8+025helUpZtJaxphIl8n3V395Hjc6CqCjoF9DoVo07BrFcx61X0qoKqKOhUMOl1mHSKpNoSYoxQNE2Lk51q/HM4YtOItLW1jbtu3ouRKPXv8Qa5/fmDvFcX+/Wx6FX+Y9V0bijPGdb3T5R2GE3J3gZjsf6hsMYH9Q7+97NOPqh3cLDNTSDeBsZnSTGozCmyMb/Ixny7jZSQm5zswSmVQmGNkKYx8Nsj1P+PSDCoYFAVjHoVi17tH2qO5Oc06iK9i/r+a8ZCsDgWPwfDIdnb4WLq7w+FCfZ/3+kUJbrLj6ZpBMOn/6dTwGocuX649PT0mNcJ0QMoxJkaHV5u2XRgUK60HKuB6jWVLChOG6WSCZHYdKrC1ZMyuHpSBpqm0er0se1YF3+sd7KvxUVNh4d44aA7EOb9kw7ePxn5wyvLrKOqpDcaEGZbDdH30RE/ePMHw3gDIUJhDQ3QNM7oXVRQFQ1VUTDoVFIMOjRAUcCkVzDpVMJaJGjUqwoGnRK91qAqaJwOQs0XOJdRjF2apkU/D75QJHAy6NSY8xpEPwfBsEavL4iigF5V0akKRp0SDbzO/sxomoY/pBEIa+jPmPqgKpHPmScQpsXlx2vyoFNUzHoFvRp5nj+kEQqHCQPegIbTF8QfOr1qSyHSe66qSuS6/m9ADYUCm5EpWaMXhkkAKBLKp6293Lr5wKB5TVOyLLywdiaTsyTNixAXQlEUCtPN3DG/iLVzC2l1+Tna4ebjRhf723rZ09xLk9MX9xld3hCv1USGlwEmZZj7h4ttXFaYSopRF/d+VVFQdecPzvoCp4etXd5IYKdANHAMaVrkhUL//0VeaGgoioIO+n/ZR4JEk07FatRhNUR6II39ASQgKXIuQLg/4Br4rwL4Qxq+YJhwf7AFka9NJBiPBDyhMAT7gxx/KEwgDHoVgmEIhjTC/T1g4f4eY0WJBEe+4OkeMy0aIEH0nbRIwKScPoKigIqCotBfpkhQFg5rBDUNRRm4L1J+RVFi3levnC6/1n9/5P/PFDmmUxQcfSFCvYHoHx9hLfIHjKpEnqcQCRgNqoJB/fzvizOPJ8LgqwSAImG8eayLO184TO9Zc5guL05j85rKaO+DEOLi6FWF4nQTxekmFpak0ejw0+0J0Obyc+CUm91NTvY099LjDcZ9Tl2Pl7oeLy8ebEdVoCK3f/6g3caMXGtMr8wXdSG9i/GEwhp94RBOX5BgWCOkRX6NR0QCjs8z0CFk0EV6jHRKpCzd3T4cuv7RiGg8EuktCvX/TzkjEFCVM0PU04FHMBQJbEPhyNC5ckbgoPTfo1MjQ+iqoqDrL1DojEBBp4DZoGJQVQw6BW8ghC+kRQOZsHb63wPPHeh5DZ5RVogEICHtdO+adkaIpdF/4xk16er2kBVwcUZYFj0/0KTqGYHQQHB0ZjucTevvEVaVSA/dkFAVTEPzpBju/q8NENNLOJZJACgSwjN7W/nLV44OSvPytek5/PtN5VgM8XsahBAXJsWopzxXT1jTONXrZ1KWmWtKMzGokV12dje52N3s4tNWN97guRMQhjU4cMrNgVNufru3FbNeZU5hanS4eHKmeVTn+OlV5Qv/og6HI4FJIKTRF9SwxFlYo0YDqtMBTawzAzgFXZxAR9MiPWVn3nO2Xl8o2jOnu8g6njnsORCscoHBtkevYjVcfIA/PkKl8UkCQDGqNE1j47sn+cX2+kHn/myhnb/7k1IZshFiGKiKQoHNRIHNhDcYpsHhJQzY0yO7lPhDYT481kqNC3Y3uzjS3hedv/R5vMEwHzY4+bAhkow906KPBoPzimzkpxpHpmLj3KX2kAoxQAJAMWoCoTDfe6WGTZ+0xRxXgL+7rpQ/v6L4828UQgwps15larYVLUujsy9Aq8tPXxCmZZv4cnk23wJ6/SH2tbgiPYRNLuod8ecPdnuCvHG8mzeOdwNQkm6KBoRzClOxmeTXjxCjSb4Dxahw+oLc+btDvH2iJ+a4Wa/ybzeV8/UZuaNUMiGSl6Io5KQYyUkxEgpr7Pc7IysdwxopBpUvTczgSxMzADjl9rOnycWe5siQcWdf/PmDDQ4fDQ4fLx3uQFWgPMfK/CIb8+w2KvNSoqkyhBAjQwJAMeKanT5u2XyAg2dtaZVl0bN5TSULS9LPcacQYqToVIVCm5H8/DQc3gDNTh8ObxCFSF6zvBQjX5mWzVemZaNpWsz8wX0tvfTF2cA4rMHh9j4Ot/fxX5+0YdQpzC44PX+wLNsiqV2EGGYSAIoRdbDNzerN+2lyxqZ5mZRp5oW1MynLto5SyYQQ55JuNpBuNhAKa5xy+2l1+fAEwlj0amQlq6IwKdPCpEwLq2bmEQxrHGl3RwPCg23uQQu8zuQPaXzc5OLjJhd8BGkmHfP6g8H5RTaK0oZjXacQyU0CQDFi3j3Rze2/O4TTF7uibn6RjerbKslNkUniQiSySK+giUKbiV5fkPoeLz2+EMazVqPqVYWZ+anMzE/lznmF9AVCfNraG50/eKLbG/d9nL4Q79T28E5tZIpIoc0Y7R2cW2Qjwyy/uoS4VPJdJEbE5k/a+O7LR6PJPgdcPy2bJ1dNxyppXoQYU1JNeiryUwmGNZqcXtp6A4TCYSz6wd/LVoOOK0rSuaJ/ekdnX4C9/XMHdze5OOUOxH2vFpefVz7r5JXPOgGYmm2JBoSzClIxy/xBIS6aBIBiWGmaxiPv1fN375wcdO6eqiI2Lp8iaV6EGMP0qsLEDAsT0s109gWo7/HiDYbjbtGWbTWwrCyLZWVZaJpGo9MX7R3c09KLO07ePYCaTg81nR6q95/CoCrMzE+JDhdPy7HKzxQhLoAEgGLYBEJhHnj1GE/vbR107mfLJvMXi4rHxGbwQojzO3MFcZ8/Mjzc7Q1hOE+yYkVRKEk3U5Ju5saKXEJhjaMdfdHewQNtbgJxEhAGwhp7W3rZ29LLf9BCqlHH3MLU6A4lxWkm+TkjxOeQAFAMC5cvyF0vHI7mABtg1Cn8+sZyvlGZN0olE0IMN6tRz/S8yPBwo8NLuztAIKxh0SnnDcZ0qsKMvBRm5KXwp3MK8AbD7G/tjaSbaXJR0+mJs09GJF/heycdvHfSAUBeiiG6oGRekU22lBSinwSAYsi1unys3nyQT1t7Y45nmPVsurWSKydKmhchkoFePb062OkL0uTw0u0Jxh0ePptZr1JVnEZVcRoAPd4g+86YP9js8se9/5Q7wNaaLrbWdAEwOdMcHS6+rCAVq1HmH4vkJAGgGFJH2t3cvOkAjWftEjAhw8TvbptFea6keREiGaWZ9KTlpeIPhanr8tLl8WNQ1Yuer5dh1rOkNJMlpZlAJK/oQO/g7mbXoCwDZ6vt9lLb7eWFA+3oFKjIOz1/cEZeyhfeP1iIsUYCQDFk3qvr4ZvPHRz0A3hOYSrP3TZT9gIVQmDUqUzLtRIMWzjR5aGrz4+qKBh1X2wlb1GaiaI0E1+dnkNY0zje6Yn2Dn7S2os/TgLCkAb729zsb3Pz1J5WLAaVOQWn5w9OyjB/0WoKkfAkABRD4nf7T3HfHz4b9MN2+dQsnlw1g1QZZhFCnEGvKkzLsRIKW2hx+Wl2+giGNSz6888TPBdVUZiaY2VqjpU1s/PxBcMcOnU6IfVnHX3EWU+CJxBmR4OTHQ1OILI70cwcE1dO1phnt5EnuUrFOJIwAeDWrVv53ve+RygU4u677+bBBx+MOV9fX8+dd95JT08PoVCIjRs3smLFCrZt28aDDz6I3+/HaDTyy1/+kqVLlwKwZMkSWlpasFgsALz++uvk5cnig6GkaRr/+H4DP3mrbtC5u+YX8svry2RIRQhxTjpVoTjdhD3NiMMXpNnho8cbwqiLv3r4Qpj0KnOLIsmj7yayOG1fS280IGw4a6rK2bo8QbY3BNneENm2ckK6Kdo7OKfQJn/YijEtIQLAUCjEfffdx7Zt2yguLqaqqoqVK1dSUVERvebhhx9m9erV3HvvvRw6dIgVK1ZQV1dHTk4OL7/8MkVFRRw4cIDlyypuVbIAACAASURBVJfT1NQUve/ZZ59lwYIFo1GtcS8Y1vjh/x7jP3e3DDq3Yekk7r+qRNIvCCEuiKIoZJgNZJgNBEJhml0+2lwBNE3DNESJnm0mPVdPyuDqSRkAtPX6Y+YPdnuCce+vd/iod/j4/aEOVAWm51qjCakr8lK+8DC2EKMhIQLAXbt2UVZWRmlpKQBr1qxhy5YtMQGgoig4nZFueYfDQVFREQBz586NXlNZWYnH48Hn82Eyyd6Rw8ntD7H+xcO81r+yboBBVfjV16exelb+KJVMCDHWGXRqNLl0s9NPiysyPDzUO37kpxq5flo210/LRtM0aru90fmD+1p68QbD57w3rMGhU30cOtXHM/vaMOkUZhemRgPCKVmWC17pLMRoSIgAsKmpiZKSkujr4uJidu7cGXPNQw89xHXXXcfjjz+O2+3mjTfeGPScF198kXnz5sUEf3fddRc6nY5Vq1bx4x//OG6PVFtbG11dXec8nwwupP4dfUG+s7WJA+2x+3najCpPXGfnirxIW45lyf45AGmDZK8/JEYb6IESA7S7gzT2BEADg254Aqt0YGmRnqVFmQTCGRzr8vFRQw+fOeFoly/u/EFfSOOjRhcfNboASDOqzMozMzvXzOw8C3kpCfHr9gtzOh2jXYRRNdT11zQNv0lHamB455Xm55+7M2bMfCI3b97MunXreOCBB9ixYwe33347Bw4cQFUjfxEePHiQH/3oR7z++uvRe5599lnsdjsul4tVq1bxzDPPcMcdd5zzPQYaKl6DJYN49T/a0cdtL++nvid27kxxmonfrZ3JjLyU4S7eiEn2zwFIGyR7/SFx2iAfqNA0mp1+ml0+wpqGeZiHXAtyYEaOmeysLNz+EJ+0np4/WNftjXuv0x/m/cY+3m/sA6AozRjtHZxbaCPdPGZ+/UZlZ2WNdhFG1VDWX9M00iwG8rMsQ/bMi5UQn0C73U5DQ0P0dWNjI3a7PeaaJ598kq1btwKwaNEivF4vHR0d5OXl0djYyE033cTTTz/NlClTYp4LYLPZWLt2Lbt27YobAIr4dtQ7uK36ID3e2HkyswpSeP62mRTaZNhdCDF8VOX0gpF2t59Ghw9vSMM6xEPDnyfFqOPKCelcOSGSyL6zLxANBnc3uejoC8S9v9npp9nZyctHOlGAqTmWaEA4Kz91yOY5CnGhEiIArKqqoqamhtraWux2O9XV1WzatCnmmgkTJvDmm2+ybt06Dh8+jNfrJTc3l56eHm644QY2btzIVVddFb0+GAzS09NDTk4OgUCAV155hWXLlo101caN3x9s589eOoLvrDQv107J5KmbZ2AzJcRHSQiRBBRFIS/VRF6qCYc3QG23l75AeEQCwQHZVgPXTc3iuqlZaJpGvcMXDQj3NbtwB849f1ADjnZ4ONrhYfOnpzDoFGblDySkTmNqtuWiE2QLcbEu6bf2W2+9dUHXDaRlOWch9HqeeOIJli9fTigUYv369VRWVrJhwwYWLFjAypUrefTRR7nnnnt47LHHUBSFp556CkVReOKJJzh27Bg//elP+elPfwpE0r2kpKSwfPlyAoEAoVCIZcuWcc8991xKdZOSpmk8saORv3mjdtC52+cW8A8ryjDIyjchxChJNxuYU2jA4Q3Q6PDh8IUwqpeeQuZiKIrCxAwzEzPMfKMyl2BY47OOvkhA2OTi4Ck3wTgTCAMhjT3Nvexp7uU3tGAz6ZhbaIvuUGJPM0pGBTHkFE3T4u2rHdfkyZNjXjc1NaEoCtnZ2XR2dqJpGsXFxZw4ceKSCzpcHI7YiZ1tbW0JM+dlNJxZ/1BY48HXjvObj5oHXfdXSybyg6snjNsfSsn+OQBpg2SvP4zNNgiEwjQ4fLT3+tENQSDY2dV1yXO/PIEQ+9tOJ6Q+1um5qPvzU43ML4rsUDKvyEamxXBJ5fkihqIdxrKhrv/AHMApIzgHMD09Peb1JfUA1tae7hX6+7//ezo7O/nZz36G1Wqlr6+PDRs2kJ2dfSlvIUZJXyDEPf99hP/5rDPmuF5V+OevTWXtZQWjVDIhhDg3g06lNMvChAwzdd0eTrkDmHXKqKZksRh0XF6cxuXFaQB0ewLsbe5ld7OLj5tctPX6497f1uvn1aNdvHo0sip7SpY5On9wdkEqFoMkpBYX75J6AM+Um5tLc3MzBsPpv0wCgQBFRUW0t7cPxVsMC+kBjNXW1oYuNZM11Qf5uMkVc85m1PHM6oroJuzjWbJ/DkDaINnrD+OjDfyhMLVdXro8AQxfoEdwuHu+NE2j2eWP9g7uaXbhOms/9Xj0qkJlXkp0uLg81zosw9/SAyg9gOeUkpLCrl27YhZifPTRR1it1qF6CzEC6hx+/uz5fdSeleKgyGbk+bUzmZmfOkolE0KIi2fUqZTnWgmGNeq6PbS7v1ggOFwURcGeZsKeZmLljBxCYY1jXZ7o/MFP23oJhM7dTxMMa3zS2ssnrb385+4WUgwqc86YPzghwzRup+qISzNkAeDPfvYzvvKVr/C1r32NkpISGhoaeOWVV/jVr341VG8hhtmuBie3vlRPjzf2r8+KvBR+t3Ym9jRJ8yKEGJv0qkJZtpVJmRoNPV5O9fpRFBJu+zadqlCeY6U8x8ray/LxBcMcaHNH080c7egj3rCdOxDm/XoH79dHRrdyrIZoMDivyEZOysjPHxSJacgCwNtvv5358+fz4osv0tzczPTp0/nxj38cs52bSFx/ONzBt39/ZNDWR0smZ/DbWyrGZNJSIYQ4m15VmJxlYWKmmSanj2aHb0gWiwwXk16NBHB2G1SB0xtkb8vphNRNTl/c+zv6ArxW0xXdtnNShjkaEF5WmEqKUeYPJqsh/a1eUVEhAd8Y9K87m/ir144P+qvytsvy+aevTk24v5CFEOJSqYpCSbqZIpuJ+h4vrb3+hBoaPpc0s57FkzNYPDkDgBaXjz3NvexucrKnuXdQov6z1fV4qevx8uLBdlQFKnJToquLK/KsktYriQxZANjV1cUjjzzCvn376O3tjTm3ffv2oXobMYTCmsZfv36Cf93ZNOjcD788gf+7eKLMHRFCjGu6/h7B4nQTJ3u8dPYF0GDYt5kbKoU2EzeUm7ihPJuwpnGiy9MfELr4pLV30KjOmcIaHDjl5sApN7/d24pZr3JZQWq0h7A0yyy/A8axIQsA165di8/nY/Xq1bLwYwzwBEJ856XP+MPhjpjjOgUe++pU7phbOEolE0KIkWfQqZRlW5mSpUW3mTt756NEpyqReY5l2VZWz8ojEApz6FRfdP7g4XY3cfJR4w2G2dnoZGejE4BMs555A8FgSojs5F0EPC4NWQD4wQcf0N7ejskkCwUSXWdfgLXVB6Pf5ANSjTr+cVkhN0vwJ4RIUmduM9fdF2C3owdPMIxlDO7Va9CpXFaYymWFqayfX0ivP8QnZ8wfPNnjjXt/tzfIm8e7efN4NwDFaR3R3sG5RamyBegYN2RfvdmzZ9PY2MiUKVOG6pFiGNR2ebh50wGOd8Vmoi9INfLcbTMpUN2jVDIhhEgsmVYDs/LMGG1Wans8+ILamAwEB6QadVw1MZ2rJkbywbW7/ezp7x3c3eyisy/+/MFGp49Gp48thztQFZiWY40mpK7MS8E0htsmGQ1ZALh06VK+8pWvcNddd1FQELtLxPr164fqbcQl2N3k5NbNB+noC8Qcn5Fr5fm1MylJN9PWJgGgEEKcKdNqINNqoLsvMC4CwQG5KUaWT81m+dRsNE3jZI83Ggzua+mlLxB//uCR9j6OtPfx7CdtGHUKswtSowFhWbZlVHdfEec3ZAHge++9R3FxMdu2bYs5riiKBIAJ4NXPOvnWi4fxnDUh+EsT0/mvWyvJkDQvQggR10Ag2NUXoK7bg7d/aHg8LJRQFIVJmRYmZVpYNTOPYFjjSPvp/YsPtrmJNyXSH9L4uCmytR0fQZpJx7yi0wmpiySPbMIZst/6b7/99lA9Sgyx33zUzI+2Hhs0+Xf1rDwe/9o06bYXQoiLkGU1kGU14PIFOdbZhzcYxjzOfo7qVYWZ+anMzE/lznmFNJ7qoNFniO5QcqI7/vxBpy/EO7U9vFPbA0SmGZ1OSJ1KhkUSUo+2Ie326ezs5NVXX6W1tZUf/OAHNDc3Ew6HKS4uHsq3ERcorGk89EYt/7yjcdC5B75Uwo+vmTQu/nIVQojRYDPpmVuUxqleH81OH32BMFbD+EysbNGrXJGXzhUlkfmDnX0B9ja7oiuMT7kDce9v7fXzP5918j+fdQJQlm2JDhfPLkgddwH0WDBkAeC7777LqlWrWLBgAe+//z4/+MEPqKmp4ZFHHuHll18eqrcRF8gbDPPnWz7jvw+2xxxXFfiHFVNZN19W+gohxFAYWDXs8AY42eOl1x/Cqh+fgeCAbKuBZWVZLCvLQtM0mpy+6HDxnuZeev2huPcf6/RwrNPDc/tPYVAVKvNTogHhtBxrwifkHg+GLAD8y7/8S5577jmuvfZaMjMzAVi4cCG7du0aqrcQF6jbE+Cbzx3ig/69IAdYDSr//6oZLJ+WPUolE0KI8SvdbGB2gQGnL0hdtwe3L4xZr4z7kRZFUShON1OcbubrFbmEwho1nX3RgHB/q5tAnASEgbDGvpZe9rX08uTuFlKMOuYWnk5IXZJuGvdtOBqGLACsq6vj2muvBYh+oYxGI8Fg/GXlYmid7PFyy6b9HO2ITfOSl2LgudtmMrfINkolE0KI5JBm0jO7wIbbH6Su24vDG8SsV5NmVaxOVZiem8L03BS+OacAbzDMgdbe6HBxTadn0NajZ3L7Q/zxpIM/nox0YuSmGKK9g/OKbGRbZf7gUBiyQfeKigpee+21mGNvvPEGs2bNuqD7t27dSnl5OWVlZWzcuHHQ+fr6eq655hrmzp3L7NmzefXVV6Pnfv7zn1NWVkZ5eXlMGc73zPFmX7OLP3ly76Dgb1qOhdfXz5HgTwghRlCKUU9lfioLitNIMerxBENo2tjaXWQomPUqC4rT+M7ldv79pun8/k9n8dDSSXxtejZFNuN57293B9ha08XfvXOSVZsOcNeLh3niw0Z21DvoO89Qszi3IesBfPTRR/nqV7/KDTfcgMfj4Tvf+Q4vv/wyW7ZsOe+9oVCI++67j23btlFcXExVVRUrV66koqIies3DDz/M6tWruffeezl06BArVqygrq6OQ4cOUV1dzcGDB2lubmbZsmUcPXoU4LzPHE9eO9rJXS8eHpS3adGENDbdWkmmrLgSQohRYdSplOda6fMbqen04PaHkqpH8GwZZj1LSjNZUhqZLtbs9MUkpHb64gd1td1earu9vHCgHZ0CFXkp0eHiGXkpMn/wAg1ZAHjFFVfw6aef8l//9V+sX7+ekpISdu3adUErgHft2kVZWRmlpaUArFmzhi1btsQEa4qi4HRGti5zOBwUFRUBsGXLFtasWYPJZGLy5MmUlZVF5x2e75njxVO7W/j+qzWD0rx8ozKXf/l6uayuEkKIBGA16rms0EavL0izy09XXwC9qiR9wFKUZqIozcRXp+cQ1jSOd3qiw8WftvbG3ZM5pMH+Njf729w8tacVi0HlsoLT8wcnZ5pl/uA5DEkAGAqFuPbaa3nttdf44Q9/eNH3NzU1UVJSEn1dXFzMzp07Y6556KGHuO6663j88cdxu9288cYb0XuvuOKKmHubmpoAzvvMs7W1tdHV1XXR5R8tYU3jH3d18G/7Bpf57suyeGBhJo7Odhyfc++5jKX6DydpB2mDZK8/SBvA8LVBOpBq0GhwBWh1BzDqVXQJHKg4nRfzm+TSZKnwJ8UG/qQ4C38ok8+6fHx6ysP+U16Od/s59/4k4AmE+bDByYcNkQ6jDJOO2XlmZuWZuSzXTLb1i4U9Q11/TdPwm3SkBs4/BH4p8vPzz3luSAJAnU5HbW0t4XC8L8ul2bx5M+vWreOBBx5gx44d3H777Rw4cGBI32OgoeI1WKLwh8L8xR+O8vz+2B9OqgK/+EoZ91QVfeFnj4X6jwRpB2mDZK8/SBvA8LZBUSEEQmFqu7x09PkTemeR7KysUXnfwlxYUh75t8sXZF/L6QUlDQ5f3Ht7fCG2N7jZ3hDZ5rQk3RTtHZxTmIrNdOFh0FDWX9M00iwG8rMsQ/bMizVkQ8B/+7d/y7333stPfvITiouLYz7Aqhp/CNJut9PQ0BB93djYiN1uj7nmySefZOvWrQAsWrQIr9dLR0dH3HvP98yxqscb5PbnD/JeXexfJBa9ypOrZrCiXNK8CCHEWGHQqUzLtVLsN3Ksy0OvL5TQgeBospn0XD0pg6snZQBwqtcfDQZ3N7vo9sTPPNLg8NHg8PHSoQ5UBcpzrNGAsDI/BaMueaZMDVkAePfddwPwzDPPRI9pmoaiKIRC8Sd0VlVVUVNTQ21tLXa7nerqajZt2hRzzYQJE3jzzTdZt24dhw8fxuv1kpuby8qVK1m7di3f//73aW5upqamhssvvxxN0877zLGoweFl9aYDHG7vizmeYzVQvaaSBcVpo1QyIYQQl8JqPJ0+prbbi9MbwpIEeQQvRV6qkeunZXP9tGw0TaO22xsNCPe19OINnntkMqzB4fY+Drf38V/72jDpFGYXpkZTzkzJsozrhTpDFgD+4he/YPXq1THHNE3jxRdfPH8h9HqeeOIJli9fTigUYv369VRWVrJhwwYWLFjAypUrefTRR7nnnnt47LHHUBSFp556CkVRqKysZPXq1VRUVKDX6/nVr36FThfJwP55zxzLPm3tZfWmA7T2+mOOT8my8MLamUwexa5kIYQQQyPFqGdmfipuf5ATXR5cvrAEghdAURRKsyyUZlm4ZWYegVCYw+2nE1IfOuUetFjyTL6QxkeNLj5qdAGQbtYzrygSEJamhMgenRHwYaNoQ5SUKC0tLbpK90xZWVkJPZHY4YgdRm1ra0vIOS9vHuvizhcOD9peZ2FxGpvWVA5ZYsxErf9Ik3aQNkj2+oO0ASRGG7j9QY53enAHwlhGKatDZ1fXqM0BHCpuf4hPWnujAWFdt/ei7i+yGaPDxXOLbKSbv3gf2sAcwCkj2HGTnp4e8/qSewDfeustAILBIG+//XZMkssTJ05gs0ny4Uv19N4W7n+lhrNXwq+ckcO/3ViOZZxuPi6EECLSIzi70EZ3X4BjXX2ENTAl0Vy1oZJi1HHlhHSunBAJhDr7AtFgcHeTi46+QNz7m11+mo908vKRThRgarYlGhDOKkjFNMZSrl1yAPitb30LAJ/Px/r166PHFUWhoKCAxx9//FLfImlpmsbfv3OSX75XP+jcny+08/B1peN6foIQQojTMq0GFljSaHL6aXJ6UYksIBFfTLbVwHVTs7huahaaplHv8LG7ycWeZhd7m124A+eeP6gBRzs9HO30sPnTUxh0CrPyU6LzB6dmW9EleH7HSw4Aa2trAbjjjjt4+umnL7lAIsIfCvN/Xj5K9aenYo4rwN8vn8K9C8fHimYhhBAXTlEUitNNFKUZqe/x0uLyY1SVhA82Ep2iKEzMMDMxw8w3KnMJhjWOdpyeP3igtZdgnAlzgZDGnuZe9jT38puPW0g16qLzB+fbbdjTTAk3h3PIFoFI8Dd0HN4gd/7uEO/U9sQcN+tV/v2m6ayckTNKJRNCCJEIVEVhUqYFe5qJ410euvoCSb293FDTqwoVeSlU5KVw+9wCmk510OQ3RgPCY52euPf3+kNsr3OwvT9dW36qIRoMzi20kWkZsvDrCxv9EogYTU4fqzcf4GCbO+Z4lkXP5jWVLCxJP8edQgghko1BpzI9NwVfMMyxzj4ckjpmWJj1KpfnpXF5f6q1Hk+APc2RhNQfN7loOys7x9naegO8erSLV49GFsWWZpl5/GvTRnQRyNkkAEwgB9oiaV6aXbEfpMmZZl5YO4sp2ZLmRQghxGAmvUplfip9/iDHuzy4fCGsskBw2GRYDCydksnSKZlomkazyx/tHdzb7MLpi5//uM3lJydleLeBOx8JABPEOye6ueN3hwZ9aBbYbWxeU0nuKH9QhBBCJD6rUc+sAhsuXySHYN8opo5JFoqiYE8zYU8zsXJGDqGwxrEuTyQgbHLxaVsvgbPSeMwpTEU/yvM2JQBMAJs+aeX/vFxD8KwMlSvKs/mPb0yXv+KEEEJcFJtJz2WFNjr7AtR2eQhpmqSOGSE6VaE8x0p5jpW1l+XjC4Y50OaOpps52tHHfPvop8iTAHAUaZrGL9+r5+/fOTno3D1VRWxcPkVWdgkhhPjCsq0Gsiz6aOoYkByCI82kVyP5Au02qAKnN0giTNGUAHCUBEJhvv/qMZ7Z2zro3M/+pJS/uMIuk3iFEEJcsoHUMfY0Iw0OL40OP2a9IiuGR0maWc8QbcJ2SSQAHAUuX5B1LxzmzePdMcdNOoV/u2k6N1bkjlLJhBBCjFeKojAhw0KBzcSJzj66PLJiOJlJADjCWlyRNC/7W2PTvGSYI2leFk2QNC9CCCGGj1GnMj0vFbc/SE2nh75ACItOlUAwyUgAOIIOn3Jzy+YDNDp8MccnZJh4Ye0spuVYR6lkQgghkk2KUc+cQhu9viD1PV56vEFJJp1EJAAcIdtre/jT5w8OSvMytyiV59bMJC9V0rwIIYQYeakmPRX5qXgCIeq6PXR7JBBMBhIAjoDf7T/Fn2/5jMBZaV6WT83iP1fNIMUoaV6EEEKMLotBx4y8VHzBMCe7vXR5AuhVZdTz1YnhIQHgCOjoCwwK/tbPL+T/u75MvrGEEEIkFJNeZVqulVBY42SPl1aXn3ACrFoVQ0uSAY2Aexfa+c7lRdHXD107mUdXSPAnhBAicelUhdIsC/PtNoyqQl8w/vZmYmyRHsAR8rM/KaXDHeAr07K5ZVbeaBdHCCGEuCAmvcr0HDOWjFROdHnwyPZy40LCfAW3bt1KeXk5ZWVlbNy4cdD5+++/nzlz5jBnzhymTZtGRkYGAG+//Xb0+Jw5czCbzbz00ksArFu3jsmTJ0fP7du3b0TrdCajTuXJVTMk+BNCCDEmpZkiq4an51oJo+EJhEe7SOISJEQPYCgU4r777mPbtm0UFxdTVVXFypUrqaioiF7z2GOPRf/9+OOPs3fvXgCuueaaaGDX1dVFWVkZ1113XfTaX/7yl9x8880jVBMhhBBifMu0GMi0GCL7DHd7CIY0zNIjOOYkxFds165dlJWVUVpaitFoZM2aNWzZsuWc12/evJnbbrtt0PEXXniB66+/HqtV8ukJIYQQwynbamB+kY0pWRb8IY1gWBaKjCUJ0QPY1NRESUlJ9HVxcTE7d+783GtPnjxJbW0tS5cuHXSuurqa73//+zHH/vqv/5qf/vSnXHvttWzcuBGTyXTOcrS1tdHV1fUFazE+JHv9B0g7SBske/1B2gCkDQacrx2K9Rq1PX5avSHM43B7OafTMaTP0zQNv0lHamB4cwDn5+ef81xCBIAXo7q6mptvvhmdLjZ3XktLC/v372f58uXRYz//+c8pKCjA7/fz7W9/m1/84hds2LDhnM8eaKh4DZYMkr3+A6QdpA2Svf4gbQDSBgPO1w5FhdDnD/JZRx/+kIZJlxCDjEMmOytryJ6laRppFgP5WZYhe+bFSoivjt1up6GhIfq6sbERu93+uddWV1d/7vDv888/z0033YTBYIgeKywsRFEUTCYTd911F7t27Rr6wgshhBACAGv/9nL2NDO+YJhASBaKJKqECACrqqqoqamhtrYWv99PdXU1K1euHHTdkSNH6O7uZtGiRYPOfd68wJaWFiASab/00kvMnDlzeCoghBBCCAAURaE43cSC4jTybEYCYVkxnIgSYghYr9fzxBNPsHz5ckKhEOvXr6eyspINGzawYMGCaDBYXV3NmjVrBs0tqKuro6GhgcWLF8cc/+Y3v0l7ezuapjFnzhx+/etfj1idhBBCiGSmUxUmZliYkG6mxxOk3uHF7Q9hNcj2p4lA0bTk3t/F4Yid2NnW1pbU8z2Svf4DpB2kDZK9/iBtANIGA4aqHbo9AWo6PKgKY2o3rM6urmGZAzhlBOcApqenx7xOiCFgIYQQQox/mRYD8+02Mix6vMGQ7DE8iiQAFEIIIcSI0akKZdlW5tvT0KsKvpAEgaNBAkAhhBBCjDiDTmV2oQ17mkl6A0eBBIBCCCGEGDXF6aZob6A3KKuFR4oEgEIIIYQYVQO9gcXpZvqCYUKyrdywkwBQCCGEEAmhON3EArsNm0mPJxiW/YWHUULkARRCCCGEADDqVKblWgmGNeq6PZzqDWDSKejGUNqYsUB6AIUQQgiRcPT9q4UXFNtIs+jxBcP4ZWu5ISM9gEIIIYRIWEadytRsK+EsjWann2anDw0Nk076sC6FBIBCCCGESHhq/x7D9jQjLS4/DQ4vCpEAUVw8CQCFEEIIMWYoikJRmokCm5Emh5c2dwB/SMOiU1AUmSd4oSQAFEIIIcSYoyoKJRkWSjIsOH1Bmh1eHN4QKMjw8AWQAFAIIYQQY1qaSU9aXiqaptHk9NPQ48GsV6VHMA4JkYUQQggxLij98wTnFtkIg6wajkMCQCGEEEKMK2aDjnlFNvJtRnzBMD4JBAeRIWAhhBBCjDuKojAxw0JJuplTvX6anD6CYUkfM0BaQQghhBDjlqooFNhMzCuyUWAz0hcIoWmyxVzCBIBbt26lvLycsrIyNm7cOOj8/fffz5w5c5gzZw7Tpk0jIyMjek6n00XPrVy5Mnq8traWhQsXUlZWxq233orf7x+RugghhBAisQz0CM4tsqGoCp5gcg8LJ0QAGAqFuO+++/jf//1fDh06xObNmzl06FDMNY899hj79u1j3759fPe73+Ub3/hG9JzFYome+8Mf/hA9/qMf/Yj777+fY8eOkZmZyZNPPjlidRJCCCFE4rEYdMwptDExw0xfMEwonJy9gQkRAO7atYuysjJKS0sxGo2sWbOGLVu2nPP6krJG1gAAIABJREFUzZs3c9ttt8V9pqZpvPXWW9x8880A3Hnnnbz00ktDWm4hhBBCjE1FaSYW2G1YjSp9gdBoF2fEJcQikKamJkpKSqKvi4uL2blz5+dee/LkSWpra1m6dGn0mNfrZcGCBej1eh588EFuvPFGOjs7ycjIQK/XR5/Z1NQUtxxtbW10dXUNQY3GrmSv/wBpB2mDZK8/SBuAtMGA8dwOWYBCkJMdATQNDLrBuQOdTseQvqemafhNOlIDxiF97tny8/PPeS4hAsCLUV1dzc0334xOp4seO3nyJHa7nRMnTrB06VJmzZpFenr6RT97oKHiNVgySPb6D5B2kDZI9vqDtAFIGwwYz+2QD0zTNBocXpqcfsw6BfWsJNLZWVlD9n6appFmMZCfZRmyZ16shBgCttvtNDQ0RF83NjZit9s/99rq6upBw78D15aWlrJkyRL27t1LdnY2PT09BIPB8z5TCCGEEMlN7V8kssBuw6gf/8PCCREAVlVVUVNTQ21tLX6/n+rq6pjVvAOOHDlCd3c3ixYtih7r7u7G5/MB0NHRwfvvv09FRQWKonDNNdfwwgsvAPDb3/6Wr3/96yNTISGEEEKMSUadysz8VGbkpRDUtHG7WjghAkC9Xs8TTzzB8uXLmTFjBqtXr6ayspINGzbErOqtrq5mzZo1MXv7HT58mAULFnDZZZdxzTXX8OCDD1JRUQHAL37xC/7hH/6BsrIyOjs7+da3vjXidRNCCCHE2JNpMbDAnsbUbAv+0PhbLaxoSZ4N0eGIndjZ1tY2ruc5nE+y13+AtIO0QbLXH6QNQNpgQLK3Q1NLKy5dKp2eIFa9GtMR9UUMzAGcMoJzAM9eG5EQPYBCCCGEEIlKrypMz0tlXpEN3ThJIi0BoPh/7N15fFTV3T/wzySThSWELBDCJBbChBgmkIiE7RH6GGQxalolmChGWqjVVvtrqSyvuqSV2kqfqqil6vO0Qam1hAe0hqoEBX3U2ppUFrWgmEgC2RyyESAhySzn9wdmZDJ3kpnJvXfuZD7v18uXzMm99yyzfeece84hIiIiD4wIC8WMxChMGhuJbqsN9gAeRGUASEREROSFxDERuNIwBiPDQtBpCcxAMODWASQiIiLyt7DQEFw+fjQuWGyoabuAM902jNDrhnx/oFrYA0hERETkoxFhoZiWMBpZiaOgD9Why2JHIMyvZQBIRERENEQjw/WYPiEqYAJBBoBEREREMukLBDMTRyE0VKfZHUUYABIRERHJbFS4HjMmRGH6hNEI0UFzgSADQCIiIiKFREXoMSMxCqaEUbBDO1vLMQAkIiIiUlh0ZBhmThyDyTGR6Lb5PwjkMjBEREREKpkQFYG4kWHo8XMQyACQiIiISEVhoSEIC/XvICyHgImIiIiCDANAIiIioiDDAJCIiIgoyDAAJCIiIgoyOqHlfUpU0NHR4e8iEBERESkqOjra6TF7AImIiIiCDANAIiIioiDDdQAv0b97lIiIiChQDXSbW9DfA0hEREQUbDgETERERBRkAj4ArKurw9VXX41p06bBZDLhySefBAC0tbVh8eLFSE1NxeLFi9He3g4A+OyzzzBv3jxERETg0UcfdbrWli1bYDKZkJGRgVtuuQXd3d2SeS5btgxjx47F9ddf75S+cuVKpKWlISMjA6tXr4bFYlGgxs7krP+TTz6JjIwMmEwmPPHEE27zLC8vR1paGoxGIzZv3uxIX7NmDTIzMzFjxgzk5+fj/PnzCtRYmpbaQQiB+++/H1OnTkV6ejqeeuopBWrsSktt8NZbb2HmzJnIyMjAqlWrYLVaFaixM3/Uf/Xq1Rg/fjwyMjKc0tevX4/LL78cM2bMwI033ogzZ87IXFtp3rbBiy++iBkzZmD69OmYP38+PvroI8e13D23/W3fvh2pqalITU3F9u3bHenLli1DZmYmTCYT7rrrLthsNoVq7UxLbdDb24vvf//7mDp1Ki6//HK89NJLCtXalZbaYefOnZgxYwZMJhM2btyoUI2d+aP+WooNPCICXGNjozh48KAQQoizZ8+K1NRUcfToUbF+/XrxyCOPCCGEeOSRR8SGDRuEEEKYzWZRWVkp7rvvPvHb3/7WcZ36+noxadIk0dXVJYQQYsWKFeK5556TzHP//v1iz5494rrrrnNKf+2114Tdbhd2u10UFhaKp59+Wu7qupCr/p988okwmUyis7NTWCwWsWjRIlFVVeWSn9VqFSkpKeKLL74QPT09YsaMGeLo0aNCCCE6Ojocx61du9aRvxq01A7btm0TRUVFwmazOfJSg1bawGaziaSkJHH8+HEhhBAPPvig+OMf/6h09VWvvxBCvPPOO+LgwYPCZDI5pe/bt09YLBYhhBAbNmxw5Kk0b9vg/fffF21tbUIIIV5//XUxe/ZsIcTAr+9Ltba2ismTJ4vW1lbR1tYmJk+e7Lhe3+eB3W4XN910k9ixY4eylf+KltqguLhY3H///UIIIWw2m2hubla28pfQSju0tLSI5ORkcfr0aSGEELfffrvYv3//sKu/ENqKDTwR8D2AiYmJmDlzJgAgKioK6enpaGhoQFlZGVatWgUAWLVqFV555RUAwPjx45GdnY2wsDCXa1mtVly4cAFWqxVdXV2YOHGiZJ6LFi1CVFSUS3pubi50Oh10Oh1mz56N+vp6uarpllz1//TTTzFnzhyMHDkSer0e3/zmN/Hyyy+75FdZWQmj0YiUlBSEh4ejsLAQZWVlAIAxY8YAuNgDduHCBeh0OsXq3Z+W2uGZZ55BcXExQkJCHHmpQStt0NraivDwcEydOhUAsHjxYlV6PtSuPwAsXLgQsbGxLulLliyBXn9xjt3cuXNV+SwAvG+D+fPnIyYmxqWcA72+L7Vv3z4sXrwYsbGxiImJweLFi1FeXg7g688Dq9WK3t5e1T4PtNQG27Ztw89+9jMAQEhICOLj45Wt/CW00g4nTpxAamoqxo0bBwC45pprNPl5MNT6A9qKDTwR8AHgpWpra3H48GHMmTMHZrMZiYmJAIAJEybAbDYPeK7BYMC6detw2WWXITExEdHR0ViyZIlP5bBYLHjhhRewbNkyn8731VDqn5GRgffeew+tra3o6urC66+/jrq6OpfjGhoakJyc7HiclJSEhoYGx+Pvfve7mDBhAj777DP86Ec/kqlm3vF3O3zxxRfYuXMnZs2ahWuvvRZVVVUy1s4z/myD+Ph4WK1WfPjhhwCA3bt3S56vJDXq76lt27bh2muv9fl8X3nbBiUlJY5yDvY+7zPYcUuXLsX48eMRFRWF/Px82ermKX+2Qd+w/4MPPoiZM2dixYoVg772lOLPdjAajTh+/Dhqa2thtVrxyiuvaP7zwJf6e8JfsYE7wyYAPH/+PJYvX44nnnjC8cuzT1/kPZD29naUlZWhpqYGjY2N6OzsxJ///GefyvLDH/4QCxcuxIIFC3w63xdDrX96ejo2btyIJUuWYNmyZcjKykJoaKjX5XjuuefQ2NiI9PR07Ny50+vzh0oL7dDT04PIyEh8+OGHuOOOO7B69Wqv6zEU/m4DnU6H0tJSrF27FrNnz0ZUVJRPryVf+bv+l/rVr34FvV6PlStX+nS+r7xtg7fffhslJSX4zW9+I2s59u3bh6amJvT09OCtt96S9dqD8XcbWK1W1NfXY/78+Th06BDmzZuHdevWyXJtb/i7HWJiYvDMM8+goKAACxYswKRJkzT9eaDUewHwT2wwkGERAFosFixfvhwrV67ETTfdBABISEhAU1MTAKCpqWnQYbj9+/dj8uTJGDduHMLCwnDTTTfhH//4ByoqKpCVlYWsrCzs2bNn0LI89NBDaG5uxuOPPz70inlIjvoDFydxHDx4EO+++y5iYmIwdepU1NXVOer/7LPPwmAwOP16q6+vh8FgcLpOaGgoCgsLVb3hGdBOOyQlJTnyv/HGG/Hxxx/LXVW3tNIG8+bNw3vvvYfKykosXLjQMRysNDXrP5jnn38er776Kl588UVVb4fwtg0+/vhjfO9730NZWRni4uIAwO1z2//z0JPPg8jISHzrW99yO2ymBC20QVxcHEaOHOnIf8WKFTh06JDidb+UFtoBAG644QZUVFTgn//8J9LS0jT7eTCU+g/GH7HBoPx9E+JQ2e12UVRUJH784x87pa9bt87pRs/169c7/f3nP/+5043fH3zwgZg2bZro7OwUdrtd3H777eKpp55ym+/bb7/tcqPnH/7wBzFv3jzHRBI1yFV/Ib6erHDy5EmRlpYm2tvbXfKzWCxi8uTJ4sSJE44bYv/9738Lu93uuFHebreLe++9V9x7772y1XMwWmkHIYTYuHGjKCkpEUJcfJ3MmjVLnkoOQktt0Hd+d3e3yMnJEQcOHJCnkgNQu/59ampqXCaB7N27V6SnpztufFeLt21w8uRJMWXKFPH+++87HT/Qc3up1tZWMWnSJNHW1iba2trEpEmTRGtrqzh37pxobGx0XOvmm28Wv/vd75SosguttIEQQhQUFDhe+88995zIz8+Xvb7uaKkd+t5PbW1tIjMz0zFBTElq17+PVmIDTwR8APjee+8JAGL69OkiMzNTZGZmitdee020tLSInJwcYTQaxaJFixwvxKamJmEwGERUVJSIjo4WBoPBMVutuLhYpKWlCZPJJG677TbR3d0tmedVV10l4uPjRWRkpDAYDKK8vFwIIURoaKhISUlxlOOhhx4KqPpfddVVIj09XcyYMWPAWVqvvfaaSE1NFSkpKeLhhx8WQlyc4TZ//nyRkZEhTCaTuPXWW51mBStNK+0ghBDt7e0iNzdXZGRkiLlz54ojR44oW/mvaKkN1q1bJy6//HIxdepUsWXLFmUr/hV/1L+wsFBMmDBB6PV6YTAYHLOdp0yZIpKSkhzluPPOO5VvAOF9G6xZs0aMHTvWceyVV17puJa757a/kpISMWXKFDFlyhSxbds2IYQQX375pZg1a5aYPn26MJlM4p577nHMilaaVtpACCFqa2vFggULxPTp00VOTo44efKkchXvR0vtUFhYKNLT00V6erpqs8H9UX8txQae4E4gREREREFmWNwDSERERESeYwBIREREFGQYABIREREFGQaAREREREGGASARERFRkGEASESkku985zt44IEH/F0MIiIGgERERETBhgEgERERUZBhAEhEpJDDhw9j5syZiIqKQkFBAbq7uwEALS0tuP766zF27FjExsZiwYIFsNvtfi4tEQUTBoBERAro7e3Ft7/9bRQVFaGtrQ0rVqzASy+9BAB47LHHkJSUhObmZpjNZvz617+GTqfzc4mJKJgwACQiUsAHH3wAi8WCn/zkJwgLC0N+fj6ys7MBAGFhYWhqasLJkycRFhaGBQsWMAAkIlUxACQiUkBjYyMMBoNTYPeNb3wDALB+/XoYjUYsWbIEKSkp2Lx5s7+KSURBigEgEZECEhMT0dDQACGEI+3UqVMAgKioKDz22GM4ceIE9uzZg8cffxwHDhzwV1GJKAgxACQiUsC8efOg1+vx1FNPwWKx4OWXX0ZlZSUA4NVXX0V1dTWEEIiOjkZoaChCQvhxTETq0YlLf54SEZFsPvzwQ9xxxx2orq5Gbm4uACA1NRVxcXF48skn0dzcjJiYGNx555148MEH/VxaIgomDACJiIiIggzHHIiIiIiCDANAIiIioiDDAJCIiIgoyDAAJCIiIgoyDACJiIiIggwDQCIiIqIgwwCQiIiIKMgwACQiIiIKMgwAiYiIiIIMA0AiIiKiIMMAkIiIiCjI6P1dAH/r6OjwdxGIiIiIFBUdHe30mD2AREREREGGASARERFRkGEA2I/ZbPZ3Efwq2Ovfh+3ANgj2+gNsA4Bt0CfY22E41p8BIBEREVGQYQBIREREFGQYAGpY+wULyj5tRlVLlyzXq+/oRtmnzajv6JblesOBEALvnGjH/uo2CCEUz+vtL9rx1hfK5zVUzZ292HfiHE60XVA13+rWLpR92oy2Loss1/uo6Tz2fNqCLovNo+OPne5E2afNONtjHXLep85cfL81nesZ8rWIiOQW9MvAaNXZHiuu+u+DaDjbi4hQHcqKZmDuZdGDn+hGTdsF/OcfD6Oj24roSD3eueMKTIoZIWOJA9Omt2qx5f06AMDtV0zAUzdMVSyvn71xAs9WNAAAvj97Iv5rmVGxvIaipbMX//HsQZzutGDk/32Jvd/JQmbiaMXz/Vf9Wdzwp4/RbbVjYlQ4/vGDWRgb6ftHVNmxZnz3pU9hF0BGwii8+/2ZCNHp3B7/1hdtuHnHUVjtAimxkSi7KdnnvKtaurCo5DDO9tgQM0KPd78/E8nRkT5fj4hIbuwBVNg/T3Xgfyob8ExFPZ75oB4fNZ336LySfzWi4WwvAKDHJvD/Xv18SOX45du16Oi+2KvR0W3FL9+qHdL1hou+4A8A/nT4S1zwsKfIF33BHwD8T2WjZnsBn/xHPU53XuyB67LYsWFvtSr5/vjVz9FttQMAGs/14n8qGwY5Y2Crdl8M/gDg3+ZOlH/eNuDxd/z1OKxfnXCirRuvfH7W57yL99fgbM/F11L7BSse+b+TPl+LiEgJDAAVtufTFmwo/wI/23cCP3vjBN6rPePReW+fcD7u85ahDcW9fLTZ6fFL/R7TRRcsdkWuKxXsaTP8A/ZVtTo9rqj3PRDyxrHTzrc6vP1Fu6zXP9J0bsC/t/Ybdj74pe/vub2fO7fhnk9bfL4WEZESGAAqrP+Ak1a/9ElZUs+7RjsAiYgoCAREAFheXo60tDQYjUZs3rzZ5e89PT0oKCiA0WjEnDlzUFtbCwB48cUXkZWV5fgvJCQER44cUbXsLrccefitLxgq+oVSrS71tGv1GdZKYCp3Mbytl5ztoNXhfiIKXpoPAG02G+6++27s3bsXx44dw44dO3Ds2DGnY0pKShATE4Pq6mqsXbsWGzduBACsXLkSR44cwZEjR/DCCy9g8uTJyMrKUrX8/W86t/N7ICjZJQIAqTQiIiI1aD4ArKyshNFoREpKCsLDw1FYWIiysjKnY8rKyrBq1SoAQH5+Pg4cOODyi3vHjh0oLCxUrdx9fB0C1rmcSWpQqtUDaQh4gImyqpK7GN7WS8520GmlUYmIvqL5ZWAaGhqQnPz1cgxJSUmoqKhwe4xer0d0dDRaW1sRHx/vOGbnzp0ugWN/ZrMZbW0DzxT0VleX843t586d82hLmd7eXpc0ubeikbqe3PUPNKebm2GJDJW9HXptrpNLzGYzIvTa+w1mtbrOhPbHNki9Fous+Xae7/Tqej09PbLlbxf2gNxKKtg/DwC2QZ9gb4dArX9CQoLbv2k+AJRDRUUFRo4ciYyMjAGP62uogRrMW6NHdQH4+oUzavRoj64fHm4G4Bw8Dq1cx11S3F1Pzvprn3O7jB83DrEjwwDI2w4XlzepckobN348RoSFypaHXPT6Uy5p6rwmnJ+L8LAwWV/zo0aPGuR6zsdHREQMIX/na4XoQgL2fRWo5ZYT2+CiYG+H4VZ/7XU/9GMwGFBX9/VabfX19TAYDG6PsVqt6OjoQFxcnOPvpaWluOWWW9QpcD/9R360OuxHygqkZWCIiGj403wAmJ2djaqqKtTU1KC3txelpaXIy8tzOiYvLw/bt28HAOzevRs5OTmOe27sdjv+93//1y/3/wG+3wPIWcDKUzMoC6R7ALVSLo0Ug4hoWNL8ELBer8fWrVuxdOlS2Gw2rF69GiaTCcXFxZg1axby8vKwZs0aFBUVwWg0IjY2FqWlpY7z3333XSQnJyMlJcUv5Q9x6QHk15pWSD0TSs3MlbosZwETEZG/aD4ABIDc3Fzk5uY6pW3atMnx78jISOzatUvy3P/8z//EBx98oGj5BuTjMjCcBaw8qedCqZhMKtjTavinlQmrGikGEdGwpPkh4EDHnUC0i0PAREQUrBgAKsx1Egi/9bVCOihTbwiYrwQiIvIXBoAKYw+gdqkZlElelz8GiIjITxgAKqz/DgCefudzFrDyVB2WDaB7ALUSl2qkGEREwxIDQIW5zAL2TzFIgtRwr2KzgCXSuC80ERH5CwNAhbkMAXsYYHAWsPIkZwGrmZdWutr64SxgIqLhjwGgwnwdAiblqTkEzJ1AiIhISxgAKoyTQLSLy8AQEVGwYgCoMO4FrF1cBoaIiIIVA0CFufYAeva1z1nAylMzGFcz2BwqrRRLI8UgIhqWGAAqLIT3AGqWmjNzpWccK5MXERHRYBgAKqz/EDD3AtYOyXsAFdsLWCJ/ZbIaMs4CJiIa/hgAKszXIWBSnvR9eeqtA6jVIWAiIhr+AiIALC8vR1paGoxGIzZv3uzy956eHhQUFMBoNGLOnDmora11/O3jjz/GvHnzYDKZMH36dHR3d6tYcrh0p/A7Xzu4DAwREQUrzQeANpsNd999N/bu3Ytjx45hx44dOHbsmNMxJSUliImJQXV1NdauXYuNGzcCAKxWK2677TY8++yzOHr0KP7v//4PYWFhqpafy8BoF5eBISKiYKX5ALCyshJGoxEpKSkIDw9HYWEhysrKnI4pKyvDqlWrAAD5+fk4cOAAhBB44403MGPGDGRmZgIA4uLiEBoaqmr5XZaB8fA8DhUrT90eQM/y1wKtBKYaKQYR0bCk93cBBtPQ0IDk5GTH46SkJFRUVLg9Rq/XIzo6Gq2trfj888+h0+mwdOlSNDc3o7CwEBs2bHCbl9lsRltbm6zl7zx/3vlxZyfMZvOg5/X2WlzSPDnPG1LXk7v+WtbSZXVJa25pwVh7hOzt0HzO9flsbm5GZE+4rPnIwWqzuaTJ/drzRK/FImu+nec9e+/16enpkS1/u7D7pQ2HKpg+D9xhG1wU7O0QqPVPSEhw+zfNB4BDYbVa8fe//x3/+te/MHLkSCxatAhXXnklFi1aJHl8X0MN1GDeGlNrBXDa8ThyxEiPrh8RbgbQJVk+3xx3SXF3PTnrr2XiXA+AL5zSYuPikDB+FAB52+FC+AUAJ5zS4uLikRA7QrY85BKmP+WSps5rwvk1GhEWJutrftToUYNcr1/+ERFDyN/5WiG6kIB9XwVqueXENrgo2NthuNVf80PABoMBdXV1jsf19fUwGAxuj7Farejo6EBcXBySkpKwcOFCxMfHY+TIkcjNzcWhQ4dULb9WltQgVxwCJiKiYKX5ADA7OxtVVVWoqalBb28vSktLkZeX53RMXl4etm/fDgDYvXs3cnJyHEO/n3zyCbq6umC1WvHOO+9g2rRpqpbfZRKIVm6wIg0sA6NIVkRERIPS/BCwXq/H1q1bsXTpUthsNqxevRomkwnFxcWYNWsW8vLysGbNGhQVFcFoNCI2NhalpaUAgJiYGPz0pz9FdnY2dDodcnNzcd1116lafl3/ZWA8PI+TQJTn/x5AbT7HWglMNVIMIqJhSfMBIADk5uYiNzfXKW3Tpk2Of0dGRmLXrl2S595222247bbbFC3fQFx7AP1SDJKg5vZsUsEet4IjIiJ/0fwQcKAL8XEZGFKeZA+gUkPAUj2AfDEQEZGfMABUmOtewJ5963MvYOVJ9sCpuhewNiNArUxc0kgxiIiGJQaACusfyLHXRzvU3QlEIi++FoiIyE8YACrM151AyD+4DAwREQUDBoAK83UZGK0ODw4nXAZGmlbKpZFiEBENSwwAlcYeQM2Sei4UmwUscV1P7wclIiKSGwNAhYX0XweQ3/maoebMXMl7AJXJioiIaFAMABXWfwiYs4C1Q+q5UGoIWHIWsEYjQM4CJiIa/hgAKoyTQLSLO4EQEVGwYgCoMC4Do11qzsyVDPb4WiAiIj9hAKgwX4fT2DukPFXX5gug+E8rP1I0UgwiomGJAaDCfF0GhpSn5sxc6RnHfC0QEZF/BEQAWF5ejrS0NBiNRmzevNnl7z09PSgoKIDRaMScOXNQW1sLAKitrcWIESOQlZWFrKws3HXXXSqXXGIWsOolIHdU3AmOewETEZGm6P1dgMHYbDbcfffdePPNN5GUlITs7Gzk5eVh2rRpjmNKSkoQExOD6upqlJaWYuPGjdi5cycAYMqUKThy5Ii/ii+xF7CH53EOpOIkZwErthdw4CwDw1nARETDn+Z7ACsrK2E0GpGSkoLw8HAUFhairKzM6ZiysjKsWrUKAJCfn48DBw5oZqjVdQjYL8UgCdwJhIiIgpXmewAbGhqQnJzseJyUlISKigq3x+j1ekRHR6O1tRUAUFNTgyuuuAJjxozBww8/jAULFrjNy2w2o62tTdbyn+046/T4Qnc3zGbzoOf19va6pHlynjekrid3/bWstbXbJa29rR3mkb2yt0Nr6wXXtLY2mMNd0/3NarW5pMn92vNEr8Uia76d5zu9ul5PT49s+duF3S9tOFTB9HngDtvgomBvh0Ctf0JCgtu/aT4AHIrExEScOnUKcXFxOHjwIL797W/j6NGjGDNmjOTxfQ01UIN5a2xLCIAmx+OIiAiPrh8W/qXb8vnmuMfXk7P+Wval/TyAk05pY2NikJAQA0Dedojp7QBwyjktJgYJCdGy5SGX0NBTLmnqvCacX6NhYWGyvuZHjR41yPWcj/f0verJtUJ0IQH7vgrUcsuJbXBRsLfDcKu/5oeADQYD6urqHI/r6+thMBjcHmO1WtHR0YG4uDhEREQgLi4OAHDllVdiypQp+Pzzz9UrPLgQtJZJDfcqNgtYcsaxIlkRERENSvMBYHZ2NqqqqlBTU4Pe3l6UlpYiLy/P6Zi8vDxs374dALB7927k5ORAp9OhubkZNtvF4awTJ06gqqoKKSkpqpaf9wBqmKp7AUul8cVARET+ofkhYL1ej61bt2Lp0qWw2WxYvXo1TCYTiouLMWvWLOTl5WHNmjUoKiqC0WhEbGwsSktLAQDvvvsuiouLERYWhpCQEDz77LOIjY1Vtfy6fl2AXPtNOyT351UsLxUXnSYiIhqE5gNAAMhUxcj+AAAgAElEQVTNzUVubq5T2qZNmxz/joyMxK5du1zOW758OZYvX654+Qbi6xAwl4FRnpo7gai57dxQcRkYIqLhT/NDwIGOQ8Dape5ewJ7lT0REpAYGgApz7QH07Fuf94cpTzooU28SiFafY60EpkMphtTzqJV6ERFpgSoB4LFjxxxrYJ0/fx4///nP8dBDD6Grq0uN7P2q/1CuVr6EOLym7sxcNYebSZ77O+V8j/D9RkRao0oAeMstt+DMmTMAgHXr1uHdd9/FBx98gDvvvFON7P1Kqx/8jD3cBGXKZeaaxCdBMZJN62WDy/n08KkmIq1RZRJIbW0t0tLSIITAyy+/jGPHjmHEiBGYPHmyGtn7VYjLXsD8KtAK6V4iZZ4fNfMi6SFgrrtIRPQ1VQLAyMhInDt3DseOHcNll12G+Ph4WK1WdHe7bsU13PRfBsbT+I+zgJUneV8eh4CHxSxg6XUXiYiojyoB4K233oqcnBycO3cO99xzDwDg0KFDQdED6DIL2MPz2DukPDWHgANpGRitBKZDmwTiWRoRUbBSJQDcsmUL3njjDYSFheHqq68GAISEhGDLli1qZO9XLrOA+SWkGdKTQBSaBSyRxiFJ5UguvK3ZkJuISH2qBIBlZWW47rrroNd/nd2sWbPUyNrvXHsAtfElpJFRPr+SniigUF6SPVLaeC0MR3Ksu8hZwEQ0nKkyC7i4uBiJiYm45557UFFRoUaWmqHVHkCNFMOv/L4QtEJ5kTzPLWcBE9FwpkoA+NFHH2H//v0YMWIEli9fjrS0NDz88MOora1VI3u/CnHZC9hPBSEXai4WzL2A1SU95M4GJyLqo9pOIJmZmfjtb3+Luro6/P73v8euXbswZcoULFy4EC+++CLsdrtaRVGVr0PAnAWsPOleOTV3AtGmYTELmAE3EdGAVN0K7osvvsCmTZvwgx/8AN3d3di0aRPuuOMObN26Ffn5+W7PKy8vR1paGoxGIzZv3uzy956eHhQUFMBoNGLOnDkuPYunTp3C6NGj8eijj8pdpcH5OASslXsFhzN1l4GRStPmc6yVQGlIs4Blvh4R0XCjyiSQ3//+93jhhRdQVVWFgoICvPDCC5g7d67j78uXL8f48eMlz7XZbLj77rvx5ptvIikpCdnZ2cjLy8O0adMcx5SUlCAmJgbV1dUoLS3Fxo0bsXPnTsfff/rTn+Laa69VroIDcNkKzi+lIClSAZiaW8HxdgDlyLEVHBHRcKZKALh3717ce++9yMvLQ0REhMvfR44ciZdfflny3MrKShiNRqSkpAAACgsLUVZW5hQAlpWV4Re/+AUAID8/H/fccw+EENDpdHjllVcwefJkjBo1Sv6KeUCrk0A0MsrnV9LDsioOAWvktTAsSQ4B+6/B+X4jIq1RJQB89dVXBz1myZIlkukNDQ1ITk52PE5KSnKZSXzpMXq9HtHR0WhtbUVkZCR+85vf4M033/TP8C+0uwyMNkrhX3IsFTKkvPgsKMbbIWCl7xnkM01EWqNKAAgAe/bswTvvvIOWlhanD9s//elPiuX5i1/8AmvXrsXo0aM9Ot5sNqOtrU3WMnSc6XJ63NNrgdlsHvS83l6LS5on53lD6npy11/L2trPu6Sd6eiA2Sx/O7S3n3PN60wHzGbtTX6y2mwuaXK/9jzRa/HsvSKlvdu1Dp2dXW6vZ5MYM+7u6ZGt3nZh90sbDlUwfR64wza4KNjbIVDrn5CQ4PZvqgSADz30EJ599lkUFhZi165duPPOO/GXv/wFBQUFg55rMBhQV1fneFxfXw+DwSB5TFJSEqxWKzo6OhAXF4eKigrs3r0bGzZswJkzZxASEoLIyEjHdnT99TXUQA3mrdieDgBflz9MH+bR9SPCzQCcg8ehleu4S4q768lZfy2L7tADaHBKGzMmWpHXQXRrCIBG57ToaCQkjJMtD7mE6U+5pKnzmnB+jUaEefZekaLvsgCodkobMWKE2+tZ7QLA505pYeHhQ6i3c11CdCEB+74K1HLLiW1wUbC3w3CrvyqzgLdt24Y333wTW7ZsQXh4OLZs2YK//e1vHq0DmJ2djaqqKtTU1KC3txelpaXIy8tzOiYvLw/bt28HAOzevRs5OTnQ6XR47733UFtbi9raWvzkJz/Bfffd5zb4Uwr3AtYuVZeBkUrT6FOslXINbS9g7/Z55q4sRBRsVOkBPHPmDDIyMgAA4eHhsFgsmD17Nt55551Bz9Xr9di6dSuWLl0Km82G1atXw2Qyobi4GLNmzUJeXh7WrFmDoqIiGI1GxMbGorS0VOkqecx1Egi/aLRCei9gNfPia0EpkrOAB2juQArQiYjkoEoAOGXKFBw9ehQmkwkZGRl45plnEBMTg5iYGI/Oz83NRW5urlPapk2bHP+OjIzErl27BrxG3yxhtWl1GRjOSlR7Eoh3PVI0NN5PAvHueG/x/UZEWqNKAPjwww+jtbUVAPDII49g5cqVOH/+PJ5++mk1svcrrS4Do5Fi+JV0UMZlYIYD6Vm97htc6R8DfKqJSGtUCQAv7b2bM2cOqqurBzh6eAnpFwDa+VWgGZLDvYrtBSyVFV8LSpHeC9j98VLD8XyvEtFwplgAeOLECY+O61vgebhyGQL28DuFewErT839eSV7GzUaXwyPvYAl0rw8nvEfEQ1nigWARqMROp3OsSNHn/6PbRJrjg0nLkPAHp7H3iHlqRmUqRlsDpVWAlPZ9wL2dgh4CPkTEWmdYsvA2O122Gw22O12/PGPf0RhYSE+++wzdHd347PPPsOtt96KkpISpbLXDJdlYPitoh0qzsyVHpLki0EpUm3rz51AiIi0RpV7AB988EFUVVVhxIgRAIDU1FT893//N6ZOnYrvfOc7ahTBf1x6ALXxraKRUT6/UrPXh5NA1OVteyv9WuD7jYi0RpWFoO12u8uizydPnhz2w7+A7/cASn+ByfeVxNhD3aCMy8CoS2vLwPC5JiKtUaUHcO3atcjJycF3v/tdJCcno66uDs8//zzWrl2rRvZ+5TIL2NMAUCLNLoBQdiXIxtthwqHl5ZrGHkDlSP1YGmjI3dvjiYgCnSoB4Pr16zF9+nTs2rULhw8fRmJiIrZt24Zly5apkb1fuc6o9OxLJZAmDQQqbycKDCmvAFoGxh+zgNXYIcfbIWCNPj1ERLJQJQAEgGXLlgVFwNefz0PAkjNUBXg3kXz8vQyMVgMMf3R8yb0Qs7fn8gcXEQUbxQLAX/3qV7j//vsBAMXFxW6Pu3RLt+HI52Vg+IWkOKmgTKm9gKVnHCuUVwCSe69k6SF3LgNDRNRHsQCwvr7e8e+6ujqlstE8X5eBUXqCAvsRlZ9o43RdyTSGGH3kDsC8nXSj9DIwfL8RkdYoFgA+88wzjn8/99xzSmWjea49gB7eA+hhmq8YenAZGC2ROwDT2jIwfKqJSGsUWwbmxIkTHv3nifLycqSlpcFoNGLz5s0uf+/p6UFBQQGMRiPmzJnjWHKmsrISWVlZyMrKQmZmJv7617/KWUWPhPSLAD2eBcxZiYqTnAWsUBOrOeM4EEnvlew7d7Povcqf7zciGsZU2QrOHZ1ON+hagDabDXfffTfefPNNJCUlITs7G3l5eZg2bZrjmJKSEsTExKC6uhqlpaXYuHEjdu7ciYyMDHz44YfQ6/VoampCZmYmbrjhBuj1qs198X0IWCqN30eyUncSiGf5Byu5h8i9nXUt2QPpc+5ERNqnylZw7v7zZCHoyspKGI1GpKSkIDw8HIWFhSgrK3M6pqysDKtWrQIA5Ofn48CBAxBCYOTIkY5gr7u722kPYrX4OgQsd48IufL3MjDs0f2adI+379fztneXAToRBRv1usIAnDp1Cg0NDUhKSkJycrJH5zQ0NDgdm5SUhIqKCrfH6PV6REdHo7W1FfHx8aioqMDq1atx8uRJvPDCCwP2/pnNZrS1tflQM/daO3qdHlutNpjN5kHP67VYXNLM5tPoDJcvZpcqh9z117KOjrMuaWfPnVPkdXD2rPu8tMYq8cNM6XJesNhd0iwWi8/5trT1uKR1d3e7vV5zp+v7rXcI+fdnF3ZNPteDCabPA3fYBhcFezsEav0TEhLc/k2VALCpqQmFhYX45z//ibi4OLS2tmLu3LkoLS3FxIkTFc17zpw5OHr0KD799FOsWrUK1157LSIjIyWP7WuogRrMW51hFwDUOB6HhIZ6dH29vsElbdz4cRgT4etTdtzpkQ7u6yln/bUsqtEO4EuntNGjoxR5HYw+aQVw2m1eWhIaesolbfz48Yr2oHf22gBUOZdDr/e5fVrQCaDWKS08ItLt9axnewA435Os14cN4flxfr+F6kI0+Vx7IlDLLSe2wUXB3g7Drf6q7AX8gx/8AJmZmWhvb0dTUxPa29txxRVX4K677hr0XIPB4LSMTH19PQwGg9tjrFYrOjo6EBcX53RMeno6Ro8ejX//+98y1MhzWr0HkKNbkGwEdZeB0SZ/rEEp+0LQksvA+O8eQK0+10QUvFTpAfz73/+OpqYmhIWFAQBGjRqF//qv/3IJ5KRkZ2ejqqoKNTU1MBgMKC0txV/+8henY/Ly8rB9+3bMmzcPu3fvRk5ODnQ6HWpqapCcnAy9Xo+TJ0/is88+w6RJk5Soolv9O008ve9LzTXqgpWa91kG0ixTdwtk99/XWk5yz5KWvudyoPylrqHN54eISA6qBIAxMTE4duwYMjMzHWnHjx/H2LFjBz1Xr9dj69atWLp0KWw2G1avXg2TyYTi4mLMmjULeXl5WLNmDYqKimA0GhEbG4vS0lIAFwPPzZs3IywsDCEhIXj66acRHx+vWD2l9B8283gnEC8XsiXvSW+3p1BeATTL1P2PD+UiQLnXSfS2RzGQemiJiOSgSgC4YcMGXHPNNVizZg2+8Y1voLa2Fs8//zx++ctfenR+bm4ucnNzndIu3UIuMjISu3btcjmvqKgIRUVFQyv8ELl8ZXr4rSLdIzHU0tCl1JyZ6+26dP7kjxnocs/Ilu5R9HIIWKPPDxGRHFQJAO+44w4YjUa8+OKL+OSTTzBx4kTs2LEDOTk5amTvVz7vBMJlYBTn751AtBphqNkzOlAGQ8pShh9Q2nx2iIjkocokkN7eXlRVVSEsLAyxsbHo6enB888/j9tvv12N7P3K10kgUl8/ct6TxL1J1d2eLZCGGIfHJBAvj1e4zny/EZHWqNIDuGrVKnz00Ue44YYbMGHCBDWy1Ayf7wFU+AtJq8GHmlQNygJoiFHNBbK/vr5UOWTeCcTrhaDlq7NGn2oiCmKqBIDl5eWoqanxaNLHcNN/5qTHewFLpGn1nrFAJb1bhDKNHFA7u3g5g1YOcu/LLD2T2f0F1dwXmohIC1QZAr7sssvQ0+O6Mn8wcB0C5jIwWuH/vYC1+Xz6Ywa63L2x3j63vOeWiIKNYj2Ab731luPft99+O771rW/hxz/+sctK2sN9IoivQ8Byr4tGrtTsZZV7r1sl+WNNPLlnZHs7iz6Q7tEkIpKDYgHgmjVrXNLuu+8+p8c6nQ4nTpxwOW440epOILwp3U1Qw51AhskkEG+XgZEvf6327BIRXUqxALCmpkapSwcU12VgPMMhKeX5exkYrQYK/lixRu6Fsr2fBCJf/oE03E9EwUuVewCDmc/3ACq8DAy/jrgMjDv+2LVEjWVgvL4H0McC8McbEQUCBoAK638PoMezgP0wEzPYqBnoBNIsU3/0YEnPkpZ3GZiBZwFL5e9j3h5en4jInxgAKqz/MjAeDwF7mEa+U3OoM5B6hdTsGf36+sovA+P1ELCM9wByCJiItIYBoMJ8HQJWc426YOX/vYC1+Xz6Ywa63MG4tz16cgboAbXmIxEFrYAIAMvLy5GWlgaj0YjNmze7/L2npwcFBQUwGo2YM2cOamtrAQBvvvkmrrzySkyfPh1XXnml09I0quk/C8RDcsYGDBylqTsJhEPAA+apwhCw9zuB+Ji3jNciIlKK5gNAm82Gu+++G3v37sWxY8ewY8cOHDt2zOmYkpISxMTEoLq6GmvXrsXGjRsBAPHx8fjb3/6GTz75BNu3b0dRUZHq5dfCMjDuTgv2wFDNoCyQhvS5DMzgxw+YN9fwJKIAoPkAsLKyEkajESkpKQgPD0dhYSHKysqcjikrK8OqVasAAPn5+Thw4ACEELjiiiswceJEAIDJZMKFCxdU35HE12VgpA70+aZ0NycG+5eSdFCm0BBwAHULDYdlYLyNuOV83rkMDBEFAlX2Ah6KhoYGJCcnOx4nJSWhoqLC7TF6vR7R0dFobW1FfHy845iXXnoJM2fOREREhNu8zGYz2traZC3/+V6702Ob3Q6z2TzoeVabzSXtdHMLRlnCvS6DxSb95dP0pRn6frNU5K6/lp09d94lrbOzS5HXwbnzrnmd7+z06LWgNrvd7pJmPt0M0ancx0VzR69LmtVm87l92to7XdK6e3vdXq+ltdslzWL1Lf8ui2v72QU0+VwPJpg+D9xhG1wU7O0QqPXvv/vapTQfAMrh6NGj2LhxI954440Bj+trqIEazFuje20Aqi5J0Xl0/ZCQGpe0uLg4JMSP9LoMvTY7gM9d0sePH4+wUNdOYDnrr2WjRnUDaHFKGzFypCKvg1GjugA4f4CMHDlKk22t01W7pMWPi0dClPsfT0PVGXYBgPNrPiQk1Of2GXu+HUC9U1pYWLjb6zVYzwE4KUv+513e8xd7BbX4XHsiUMstJ7bBRcHeDsOt/pofAjYYDKirq3M8rq+vh8FgcHuM1WpFR0cH4uLiHMffeOON+NOf/oQpU6aoV/Cv+DoELOu6ZBwClqTmzNxAWtfR23105SD/XsDezaKXcycQrc7uJiK6lOYDwOzsbFRVVaGmpga9vb0oLS1FXl6e0zF5eXnYvn07AGD37t3IycmBTqfDmTNncN1112Hz5s34j//4D38Ufwg7gUikyT4JxLfrDRdqTnZQ837DofLPTiByrwPoWdpAecn+gyvY33BEpCmaDwD1ej22bt2KpUuXIj09HTfffDNMJhOKi4uxZ88eAMCaNWvQ2toKo9GIxx9/3LFUzNatW1FdXY1NmzYhKysLWVlZOH36tKrl778TiKdfAdJfwvLNSvSmLMOVmpMd/LG4sq+0swyMzNfzehkYH99vXqYTEflDQNwDmJubi9zcXKe0TZs2Of4dGRmJXbt2uZz3wAMP4IEHHlC8fAPhMjDapWb95RxiVJp2loEZwjqAHqZ9nZfPWXl8MSHg+oFAROQnmu8BDHT97wH09P4gOe8Zc3eeVu9BU4v0vW7KNIo/7qvzlfS9kcrmKffuI1LP48B7AUsd72PeXuRBROQvDAAVFuLjELD0FyKHgOWkZqCj5rZzQ+WPbQjlniTj9VZwHqb5mvdQrkdEpAQGgArjELCGqTjZIdCHgBXPUypN7iHgge4BlLGH1u0PLq0+4UQUlBgAKszXZWBUmZXo4/WGCzUnO/jjvjpfqTk5Rqnre70VnIwBOieBEFEgYACoMF/v+eYyMMrz+zIwGn0ChsUyMN7OApbxDcdlYIgoEDAAVFj/ZWAAz74I5FwGxu2sRN+uNmyougyMh2laoJUewCFNAvEwzdfjvc17KNcjIlICA0A/8Hl2ocyzgIO9R0Lumade56XR5vfHhBW5Z2RL9wCqNAvYTT7BPuueiLSFAaAKQny4D1DOZUM4BCxNzUDH24DEn/zRWynVuz2UgEmyB93LLkDZZwFr9PkmouDEAFAFvmwHx51AlOePoc7B8vc3v81g1eIQsNw/uHy7HBGRIhgAqsCX7eC4DIzyVJ0EEiBDwO6DF2ULK/ckGTkmgcj+g0uDzzcRBS8GgCrwZS1ALgOjPOmZpwoNAXuY5m/uZ7Cqn+/QegC960GXM8BlDyARBQIGgCrwZS1AdXoAfbvecKFuD6BUmvaeAH8FL1pcBsb3haC9/QMRkfoYAKqgfw+gJxMNvN3LdCDuztPqVmRqsUukKdUkas44Hgr3M1j9MAt4CNeTOnegSSVSf5N/L2DfrkdEpISACADLy8uRlpYGo9GIzZs3u/y9p6cHBQUFMBqNmDNnDmprawEAra2tuPrqqzF69Gjcc889Kpf6ay77AXvwRSDnFyKHgKVJ35en3hCwFgMC9zNYlc1X7hnZ3u6lLecQPSddEVEg0HwAaLPZcPfdd2Pv3r04duwYduzYgWPHjjkdU1JSgpiYGFRXV2Pt2rXYuHEjACAyMhK//OUv8eijj/qj6A4cAtYmNe/L4xDwYPn6ewhYvh5a7gRCRIFA8wFgZWUljEYjUlJSEB4ejsLCQpSVlTkdU1ZWhlWrVgEA8vPzceDAAQghMGrUKFx11VWIjIz0R9EduAyMNsl539egeXmY5m/+msGqxZ1AfN4Kzst0IiJ/0Pu7AINpaGhAcnKy43FSUhIqKircHqPX6xEdHY3W1lbEx8d7lZfZbEZbW9vQC91P/8Dt9OnT6AoPHeQcV21t7TBH9nidf/M5i3R6czP0F8L65SF//bWqq6vLJe1Cd7cir4OurguueXVdgNlsljWfobpgkboz8uLtFOaQTsXybW1zfS4A+Nw+HR0dLmlWq83t9drbz7uk2ezCp/ybO3ol00+fboZ9pOY/cp0E0+eBO2yDi4K9HQK1/gkJCW7/FlifRgrra6iBGswXobpqADbH4/hx4xEdOXDTC3HcJW1sTAwSEsZ6nX9PRDeAEy7pcfHxSIh27R2Vu/5aNWLEWQBnnNIiIiIVeR1EjjgDwDkoiRgxQnNt3dlrA1Dlkh4bG4uEhCjF8o3p7gBQ55I+fvx4yf20BxP1pQDwpVNaSGiI2/aOPqMH0OCUptPpfHp+zum7ANS4pMePG4eE0eFeX8/ftPYa9Qe2wUXB3g7Drf6aHwI2GAyoq/v6i6G+vh4Gg8HtMVarFR0dHYiLi1O1nANxuQfQkyFgiTT5ZwH7dLlhQ3qijTKNIvdet0rx1wxWd69ROe/DG3gWsMSsexnzdpcHEZG/aD4AzM7ORlVVFWpqatDb24vS0lLk5eU5HZOXl4ft27cDAHbv3o2cnByfeg2U4u1OIG4DA5m/P7QYgKhJzZm50sv6KJPXULgPxJQtrNyBp+R5A00CkUqTM+8hXI+ISAmaHwLW6/XYunUrli5dCpvNhtWrV8NkMqG4uBizZs1CXl4e1qxZg6KiIhiNRsTGxqK0tNRx/qRJk3D27Fn09vbilVdewRtvvIFp06apWgdvdwKR+yZyfvFIU3N7tkB5CrS0E8jFdAHXd5AH1/N2JxAZe4PdnRcorwEiCg6aDwABIDc3F7m5uU5pmzZtcvw7MjISu3btkjy3b01Af/J2GRi5v4S5DIw06U4ihdYBDPAhYH8sAzOkfL1dBkbyBB+z5jIwRBQAND8EPBx4uwyM+y9hX5eB8S6fYKHmMjCS+auXlef8tAyMu8aQ80fPgJeScRkaLgNDRIGAAaAK5LoH0PcvQz99qWucmmvzqTncPBRy//gYer4+Xs/rHkBl8x4sfyIitTEAVIHrXsADH6/KDfHgrETJ7cIUahK597pVivsZrMrm63byic+LMUtNunF/LclZwDL/4Ar29xsRaQsDQBWEeLkMjNtZhD7mzyFgaXLvPztgXhJpWgwI3AdiyuYrd+DpbcAt5+0AWpzdTUTUHwNAFcg3BCzzrMQg/6JSs/r+vt/QUxwCHnruHAImokDAAFAFWl0GRukvda1TdxkYqWVJtEeby8D4cD0P0wbK3/dJIDLPaCYiUgADQBVwGRhtkg4SFBoCDvgewMDKVzq4d381yQBd5mnAWny+iSh4MQBUgXzLwPiG9wBKUzMoUzPYHAq5Z6D7K1//9gC6S9fe801EwYsBoAr69wAOOgvY7d69vn2BuN8LOLi/kCR7iRTKS80Zx0PhvrdY2cKqMfFp4L2AvTve27yHcj0iIiUwAFSBt5NAZP8ydJce5F9Ias7M9TYg8Re5X3uekjvwlA64vRsC9pW/ZlITEXmDAaAKZBsClrlHIti/jzgE7MpvQ8Ayz1T39jQ5J6FwCJiIAgEDQBX0HwIelLsvYbk3pw/y7yNv7xMbUl4BPwlE2cLK/SNFnmVgfMufy8AQUSAIiACwvLwcaWlpMBqN2Lx5s8vfe3p6UFBQAKPRiDlz5qC2ttbxt0ceeQRGoxFpaWnYt2+fiqX+mq5fH6Cvy8DIPQYc7D0S6vYABkZb+20ZGHfpflwGZqD0gfN29wOOiEg7dELpu7uHyGazYerUqXjzzTeRlJSE7Oxs7NixA9OmTXMc8/TTT+Pjjz/Gs88+i9LSUvz1r3/Fzp07cezYMdxyyy2orKxEY2MjrrnmGnz++ecIDQ11nNvR0eGUn9lsRkJCgqx1yPpdJWrbux2PJ4wOhz7Ufbeg3S7QeK7XJT12hB4jw0MlzhhYr9WO050Wl/Txo8IQrnf+DWC32RAS6n0egai104ILVrtTWkSoDuNGh8veDi2dFnT3yytSH4L4UWGy5SEHm12gSeK1Fz8yDJFhyv1evGCxo7XL9TU6MSocIf230vHAuR4bOrqtLulJ0RGSx3f22tB+QeL4MRGu93AMosdqR7PE+y1hdDjCBnjfa1EwfR64wza4KNjbQe76z00egz/elC7b9TwRHR3t9Fivau4+qKyshNFoREpKCgCgsLAQZWVlTgFgWVkZfvGLXwAA8vPzcc8990AIgbKyMhQWFiIiIgKTJ0+G0WhEZWUl5s2bp2od+n/kf3ne9QvWE20XrGiT+JLylVRQeJF8eQSaHptAfUfPV4+UbYduq/2SvLStRSI4U4PUD6Gh8La968/K9/yYfXzf+1/wfh58jW1wUbC3g3z1b471z2fqpTQfADY0NCA5OdnxOCkpCRUVFW6P0ev1iI6ORmtrKxoaGjB37lyncxsaGtzmZTab0dbWJnMNgPhIHWpkvyoREREForbz3Th+shFjI5XtVR1oRFPzAaCa+uULoloAACAASURBVBpK7iHgny+OwG3/ewxnJIakiIiIKLjEjo5E2jcm+rUMmg8ADQYD6urqHI/r6+thMBgkj0lKSoLVakVHRwfi4uI8OlcNV00ai+p189Dow3DShKhwtHRaYJVh0TidDkiMikDTuR63N7e3tLQgPj5+yHkFkqiIUITodE73jCnVDmMiQgGdDmcD4MdASNcZYNRYVdcrDA3RYfyoMMn7EH0RoQ/BmIhQyXvypISF6hA7Igzm871Dfg148n7TumD8POiPbXBRsLeD3PWP1Pt/Dq7mA8Ds7GxUVVWhpqYGBoMBpaWl+Mtf/uJ0TF5eHrZv34558+Zh9+7dyMnJgU6nQ15eHm699Vb89Kc/RWNjI6qqqjB79my/1EMfosNlYyN9OnfiGOkb132VHO2+HBE9YUjwsZyBLjry67eD0u0wNlLzbz2Ye3RIGOC1oiRf3yvur+fdMMtlYyNlew0M9H7TumD+POjDNrgo2NthONZf899Cer0eW7duxdKlS2Gz2bB69WqYTCYUFxdj1qxZyMvLw5o1a1BUVASj0YjY2FiUlpYCAEwmE26++WZMmzYNer0ev//9751mABMREREFI80vA6M0NZaBCSTBXv8+bAe2QbDXH2AbAGyDPsHeDsOh/v2XgfH/IDQRERERqYo9gP16AImIiIiGG/YAEhEREQU5BoBEREREQSboh4CJiIiIgg17AImIiIiCTMAHgHV1dbj66qsxbdo0mEwmPPnkkwCAtrY2LF68GKmpqVi8eDHa29sBAJ999hnmzZuHiIgIPProo07X2rJlC0wmEzIyMnDLLbegu7tbMs9ly5Zh7NixuP76653SV65cibS0NGRkZGD16tWwWJTf7FnO+j/55JPIyMiAyWTCE0884TbP8vJypKWlwWg0YvPmzY70NWvWIDMzEzNmzEB+fj7Onz+vQI2laakdhBC4//77MXXqVKSnp+Opp55SoMautNQGb731FmbOnImMjAysWrUKVqvyO5/4o/6rV6/G+PHjkZGR4ZS+fv16XH755ZgxYwZuvPFGnDlzRubaSvO2DV588UXMmDED06dPx/z58/HRRx85ruXuue1v+/btSE1NRWpqKrZv3+5IX7ZsGTIzM2EymXDXXXfBZrMpVGtnWmqD3t5efP/738fUqVNx+eWX46WXXlKo1q601A47d+7EjBkzYDKZsHHjRoVq7Mwf9ddSbOAREeAaGxvFwYMHhRBCnD17VqSmpoqjR4+K9evXi0ceeUQIIcQjjzwiNmzYIIQQwmw2i8rKSnHfffeJ3/72t47r1NfXi0mTJomuri4hhBArVqwQzz33nGSe+/fvF3v27BHXXXedU/prr70m7Ha7sNvtorCwUDz99NNyV9eFXPX/5JNPhMlkEp2dncJisYhFixaJqqoql/ysVqtISUkRX3zxhejp6REzZswQR48eFUII0dHR4Thu7dq1jvzVoKV22LZtmygqKhI2m82Rlxq00gY2m00kJSWJ48ePCyGEePDBB8Uf//hHpauvev2FEOKdd94RBw8eFCaTySl93759wmKxCCGE2LBhgyNPpXnbBu+//75oa2sTQgjx+uuvi9mzZwshBn59X6q1tVVMnjxZtLa2ira2NjF58mTH9fo+D+x2u7jpppvEjh07lK38V7TUBsXFxeL+++8XQghhs9lEc3OzspW/hFbaoaWlRSQnJ4vTp08LIYS4/fbbxf79+4dd/YXQVmzgiYDvAUxMTMTMmTMBAFFRUUhPT0dDQwPKysqwatUqAMCqVavwyiuvAADGjx+P7OxshIWFuVzLarXiwoULsFqt6OrqwsSJ0hs1L1q0CFFRUS7pubm50Ol00Ol0mD17Nurr6+Wqplty1f/TTz/FnDlzMHLkSOj1enzzm9/Eyy+/7JJfZWUljEYjUlJSEB4ejsLCQpSVlQEAxowZA+BiD9iFCxeg0+kUq3d/WmqHZ555BsXFxQgJCXHkpQattEFrayvCw8MxdepUAMDixYtV6flQu/4AsHDhQsTGxrqkL1myBHr9xY2W5s6dq8pnAeB9G8yfPx8xMTEu5Rzo9X2pffv2YfHixYiNjUVMTAwWL16M8vJyAF9/HlitVvT29qr2eaClNti2bRt+9rOfAQBCQkJU3UtXK+1w4sQJpKamYty4cQCAa665RpOfB0OtP6Ct2MATAR8AXqq2thaHDx/GnDlzYDabkZiYCACYMGECzGbzgOcaDAasW7cOl112GRITExEdHY0lS5b4VA6LxYIXXngBy5Yt8+l8Xw2l/hkZGXjvvffQ2tqKrq4uvP7666irq3M5rqGhAcnJyY7HSUlJaGhocDz+7ne/iwkTJuCzzz7Dj370I5lq5h1/t8MXX3yBnTt3YtasWbj22mtRVVUlY+084882iI+Ph9VqxYcffggA2L17t+T5SlKj/p7atm0brr32Wp/P95W3bVBSUuIo52Dv8z6DHbd06VKMHz8eUVFRyM/Pl61unvJnG/QN+z/44IOYOXMmVqxYMehrTyn+bAej0Yjjx4+jtrYWVqsVr7zyiuY/D3ypvyf8FRu4M2wCwPPnz2P58uV44oknHL88+/RF3gNpb29HWVkZampq0NjYiM7OTvz5z3/2qSw//OEPsXDhQixYsMCn830x1Pqnp6dj48aNWLJkCZYtW4asrCyf9k1+7rnn0NjYiPT0dOzcudPr84dKC+3Q09ODyMhIfPjhh7jjjjuwevVqr+sxFP5uA51Oh9LSUqxduxazZ89GVFSUqntw+7v+l/rVr34FvV6PlStX+nS+r7xtg7fffhslJSX4zW9+I2s59u3bh6amJvT09OCtt96S9dqD8XcbWK1W1NfXY/78+Th06BDmzZuHdevWyXJtb/i7HWJiYvDMM8+goKAACxYswKRJkzT9eaDUewHwT2wwkGERAFosFixfvhwrV67ETTfdBABISEhAU1MTAKCpqWnQYbj9+/dj8uTJGDduHMLCwnDTTTfhH//4ByoqKpCVlYWsrCzs2bNn0LI89NBDaG5uxuOPPz70inlIjvoDFydxHDx4EO+++y5iYmIwdepU1NXVOer/7LPPwmAwOP16q6+vh8FgcLpOaGgoCgsLVb3hGdBOOyQlJTnyv/HGG/Hxxx/LXVW3tNIG8+bNw3vvvYfKykosXLjQMRysNDXrP5jnn38er776Kl588UVVb4fwtg0+/vhjfO9730NZWRni4uIAwO1z2//z0JPPg8jISHzrW99yO2ymBC20QVxcHEaOHOnIf8WKFTh06JDidb+UFtoBAG644QZUVFTgn//8J9LS0jT7eTCU+g/GH7HBoPx9E+JQ2e12UVRUJH784x87pa9bt87pRs/169c7/f3nP/+5043fH3zwgZg2bZro7OwUdrtd3H777eKpp55ym+/bb7/tcqPnH/7wBzFv3jzHRBI1yFV/Ib6erHDy5EmRlpYm2tvbXfKzWCxi8uTJ4sSJE44bYv/9738Lu93uuFHebreLe++9V9x7772y1XMwWmkHIYTYuHGjKCkpEUJcfJ3MmjVLnkoOQktt0Hd+d3e3yMnJEQcOHJCnkgNQu/59ampqXCaB7N27V6SnpztufFeLt21w8uRJMWXKFPH+++87HT/Qc3up1tZWMWnSJNHW1iba2trEpEmTRGtrqzh37pxobGx0XOvmm28Wv/vd75SosguttIEQQhQUFDhe+88995zIz8+Xvb7uaKkd+t5PbW1tIjMz0zFBTElq17+PVmIDTwR8APjee+8JAGL69OkiMzNTZGZmitdee020tLSInJwcYTQaxaJFixwvxKamJmEwGERUVJSIjo4WBoPBMVutuLhYpKWlCZPJJG677TbR3d0tmedVV10l4uPjRWRkpDAYDKK8vFwIIURoaKhISUlxlOOhhx4KqPpfddVVIj09XcyYMWPAWVqvvfaaSE1NFSkpKeLhhx8WQlyc4TZ//nyRkZEhTCaTuPXWW51mBStNK+0ghBDt7e0iNzdXZGRkiLlz54ojR44oW/mvaKkN1q1bJy6//HIxdepUsWXLFmUr/hV/1L+wsFBMmDBB6PV6YTAYHLOdp0yZIpKSkhzluPPOO5VvAOF9G6xZs0aMHTvWceyVV17puJa757a/kpISMWXKFDFlyhSxbds2IYQQX375pZg1a5aYPn26MJlM4p577nHMilaaVtpACCFqa2vFggULxPTp00VOTo44efKkchXvR0vtUFhYKNLT00V6erpqs8H9UX8txQae4E4gREREREFmWNwDSERERESeYwBIREREFGQYABIREREFGQaAREREREGGASARERFRkGEASESkku985zt44IEH/F0MIiIGgERERETBhgEgERERUZBhAEhEpJDDhw9j5syZiIqKQkFBAbq7uwEALS0tuP766zF27FjExsZiwYIFsNvtfi4tEQUTBoBERAro7e3Ft7/9bRQVFaGtrQ0rVqzASy+9BAB47LHHkJSUhObmZpjNZvz617+GTqfzc4mJKJgwACQiUsAHH3wAi8WCn/zkJwgLC0N+fj6ys7MBAGFhYWhqasLJkycRFhaGBQsWMAAkIlUxACQiUkBjYyMMBoNTYPeNb3wDALB+/XoYjUYsWbIEKSkp2Lx5s7+KSURBigEgEZECEhMT0dDQACGEI+3UqVMAgKioKDz22GM4ceIE9uzZg8cffxwHDhzwV1GJKAgxACQiUsC8efOg1+vx1FNPwWKx4OWXX0ZlZSUA4NVXX0V1dTWEEIiOjkZoaChCQvhxTETq0YlLf54SEZFsPvzwQ9xxxx2orq5Gbm4uACA1NRVxcXF48skn0dzcjJiYGNx555148MEH/VxaIgomDACJiIiIggzHHIiIiIiCDANAIiIioiDDAJCIiIgoyDAAJCIiIgoyDACJiIiIggwDQCIiIqIgwwCQiIiIKMgwACQiIiIKMgwAiYiIiIIMA0AiIiKiIMMAkIiIiCjI6P1dAH/r6OjwdxGIiIiIFBUdHe30mD2AREREREGGASARERFRkGEAqBKz2ezvIgxbbFtlsF2VwXZVBttVOWxbZfi7XRkAEhEREQUZBoBEREREQYYBIBEREVGQCfplYIiIiIiU0mO146i5E4ebzuFw4zkcbjqP78xMRN5loX4tFwNAIiIiIhlYbHZ82tyFI18Feocbz+GouRMWu3A67l/1Z5F3WYyfSnkRA0AiIiIiL9nsAp+3dOFQ4zkc+SrY++TL8+ixiUHP/eBUB9pnjkGCCuV0hwEgERER0QDsQuCL1gtfDeOex5HGc/joy/Posth9ul792R6Eh+pkLqV3GAASERERfUUIgZNnunG48WKv3qHGc/io6TzO9dp8vmZSdASuSIzCFRNH44rEKGRNHI3es20yltp7DACJiIgoKAkh0HC2B4e+6tXr6+E70231+ZoTRofjionOwd64UeEux5nPDqXkQ8cAkIiIiILCl+d6LvbsNZ3Dka/+39xp8fl6cSPDMHPiaGQlRjmCvsSoCBlLrBwGgERERDTstHT24kjTeRxq/Oq+vaZzaDrX6/P1oiP1uCJxNGZOjELWV8Fe0pgI6HT+vZfPVwwAiYiIKKCduWBxzMTtW36lrqPH5+tFhYciM3G001DupJjIgA32pDAAJCIiooBxtseKj5vO43DTxfv2DjWeQ017t8/XGxkWghkTRiNr4v9n787jqqrWPoD/zsA8TyKTIILIPCiSmoIjr0PHARUcAMdezazsrauVmZbe6FbXBm9Z6VVEEk1LHHJKMytNnEABB0hQQTzM83SG9f6Bbj0yCMoZODzfz4ePnLXX3qz9uA88Z+291jJB0P1kr4+VAfhalOy1RGMSwMOHD+PVV1+FTCbDggULsGLFCoXtDQ0NiImJwYULF2BlZYWdO3fCxcUFiYmJ+Pjjj7l6ly9fxsWLFxEQEICwsDAUFBTAwMAAAHD06FH06NFDpedFCCGEkKdTK5Fxyd6lu1VILahCVnEdnjzTXsv0BDz49mzq2Qu438PX19oQQr52J3st0YgEUCaTYcmSJTh27BgcHR0RHBwMkUgELy8vrs7mzZthYWGB7OxsJCUlYfny5di5cydmzZqFWbNmAQCuXLmCSZMmISAggNsvMTERAwYMUPk5EUIIIaT96qVyZIiruUEal+5W41pRDeRPme0J+Tx42xohkLuVawJPG0PoCPid2/AuSiMSwJSUFLi5ucHV1RUAEBUVheTkZIUEMDk5GatXrwYATJ06FS+//DIYYwr343fs2IGoqCiVtp0QQgghHSORyZFZWIvUgipukEZmYQ2kT5ntCXhAvx6PJHt2JvCyNYK+kJK91mhEApifnw8nJyfutaOjI86ePdtqHaFQCDMzM5SUlMDa2pqrs3PnTiQnJyvsN3fuXAgEAkRERGDlypVtPsApFos743RaVFqq3gkftRnFVjkorspBcVUOiqvyPGtspXKGv8sakV5U3/RVXI9rJQ1obMeSaS3hAXA114WPjT735WmlBwOdR5O9WlSU1KLimVquXKq4Zm1tW19sTiMSwM5w9uxZGBoawsfHhytLTEyEg4MDqqqqEBERgYSEBMTExLR6jLYC1RmUffzujGKrHBRX5aC4KgfFVXnaG1s5Y8guqeNG46bercLlZ1gyDQBcLfWbpl65v5KGX09jmOhpR/qizmtWIyLo4OCAO3fucK/z8vLg4ODQYh1HR0dIpVJUVFTAysqK256UlIQZM2Y02wcATExMMHPmTKSkpLSZABJCCCGkfRhjyC2r527hXiqowuVnXDKtl/mDJdNMEGhnDH87Y5gb6HRiq8kDGpEABgcHIysrCzk5OXBwcEBSUhK+//57hToikQjx8fEYNGgQdu/ejREjRnC3c+VyOXbt2oXff/+dqy+VSlFeXg5ra2tIJBIcOHAAo0aNUul5EUIIIdqAMYY7FQ0PV9C438NX8QxLptmb6N6feqUp2QuwN4GVISV7qqIRCaBQKMSGDRsQHh4OmUyGefPmwdvbG6tWrcKAAQMgEokwf/58REdHw83NDZaWlkhKSuL2P3XqFJycnLhBJEDTtDHh4eGQSCSQyWQYNWoUFi5cqI7TI4QQQrqcv0vqkHRZjLO5JcgsuYni2qdfMs3GSOf+bdyHU7D07CJLpmkrHmPsaafT0QoVFap5RFQsFtPzKUpCsVUOiqtyUFyVg+LaubZdLMDrP2c/1ahcCwPh/du4D6dfsTfR1apVNDqDqq9ZMzMzhdca0QNICCGEEPWTyRne+yUHG/7Ka1d9Uz0BNzjjQc+es7l2LZmmrSgBJIQQQgiqG2VY+OM1HLpR0uJ2Ix0+/OyMuUEaQfYm6G2pr/VLpmkrSgAJIYSQbi6voh5RSRlIF9colBsI+fi/EGtM8HOCu5UhBN1wyTRtRQkgIYQQ0o1dyK/EzJ2ZEFc3KpT3NNZFUpQ37AS1sLUxUlPriLLQGimEEEJIN/VTRhHGx19ulvz59TTG8QWBCLA3UVPLiLJRDyAhhBDSzTDG8Mnvt7Hu5K1m28Z7WOHbyf1gpCtQQ8uIqlACSAghhHQj9VI5Xtl/A7uuFDbb9tpgJ6wa6UIDO7oBSgAJIYSQbqKophGzd2bibF6lQrkOn4fPJrhjVkBPNbWMqBolgIQQQkg3kFlYg6ikdNwub1AotzAQYvt0LwxxNldTy4g6UAJICCGEaLlfsksxd/dVVDXKFMrdrQywc4YPXC0N1NQyoi6UABJCCCFaijGGb8/dxVtH/sbjq7qF9jZH/FRPmBvoqKdxRK0oASSEEEK0kFTOsOJwNjadL2i2bW5/O/zrf/pAR0CzwXVXlAASQgghWqa8Xop5u6/ixM0yhXI+D1g3pg8WDbSn9Xq7OUoACSGEEC2SW1aHyB0ZuF5cq1BurCvA5in9EN7XSk0tI5qEEkBCCCFES5y+VYHZuzJQWidVKHcy00NSlA+8bWlJN9KEEkBCCCFEC3yfdg+v7s+C5LHRHsEOJkiM9EYPY101tYxoIo15+vPw4cPw8PCAm5sb4uLimm1vaGhAZGQk3NzcEBISgtzcXABAbm4uDAwMEBAQgICAACxatIjb58KFC/D19YWbmxteeeUVMMaaHZcQQgjpyuSM4f3jOXgp+Uaz5G+qjw32x/pT8kea0YgEUCaTYcmSJTh06BAyMzOxY8cOZGZmKtTZvHkzLCwskJ2djWXLlmH58uXctj59+iA1NRWpqanYuHEjV7548WJ89913yMrKQlZWFg4fPqyycyKEEEKUraZRhtgfruLff95ptu2tUGd8N7kf9IUa8aeeaBiNuCpSUlLg5uYGV1dX6OrqIioqCsnJyQp1kpOTERsbCwCYOnUqjh8/3maPXkFBASorK/Hcc8+Bx+MhJiYGe/fuVep5EEIIIapSUNWA8fFp2H+tWKFcT8DD5in9sDzUmUb6klZpxDOA+fn5cHJy4l47Ojri7NmzrdYRCoUwMzNDSUkJACAnJweBgYEwNTXF2rVrMXToUOTn58PR0VHhmPn5+W22QywWd9YpNVNaWqq0Y3d3FFvloLgqB8VVObpbXDOK6rH4SD7ENYqDPawNBPhPuAMCbFin/U3rbrFVFVXE1dbWttVtGpEAPgs7Ozvcvn0bVlZWuHDhAiZNmoSMjIynOlZbgeoMyj5+d0axVQ6Kq3JQXJWju8T1wLVivLj/DmolcoVyrx5GSIryRi9z/U7/md0ltqqmzrhqRALo4OCAO3cePr+Ql5cHBweHFus4OjpCKpWioqICVlZW4PF40NPTAwD0798fffr0wY0bN+Dg4IC8vLw2j0kIIYR0FYwxfH46D2uO5+DxB6DC3S2xaUo/mOhpxJ910gVoxDOAwcHByMrKQk5ODhobG5GUlASRSKRQRyQSIT4+HgCwe/dujBgxAjweD0VFRZDJmha3vnnzJrKysuDq6go7OzuYmprir7/+AmMM27Ztw8SJE1V+boQQQsizapTJsWTfDaxuIfl7KcQB30d6U/JHOkQjrhahUIgNGzYgPDwcMpkM8+bNg7e3N1atWoUBAwZAJBJh/vz5iI6OhpubGywtLZGUlAQAOHXqFFatWgUdHR3w+Xxs3LgRlpaWAICvvvoKc+bMQV1dHcaOHYuxY8eq8zQJIYSQDiuplSB6VyZO365QKBfyefhkrBvm9LdTU8tIV8Zj3XxyvIqKiidX6gRisZieoVASiq1yUFyVg+KqHNoa1xvFtYjckY6csnqFcjN9IbZN9USoq4XS26CtsVU3VcfVzMxM4bVG9AASQgghRNHJm2WI+SETlQ0yhXJXS33sjPKBu7WhmlpGtAElgIQQQoiG+e/5u3jzUDZkj92jG+JshoRpXrA01FFPw4jWoASQEEII0RAyOcM7x25i49nm89bODrDFv8e7Q1egEeM3SRdHCSAhhBCiASobpFiw5xqOZitOEMwDsGZUbywd5Egre5BOQwkgIYQQoma3yusxIykdmYW1CuWGOnx8N6UfxntYq6llRFtRAkgIIYSoUcqdSszalYGiGolCub2JLnZE+cDfzlhNLSPajBJAQgghRE12pxdiSfJ1NDw22iPQ3hjfR3rDzkRPTS0j2o4SQEIIIUTFGGP48Ldb+Nep2822TfS0xteTPGCoI1BDy0h3QQkgIYQQokJ1EhmW7LuBHzOKmm1743knvD3cBXwa7EGUjBJAQgghREXE1Y2YtTMD5/OrFMp1BTx88UJfRPnRihtENSgBJIQQQlQgXVyNqB0ZyKtsUCi3MhQicbo3nutl1sqehHQ+SgAJIYQQJTt8owQLfryG6kbFZd362RgiKcobLhYGamoZ6a4oASSEEEKUhDGGr87mY+XRm3hsVTeM7GOB/0Z4wkyf/hQT1aOrjhBCCFECiUyONw9lY+vFe822LQy2x4fhfSDk02APoh6UABJCCCGdrLxOgpgfruJUbrlCOZ8HxIX3wYsDHdTUMkKaUAJICCGEdKK/S+oQmZSO7JI6hXITPQG2RHhilJulmlpGyEN8dTfggcOHD8PDwwNubm6Ii4trtr2hoQGRkZFwc3NDSEgIcnNzAQDHjh1D//794evri/79++PEiRPcPmFhYfDw8EBAQAACAgJQWFioqtMhhBDSDf2eW46Rmy81S/6czfVxbF4AJX9EY2hED6BMJsOSJUtw7NgxODo6Ijg4GCKRCF5eXlydzZs3w8LCAtnZ2UhKSsLy5cuxc+dOWFtbY//+/bC3t0d6ejrCw8ORn5/P7ZeYmIgBAwao47QIIYR0IwmX7mHZwSxI5YrDPZ5zMsX26V6wNtJVU8sIaa7dPYDLli1DamqqUhqRkpICNzc3uLq6QldXF1FRUUhOTlaok5ycjNjYWADA1KlTcfz4cTDGEBgYCHt7ewCAt7c36urq0NDQ0OxnEEIIIcogkzOsOnYTS/ffaJb8Rfr1QHK0HyV/ROO0OwGUyWQIDw+Hj48PPvroI+Tl5XVaI/Lz8+Hk5MS9dnR0VOjFe7yOUCiEmZkZSkpKFOrs2bMHQUFB0NN7uHj23LlzERAQgA8++ACMPT4InxBCCHl61Y0yRP+QiS/ONP+b+O5wF2yc6AE9ocY8bUUIp923gL/44gusX78ehw4dQmJiItauXYuQkBDExMRgypQpMDY2VmY7nygjIwPLly/H0aNHubLExEQ4ODigqqoKERERSEhIQExMTKvHEIvFSmtfaWmp0o7d3VFslYPiqhwUV+VQR1zvVUuw6HA+rpYo3nXSF/Dw0Qg7/I+rnlY8e07XrHKoIq62tq0vLdihZwAFAgEmTJiACRMmICMjAzNnzsScOXPw0ksvISoqCmvWrIGDQ8eHtjs4OODOnTvc67y8vGbHeVDH0dERUqkUFRUVsLKy4upPnjwZ27ZtQ58+fRT2AQATExPMnDkTKSkpbSaAbQWqMyj7+N0ZxVY5KK7KQXFVDlXG9WJ+FWYmZ+BedaNCeU9jXeyI8kagvYnK2qIKdM0qhzrj2qF+6crKSmzegAq5kAAAIABJREFUvBnDhw/HsGHDEBISgt9//x1Xr16FsbExxo4d+1SNCA4ORlZWFnJyctDY2IikpCSIRCKFOiKRCPHx8QCA3bt3Y8SIEeDxeCgvL8f48eMRFxeHIUOGcPWlUimKi4sBABKJBAcOHICPj89TtY8QQgh5IDmzCOPi05olf749jXB8QaDWJX9EO7W7B3Dq1Kk4cuQIhg0bhkWLFmHSpEkKz9r9+9//hpnZ0y1kLRQKsWHDBoSHh0Mmk2HevHnw9vbGqlWrMGDAAIhEIsyfPx/R0dFwc3ODpaUlkpKSAAAbNmxAdnY23n//fbz//vsAgKNHj8LIyAjh4eGQSCSQyWQYNWoUFi5c+FTtI4QQQhhj+PSPO1j7a26zbeM8rPDt5H4w1hWovmGEPAUea+fIiE8++QSzZ89Gz549W61TW1sLQ0PDTmucKlRUVKjk54jFYupCVxKKrXJQXJWD4qocyo5rg1SOpftvYNeV5s/0vTrYEe+N7A0+TzuXdaNrVjlUHdfHO+na3QP4xhtvPLFOV0v+CCGEkCcprmnE7F2Z+OtOpUK5kM/D+vHuiA5svWOEEE3VZgLo5OQEXjs+0dy+fbvTGkQIIYRoiquFNYhKysCt8nqFcgsDIbZN88JQF3M1tYyQZ9NmArh9+3ZVtYMQQgjRKMezSzF3z1VUNsgUyt2sDLAzygd9rAzU1DJCnl2bCWBoaCj3/d27d7kVNx6lrNVBCCGEEHX5NiUfK478jccW9sAwF3Nsm+YJcwMd9TSMkE7S7mlgxowZ02zSwnPnzj311C/d0dXCGlQ3yp5ckRBCiFpI5QxvHsrGPw43T/7mBPXEnlk+lPwRrdDuBPDFF1/EmDFjUF1dDQA4ffo0RCIRNm/erLTGaZMbpQ0YF5+GiO1XUFEvVXdzCCGEPKaiXorIHen47txdhXIegHVjXLF+vDt0BLSsG9EO7b6SX3nlFYhEIowbNw6HDh3C5MmTkZCQgHHjximzfVohu6QWcw7cQVmdFGfzKjEx4TJKayXqbhYhhJD7csvqEL4lFcf/LlMoN9YVYEeUN5Y859iuQZGEdBUdWgpu1apVqKioQGRkJA4cOIBhw4Ypq11aZdUvOSipe3jrN7WgGhO2peGn2X6wNdZVY8sIIYScuV2B2bsyUfLYB3NHMz0kRXnDx1a9a90TogwdngZGLpdDLpdj9uzZXBlNA9O2ryZ6YHL8RVwSP5xGILOwFuPj05Ac7QcHU7029iaEEKIsSZfFeGX/DTTKFB/4G+BggsRIb/qQTrQWTQOjAub6Qmwe74RXTxTi99yHK49kl9Rh7NZU7Iv2g4sFTSdACCGqImcM//w1F5/8cafZtghvG2wQ9YWBDi3rRrRXu6eBIc/GSIePXTN8EPvDVRzNfjia+nZ5A8ZubeoJ7GtNK6kQQoiy1UpkWLz3OpKvFjfbtnxYL6wIdabn/YjWa/cgkIaGBrzzzjtwdXXl1pM7evQoNmzYoLTGaRsDHQG2R3pB5GmtUF5Q1YhxW9OQLq5WU8sIIaR7KKhqaHr85rHkT0/Aw6Yp/fBWmAslf6RbaHcCuGzZMqSnpyMxMZF7c3h7e+Prr79WWuO0ka6Aj/9GeGK6bw+F8uJaCSbEX8aF/MpW9iSEEPIs0gqqMXLTJVy6q/hh28ZIB/tj/DHVp0crexKifdo9Cvinn35CdnY2jIyMwOc35Y0ODg7Iz89XWuO0lZDPw8ZJHjDQ4SP+4j2uvLxeikkJV7Bzhg8GO5upsYWEEKJdDlwrxos/XUOtRK5Q7tXDEElRPuhlrq+mlhGiHu3uAdTV1YVUqjiBcVFREaysrDq9Ud0Bn8fDZ+PdsSjEQaG8qlGGiMQr+PWxuagIIYR0HGMMX5y+g+hdmc2SvzFuljg8N4CSP9IttTsBnDZtGmJjY5GTkwMAKCgowMsvv4yoqCilNU7b8Xg8fDjGFW8876RQXieVIzIpHYeul6ipZYQQ0vU1yuRYuv8GVv2Sg8dWdcPiEAfsiPKGqV6HpsMlRGu0OwH85z//id69e8PX1xfl5eVwd3eHvb09Vq1apcz2aT0ej4eVI3rj3eEuCuWNMoboHzLxU0aRWtpFCCFdWWmtBJO3X8H2VLFCuYAH/HucGz4M7wMBnwZ7kO6rQ7eA169fj+rqaojFYlRVVWH9+vXQ0+ucSYwPHz4MDw8PuLm5IS4urtn2hoYGREZGws3NDSEhIcjNzeW2ffjhh3Bzc4OHhweOHDnS7mNqkv8b2gsfhvdRKJPKGeb/eBXfp91rZS9CCCGPyyquxcjNl/DnrQqFclM9AfbM8sW8AfZqahkhmqNDq1pfu3YNH3zwAdasWQMej4fr16/j8uXLz9wImUyGJUuW4NChQ8jMzMSOHTuQmZmpUGfz5s2wsLBAdnY2li1bhuXLlwMAMjMzkZSUhIyMDBw+fBgvvfQSZDJZu46paRaHOODzCe549DOpnAEvJd/ApscWJyeEENLcbzfLMOq/qcgpq1co722hj1/mByLM1UJNLSNEs7Q7Afzhhx8wbNgw5OfnY9u2bQCAqqoqvP7668/ciJSUFLi5ucHV1RW6urqIiopCcnKyQp3k5GTExsYCAKZOnYrjx4+DMYbk5GRERUVBT08PvXv3hpubG1JSUtp1TE0UG2SHbyZ7QPDYnYk3DmXjy9PNZ6wnhBDSZOuFAkxJvIKKesUBi4N7meH4/ECabJ+QR7T76ddVq1bh2LFj8Pf3x86dOwEA/v7+SEtLe+ZG5Ofnw8np4UAIR0dHnD17ttU6QqEQZmZmKCkpQX5+Pp577jmFfR9MTfOkYz5OLBa3uf1ZlJaWPrnSfaE9gM9G2eP143fx6KC1d3/JQWF5JZYEWdFEpY/oSGxJ+1FclYPi2vlkcob3T95BUlZds21TPEyxZqgtJFWlEFepoXFagK5Z5VBFXG1tbVvd1u4EsLCwEH5+fgDAJR88Hk+rEpG2AqXq40fb2sLW2hIxP2SiXvowC/zyfAn4ugZYPbK3VsX+WSn7/667orgqB8W189ypqMf/HczG0WzF5I8HYPXI3nhlsCP9ruwEdM0qhzrj2u5bwP3790dCQoJCWVJSEgYOHPjMjXBwcMCdOw9vb+bl5cHBwaHVOlKpFBUVFbCysmp13/YcU9ONcbfErhk+MNJR/G/6/HQe/nH4b8jZ4xMbEEJI93CvqgFvHspG/w3nFNZXBwBDHT62TffCq0OcKPkjpBXtTgC//PJLrFy5EqGhoaipqUF4eDjeffddrF+//pkbERwcjKysLOTk5KCxsRFJSUkQiUQKdUQiEeLj4wEAu3fvxogRI8Dj8SASiZCUlISGhgbk5OQgKysLAwcObNcxu4Jhvc3x42xfmOoJFMq/O3cXS/ffgExOSSAhpPsorZVg1bGbCPzyHL47dxeNMsXfgXYmuvh5jj9e6GfdyhEIIUAHbgE3NDTg2rVrOHDgACZMmAAnJydMmDABxsbGz94IoRAbNmxAeHg4ZDIZ5s2bB29vb6xatQoDBgyASCTC/PnzER0dDTc3N1haWiIpKQlA03rE06dPh5eXF4RCIf7zn/9AIGhKllo6ZlcU4mSGfTF+mLL9CkrrHj7cnJgqRp1Ejm8meUBH0KEB3YQQ0qVU1Evx1V95+OqvfFQ1ylqsE2Rvgu3TvWBv2jnTkxGizXiMte8+Yq9evVBTU4OhQ4ciNDQUoaGhCAwM7PLd6xUVFU+u1AnEYvEz3+vPLKzBpITLKKyRKJSP87DClghP6Am7ZxLYGbElzVFclYPi2jE1jTJ8m5KPz0/nofyx0b0POJnpYXGABV4c6g4hTe7c6eiaVQ5Vx9XMzEzhdbszhtu3b+PcuXOYNGkSLl++jGnTpsHCwgITJkzo9EaSlnn1MMKhOQFwfOzT7c/XSzAjKQO1kpY/FRNCSFdTL5Vj49l8BH6ZgjUncltM/myNdfHxWDecXxKMiH5mlPwR0gEdWgTR1dUVUqkUjY2NaGxsxOHDh1FYWKistpEW9LEywM9z/CFKuIzcRyY6PXGzDFMT07FzhjdMaG1LQkgXJZHJ8X2aGP86dQv5lY0t1rE0EGLZECfMD7aHoY6gxTqEkLa1uwcwMjISvXr1QkxMDG7evIlZs2YhNzcXKSkpymwfaUEvc30cmuMPj8cmNT19uwKTEq6gvE7Syp6EEKKZZHKGnZfFGPjVebx6IKvF5M9UT4C3w5yR9spALB3sRMkfIc+g3V1FFy9eBJ/Ph7+/P/z9/REQEAATExNlto20wc5EDwdj/TBp+xWki2u48gt3qzBh22X8NNsXNka6amwhIYQ8mZwx7L9WjA9P3sK1otoW6xjq8LFooAOWDnaEhYGOiltIiHZqdw9gVlYWzpw5gxEjRuCPP/7A2LFj0bdvXyxYsECZ7SNtsDbSxYEYP/S3V0zE08U1GB+fhruVDWpqGSGEtI0xhqNZpQj77hJif7jaYvKnJ+BhcYgDUpcOxKqRvSn5I6QTdWjYqJ2dHTw8PODm5gYXFxfcu3cPhw4dUlbbSDuYG+jgp2hfDO6lOLrnRnEdxsWn4VZ5fSt7EkKIepzKKcf/bEnD9B3puHyvutl2IZ+Huf3tcHHpQHwY3gc9jOluBiGdrd0JoEgkgqWlJSZOnIhLly7hhRdewIULF7h1d4n6mOoJsXuWD0a4WiiU55bVY/zWNPxd0nx9TEIIUbVzeZWYmHAZooTLOJtX2Ww7nwdE+fXAuZcGYP14dzjQfH6EKE27nwGcMmUKPv/8c/Tu3VuZ7SFPyVBHgB1R3pi75yp+vl7CledVNmDs1lTsjfaDVw8jNbaQENJdXb5XjXW/5uJIVmmrdSZ5WeOtUBd42Bi2WocQ0nnanQDOmTNHic0gnUFPyEf8VE8s2nsdezKKuPLCGgkmxKfhx9m+CLCjgTuEENW4UVyLf57Mxd7M4lbrhLtb4u0wF/jbPfuqUoSQ9qMJ47SMjoCPbyf3g74OH4mpYq68tE4K0bbL+GGmD0KczNo4AiGEPJvcsjrE/XYLu64UorXlykN7m+OdMBcMdDJVbeMIIQAoAdRKAj4PX77QF4Y6Anx37i5XXtkgw5TtV/B9lDdCe1u0cQRCCOm4/MoGfPL7bSRcugdpK5nfQEdTrBzugmG9zVXbOEKIAkoAtRSfx8O//qcPDHX4+Px0HldeI5EjckcGEqZ5YbS7pRpbSAjRFkU1jVj/xx1sPn8XDbKWEz+/nsZYOdwFo90suvwa8oRoA0oAtRiPx8Pqkb1hqCPAh7/d4srrpXLM3JmBzRGeEHlaq7GFhJCurLxOgi/P5GHj2XzUSOQt1vGwNsTbw53xQj9r8CnxI0RjUAKo5Xg8HpaHOsNQV4B3j93kyiVyhrm7M/H1JA9M97VVYwsJIV1NVYMUG8/m48szeahskLVYx8VCHytCnTHNpwcEfEr8CNE0lAB2E0sHOcJQh4//+zmbK5Mx4H9/uo46iRyxQXZqbB0hpCuok8iw6XwBPvvzDkpqW15z3MFUF28OdcasAFvoCDq01gAhRIUoAexG5g+wh4EOHy/vu8GNzGMAXj2QhVqJHItDHNTaPkKIZmqUybHt4j188vtt3KtubLGOjZEOXn++F+b2t4O+kBI/QjSd2t+lpaWlGD16NNzd3TF69GiUlZW1WC8+Ph7u7u5wd3dHfHw8AKC2thbjx49Hv3794O3tjRUrVnD1t27dChsbGwQEBCAgIACbNm1Syfloupn+PbF5iieEj92SeevI3/j099tqahUhRBNJ5QzbU++h/4ZzeONQdovJn7m+EO+NcEHq0oFYHOJAyR8hXYTa36lxcXEYOXIksrKyMHLkSMTFxTWrU1paijVr1uDs2bNISUnBmjVruETxjTfewLVr13Dp0iX8+eefCmsTR0ZGIjU1FampqViwYIHKzknTTfa2QcI0L+gKFJPAD37NxQcncsBYKxN3EUK6BTlj2JNeiOe+Po+X993AnYqGZnWMdQX4x7BeSH1lIJY93wtGugI1tJQQ8rTUngAmJycjNjYWABAbG4u9e/c2q3PkyBGMHj0alpaWsLCwwOjRo3H48GEYGhpi+PDhAABdXV0EBQUhLy+v2f6kubEeVtgZ5QODxz6tf/rHHbx19CYlgYR0Q4wxHLxejOe/uYj5P15DdgvriBsI+XhlkCPSXhmIt8NcYK5PTxIR0hWp/Z0rFothZ9c0AKFnz54Qi8XN6uTn58PJyYl77ejoiPz8fIU65eXl2L9/P1599VWubM+ePTh16hT69u2L9evXKxyjtbYoS2lp62tgqouXMbBpnANePKQ4hcPGs/korajG6qG2XWL0nibGVhtQXJVDE+PKGMPp/Fp8dq4YlwvrW6yjwweme5pjUaAVehgJIa0qhbhKxQ1tgybGVVtQbJVDFXG1tW19lg+VJICjRo3CvXv3mpWvW7dO4TWPx3uqCUKlUilmzJiBV155Ba6urgCAF154ATNmzICenh6++eYbxMbG4sSJE20ep61AdQZlH/9pjLcF9ttYY0riFZTXS7nyXdcqAB09fDXRo9nzgppIE2OrDSiuyqFJcT1zuwIfnMjF6dsVLW4X8ICZAT3x5tBe6GWur+LWdYwmxVXbUGyVQ51xVUkC+Msvv7S6zdbWFgUFBbCzs0NBQQF69OjRrI6DgwNOnjzJvc7Ly0NYWBj3+sUXX4S7uztee+01rszKyor7fsGCBfjHP/7xbCehxYIcTHAg1g+TEq6g+JGpHXZdKUSdRI7NEf2gS9M5EKJVLt2twtpfc3H875YH3vEARPjYYEWoM9ysDFXbOEKI0qn9r7pIJOJG9cbHx2PixInN6oSHh+Po0aMoKytDWVkZjh49ivDwcADAypUrUVFRgc8++0xhn4KCAu77ffv2wdPTU4ln0fX52Brj5zn+sDPRVSjff60Ys3ZmoE7S8mSvhJCuJbOwBrN3ZWD4pkutJn/jPazwx//2x6YpnpT8EaKl1J4ArlixAseOHYO7uzt++eUXbiqX8+fPcyN3LS0t8e677yI4OBjBwcFYtWoVLC0tkZeXh3Xr1iEzMxNBQUEK07188cUX8Pb2hr+/P7744gts3bpVXafYZfS1NsShOf7oZa6nUH4suwzTd6SjupGSQEK6qr9L6rDwx6sYsvECDlwrabHOyD4W+HVBIBIjveFta6TiFhJCVInHuvlwz4qKlp976WxisbjLPEORV1GPSduvNBsBGOJoip0zfTRu1F9Xim1XQnFVDlXH9XZ5PT7+/Ta+T70HWSu/7Qf3MsPK4S4Y7GymsnZ1NrpelYdiqxyqjquZmeL7W+09gETzOJrp4+dYf3j1ULz1czavEhMTLre6BBQhRHPcq2rAm4eyMeA/55BwqeXkL8jeBD/O8sHBWL8unfwRQjpOs7pyiMboYayLAzH+mJJ4BakF1Vx5WkE1JsSnYW+0H2yNdds4AiFEHUprJfjszzv47txd1EnlLdbx6mGEd4Y7Y1xfq6eaeYEQ0vVRAkhaZWmog+RoP0TuSMdfdyq58qtFtRi3NQ3J0b5wNNPsaSEI6S4q6qX4z195+PqvfFS18ryum5UB3gp1xmRvG/Ap8SOkW6MEkLTJTF+IPbN8MSMpA6dyy7nyv0vrMHZrGvZF+6G3pYEaW0hI91bTKMO3Kfn4/HSewlyej3Iy08PyUGdE+dl2iXk9CSHKRwkgeSIjXQF2zvDGnN1XcSTr4czldyoaMHZrGpKj/eBhQ1NFEKJK9VI5tlwowL//uI2impafy+1prIs3hvZCTFBPmsuTEKKAEkDSLgY6AiRM98LCH68h+WoxV36vuhHj49Pw02xf+PY0VmMLCekeJDI5vk8T41+nbiG/srHFOlaGOnhtiBPmD7CDoY5AxS0khHQFlACSdtMV8LE5whP6+65j5+VCrry4VoIJ2y5jz0wfDHA0VWMLCdFeMjnD7vRCxP12CzllLa/Xa6onwNJBjlgU4gATPfr1TghpHf2GIB0i5PPw9UQPGOoIsOXCw9VWKuqlmLT9CnbO8MYQZ3M1tpAQ7SJnDPuvFePDk7dwrai2xTqGOnwsGuiApYMdYWGgo+IWEkK6IkoASYfxeTz8e5wbDIR8fHU2nyuvbpRhamI6EiO9MKKPpRpbSEjXxxjDsewyrP01F5fvVbdYR0/Aw/wB9lj2vBNsjGhaJkJI+1ECSJ4Kj8fDujGuMNQV4JPfb3PldVI5opIysGWqJ8Z7WKuxhYR0XadyyrHu11yczatscbuQz0N0YE+8MbQXHEz1WqxDCCFtoQSQPDUej4eVw11gpMPHmhO5XHmjjCFmVya+m9IPU7x7qK19hHQ15/IqsfbXXPyWU97idj4PmO7bAytCneFiQdMvEUKeHiWA5Jkte74XDHQEWHHkb65MxoAFP15DrUSO2QE91dg6QjTf5XvVWPdrrsI0S4+b5GWNt0JdaMolQkinoASQdIpFIQ4w1OXj1f1ZeLDkqJwBL++7gTqJHAuD7dXaPkI00fWiWnz4Wy72Zha3Wifc3RLvDHeBH02zRAjpRJQAkk4TE2gHA6EAi/ZeU1h4/s1D2aiTyPDKYCf1NY4QDZJbVoe4325h15VCyFnLdUJ7m+OdMBcMdKKplQghnY8SQNKppvn2gL4OH/N2X4Xkkb9sq37JQU2jDCtCnWnxedKtMMbQIGOol8hQVCPBJ6fuYc/1G5C2kvkNdDTFyuEuGNabplMihCgPJYCk073Qzxo7orwxe1cm6qVyrvyjU7dRK5Hj/VG9KQkkaieTM9RJ5aiXyFArkaNOIkedRIY6adO/tRI56qVy1EpkqJPIUS95+P2DOo9/37TPw+M9OHYrnXwK/HoaY+VwF4x2s6D3ByFE6SgBJEoxys0SP8z0QdSOdNRIHiaBX57JQ61Eho/HuoFPf+TIYxhjkMjZ/QRKdj/pejQxayFJk7ScsDUlZ4qJGfe9RIYGWXvSMuXrZ2OIt8Kc8UI/a3pPEEJURu0JYGlpKSIjI5GbmwsXFxfs2rULFhYWzerFx8dj7dq1AICVK1ciNjYWABAWFoaCggIYGDRNiXD06FH06NEDDQ0NiImJwYULF2BlZYWdO3fCxcVFZedFgKEu5tgb7YeIxCuobJBx5ZvPF6BOIseXL/SFgE9/8LoCOWOov5+A1T6WmDUlXS0kafeTsFqpTKE37NHErNn3Ehk0JC9TOhcLfbwV6oypPj3ofUAIUTm1J4BxcXEYOXIkVqxYgbi4OMTFxeGjjz5SqFNaWoo1a9bg/Pnz4PF46N+/P0QiEZcoJiYmYsCAAQr7bN68GRYWFsjOzkZSUhKWL1+OnTt3quy8SJNgR1Psj/HHlMQrKKmVcOXfp4lRJ5Hj28ke0BHw1dhCAgC1EhnS79XgUkEVUguqcfleNUqqG9Ag/7speXvkVj7pOF0BD/pCPgx1BOhhyMe8YCfMCrCla58QojZqTwCTk5Nx8uRJAEBsbCzCwsKaJYBHjhzB6NGjYWnZtLzY6NGjcfjwYcyYMaPN465evRoAMHXqVLz88stgjNGzNWrgb2eMg7F+mJhwBeLqRq78p8wi1Ell2DrVC/pC+kOoKnUSGTLENbhUUI3UgipculuN60U13abn7VGGOnwuMTPQ4UNfhw9D4SPf3y83EPJhcP97Qx3B/X2aypr2ebjd4H550z5N3wsf6eETi8WwtbVV41kTQogGJIBisRh2dnYAgJ49e0IsFjerk5+fDyenh1OIODo6Ij//4Rq0c+fOhUAgQEREBFauXAkej6ewj1AohJmZGUpKSmBt3fryZC397M5SWtr6BK/dgQWAbRMcMOfAHRRUS7nywzdKEbHtIjaMcYChztMlgd09tm1plMlxraQB6UX1yChu+jertEGjkz0BD00J2P1eMwMhD3r3/9UXPijnwUDIh979f1t6rS94ZB9h82PpCXid8IGQAZDd/7rfwy0H0ACwBqAWTV+PoutVOSiuykOxVQ5VxLWtD5sqSQBHjRqFe/fuNStft26dwmser+O/kBMTE+Hg4ICqqipEREQgISEBMTExT9VOZX8q7+6f+m1tgSPzbDAx4TJyyuq58j/zavHSMTF2zvSBqd7TXZLdPbZAU7KXKX54G/fS3WpcLaxRmI7nWeg/6NF6tLerhZ4vQx0+DIT3e8Za6A178L2hzmN17h+vO9wWpetVOSiuykOxVQ51xlUlCeAvv/zS6jZbW1sUFBTAzs4OBQUF6NGj+dqxDg4O3G1iAMjLy0NYWBi3DQBMTEwwc+ZMpKSkICYmBg4ODrhz5w4cHR0hlUpRUVEBKyurTj0v0nG9zPXx8xx/TEq4guvFD/tGztypxKSEK9gzywcWBjpqbGHXIJHJkVlYi7SCKlwqqMalu1XILKxB4zN07fW20EegvQkC7IwRYGcCY1k1nO1tm3rjhHwaoUoIIVpE7beARSIR4uPjsWLFCsTHx2PixInN6oSHh+Ptt99GWVkZgKaRvh9++CGkUinKy8thbW0NiUSCAwcOYNSoUQrHHTRoEHbv3o0RI0bQ838aws5EDwdj/TA58Qqu3Kvhyi/ercKEbZexd7YvbIx01dhCzSKRyXGtqBapjzyzlyGufqZpTJzN9RFo35ToBdoZw9/OGOaPJd5icQOsDCkZJ4QQbaT2BHDFihWYPn06Nm/eDGdnZ+zatQsAcP78eWzcuBGbNm2CpaUl3n33XQQHBwMAVq1aBUtLS9TU1CA8PBwSiQQymQyjRo3CwoULAQDz589HdHQ03NzcYGlpiaSkJLWdI2nO2kgX+6P9MPX7dJzPr+LKM8Q1GLc1DcnRfrA31VNjC9VDKme4XlSLVO42bhXSxTXPNArXyUyP69kLtDOBv50xLCmxI4SQbo3HGNPgx8GVr6KiQiU/h0b+tayqQYqopAz8eUvx/8HZXB/J0b5wsTB44jG6amxlcoYbxU09e5cKqpB6txpX7lWj7hmSPUdTPQQ80rMXYG/y1L14XTWumo7iqhwUV+Wh2CpOPCYjAAAZ3UlEQVSHquNqZmam8FrtPYCkezPRE+KHmT6I3pWJ43+XceW3yusxPr6pJ9DNylCNLewcMjlDdkld0y3cgmqk3a3C5XvVCqukdJS9iS787UwQaN/Usxdgb0y3zgkhhLQLJYBE7Qx1BPg+0hvz9lzFweslXHl+ZSPGbU3DT7P94G1rpMYWdoycMfxdUsfdwn0wsXJ1o+zJO7fC1li36Rau/cOePVtjSvYIIYQ8HUoAiUbQE/KxdaonFidfx+70Iq68sEaCCdvS8OMsXwTam6ixhS2TM4ac0npucEZqQRXSCqpR9QzJno2RDtejF3C/h8/OpPs9D0kIIUR5KAEkGkNHwMc3k/rBQEeAhEsP540sq5NiYsJl7Jrhg+d6mbVxBOVijOFWeT0u3X3Ys5daUKWwznFHWRnqcD16D3r47E10acQ6IYQQpaIEkGgUAZ+Hzye4w0CHj29T7nLllQ0yTEm8gh2R3gh1tVB6OxhjuF3RgNS7D3v2UguqUV4vffLOrbAwECLwfo/eg2f3HE31KNkjhBCicpQAEo3D5/HwUXgfGOkIsP7PO1x5rUSO6TvSsW2aF8L7dt6k3owx5FU2NCV693v2LhVUoazu6ZM9M30hAu/36AXc7+HrZUbJHiGEEM1ACSDRSDweD6tGuMBQh491J29x5Q0yhtm7MrFpSj9M9LLp8HEZY7hb1dh0C5dL9qpRUit56raa6gm4Z/Ue/Otsrk/JHiGEEI1FCSDRWDweD28Oc4aBjgArj93kyiVyhrl7ruIrqRxRfm3PoVRQ1fDwFu7dpp69opqnT/ZMdAXwt3uY6AXam8DFQp+WSSOEENKlUAJINN7LgxxhqMPH6z9nc2VyBizeex31EjnGOvIBAOLqRm5wxqW7TaNx71U3PvXPNdYVwK+n8cPpV+yN4WppQMkeIYSQLo8SQNIlzBtgDwMdAZbsuw75/bVrGIDXDmYhyd4Qt6tycLfq6ZM9Qx0+/Hsaw//+PHuB9iboY2kAAZ+SPUIIIdqHEkDSZczwt4WBDh8LfrwGqfzhCoZ/3a3t0HEMhHz49TSG/4MVNOyM0dfakJI9Qggh3QYlgKRLmeRlA30hH7E/ZKJB9uRlrPWFfPjaGnHz7AXYmcDDxhBCSvYIIYR0Y5QAki7nf/paYecMH8zcmYHaR9bS1RXw4GNrzI3GDbAzRj8bQ+gI+GpsLSGEEKJ5KAEkXVKYqwVOL+qP5Mxi8CW1GObhAM8ehtClZI8QQgh5IkoASZflYmGAV4c4QSwWw9bWWN3NIYQQQroM6i4hhBBCCOlm1J4AlpaWYvTo0XB3d8fo0aNRVlbWYr34+Hi4u7vD3d0d8fHxAICqqioEBARwX9bW1njttdcAAFu3boWNjQ23bdOmTSo7J0IIIYQQTab2BDAuLg4jR45EVlYWRo4cibi4uGZ1SktLsWbNGpw9exYpKSlYs2YNysrKYGJigtTUVO7L2dkZU6ZM4faLjIzkti1YsECVp0UIIYQQorHUngAmJycjNjYWABAbG4u9e/c2q3PkyBGMHj0alpaWsLCwwOjRo3H48GGFOjdu3EBhYSGGDh2qknZ3lK1t20uWkadHsVUOiqtyUFyVg+KqPBRb5VB3XNWeAIrFYtjZ2QEAevbsCbFY3KxOfn4+nJycuNeOjo7Iz89XqJOUlITIyEjwHlmma8+ePfDz88PUqVNx584dJZ0BIYQQQkjXopJRwKNGjcK9e/eala9bt07hNY/HU0jgOiIpKQkJCQnc6xdeeAEzZsyAnp4evvnmG8TGxuLEiRNPdWxCCCGEEG2ikgTwl19+aXWbra0tCgoKYGdnh4KCAvTo0aNZHQcHB5w8eZJ7nZeXh7CwMO51WloapFIp+vfvz5VZWVlx3y9YsAD/+Mc/Wvz5ZmZmHTgTQgghhJCuT+23gEUiETeqNz4+HhMnTmxWJzw8HEePHkVZWRnKyspw9OhRhIeHc9t37NiBGTNmKOxTUFDAfb9v3z54enoq6QwIIYQQQroWHmPsyQuqKlFJSQmmT5+O27dvw9nZGbt27YKlpSXOnz+PjRs3ctO3/Pe//8U///lPAMA777yDuXPncsdwdXXFzz//jH79+nFlb731Fvbt2wehUAhLS0t8/fXXCtsJIYQQQrotRp5o7dq1zMvLi/n6+jJ/f3/2119/PfMx33vvPfbxxx93Quu6JgBs1qxZ3GuJRMKsra3Z+PHjO+X43S2+xcXFzN/fn/n7+zNbW1tmb2/PvW5oaOj0nzdkyBB26dKlTj+uqr322mts/fr13OsxY8aw+fPnc69ff/119umnn7brWMq+5rZs2cKWLFmitOOrQmvXqZmZGfP09FT6z9eGGD4tPp/Pxd7f35/l5OQ0q5Ofn88iIiJa3D80NJSdO3dOya3UXB3JA7Zs2cLy8/Of+WcqO+a0FNwTnDlzBgcOHMDFixehp6eH4uJiNDY2qrtZXZ6RkRHS09NRV1cHAwMDHDt2DA4ODupuVpdlZWWF1NRUAMDq1athbGyMN954Q82t0nxDhgzBrl278Nprr0Eul6O4uBiVlZXc9tOnT2P9+vVqbKF2ae06zc3NxYQJE576uFKpFEIh/Tlri4GBARf7lkilUtjb22P37t0qbFXX0NE8YOvWrfDx8YG9vX27f4Y6rmG1PwOo6QoKCmBtbQ09PT0AgLW1Nezt7eHi4oLi4mIAwPnz57lBKatXr8a8efMQFhYGV1dXfPHFF9yx1q1bh759++L555/H9evXufLvvvsOwcHB8Pf3R0REBGpra1FVVYXevXtDIpEAACorKxVea4Nx48bh4MGDAJo/x1laWopJkybBz88Pzz33HC5fvgyA4ttR2dnZCAgI4F7HxcVh7dq1AICsrCyEh4ejf//+GDZsGG7cuAGgaUS9j48P/P39MXz4cABAbW0tpk2bBk9PT0RERKC+vp475osvvogBAwbA29sb77//PgDg6NGjmDp1Klfn0KFDmDZtmtLPt6MGDx6MM2fOAAAyMjLg4+MDExMTlJWVoaGhAVevXkVQUBA+/vhjBAcHw8/PD++99x63f2vXXFhYGJYvX46BAweib9+++P333wEAMpkMb775Jnesb775BkDT75lhw4YhICAAPj4+XP0tW7agb9++GDhwIP7880/u+Pv370dISAgCAwMxatQoiMViyOVyuLu7o6ioCAAgl8vh5ubGvdZ0MpkMCxcuhLe3N8aMGYO6ujoATbE8f/48AKC4uBguLi4Amv7IikQijBgxAiNHjqQYPoXHY5ibmwsfHx8AQF1dHaKiouDp6YnJkydz/x8AsHjxYu49/+D9cOLECUyaNImrc+zYMUyePFm1J6QkreUB77//PoKDg+Hj44MXX3wRjDHs3r0b58+fx6xZsxAQEIC6uro284Xo6GgMGTIE0dHRqo+50voWtURVVRXz9/dn7u7ubPHixezkyZOMMcacnZ1ZUVERY4yxc+fOsdDQUMZY022gQYMGsfr6elZUVMQsLS1ZY2MjO3/+PPPx8WE1NTWsoqKC9enTh7tdVFxczP28d955h33xxReMMcbmzJnDfvrpJ8YYY9988w17/fXXVXXaSmdkZMTS0tJYREQEq6urY/7+/uzXX3/lbgG//PLLbPXq1Ywxxo4fP878/f0ZYxTf9nj0VmRWVhYXO8YY+/DDD9kHH3zAGGMsLCyMZWdnM8YY++OPP9jo0aMZY4z169eP3bt3jzHGWFlZGWOMsY8++ogtXLiQMcbYxYsXGZ/P524Bl5SUMMaabuM///zzLCMjg8lkMubu7s7Fftq0aeznn39W6nk/LRcXF3br1i22ceNG9vXXX7OVK1eygwcPsj/++IM9//zz7MiRI2zhwoVMLpczmUzGxo8fz3777bc2r7nQ0FDuejp48CAbOXIkY6zpOnsQ//r6eta/f3928+ZN9sknn7C1a9cyxhiTSqWssrKS3b17lzk5ObHCwkLW0NDABg8ezN2+LC0tZXK5nDHG2Hfffcf9rNWrV3O3tI8cOcKmTJmioih23KPXaU5ODhMIBNw1NW3aNJaQkMAYU7wNVlRUxJydnRljTbfZHBwcuOuvO8awIx69BTxp0iTGWPMY5uTkMG9vb8YYY59++imbO3cuY4yxtLQ0JhAIuP+HB/WlUikLDQ1laWlpTC6XMw8PD1ZYWMgYY2zGjBls3759Kj1HZWktD3gQB8YYmz17Nne+j9+6bStfCAoKYrW1tYwx1cecegCfwNjYGBcuXMC3334LGxsbREZGYuvWrW3uM378eOjp6cHa2ho9evSAWCzG77//jsmTJ8PQ0BCmpqYQiURc/fT0dAwdOhS+vr5ITExERkYGgKbpa7Zs2QKg6VPsowNftIGfnx9yc3OxY8cOjBs3TmHbH3/8gejoaADAiBEjUFJSwt2ao/g+u/Lycvz111+IiIhAQEAAlixZgrt37wJoui0aExODTZs2QS6XAwBOnTqF2bNnAwACAwPh7e3NHWvHjh0ICgpCUFAQrl69iszMTPD5fMyaNQvff/89SktLceHCBYwZM0b1J9oOgwcPxunTp3H69GkMGjQIgwYN4l4PGTIER48exdGjRxEYGIigoCBcu3YNWVlZbV5zALhlKfv374/c3FwATT2j27ZtQ0BAAEJCQlBSUoKsrCwEBwdjy5YtWL16Na5cuQITExOcPXsWYWFhsLGxga6uLiIjI7lj5+XlITw8HL6+vvj444+5a3revHnYtm0bgKaBc13pmu7duzfXW/1ozNryYIUoABTDJ3hwCzg1NRU//fQTV/5oDB/16Hvez88Pfn5+3LZdu3YhKCgIgYGByMjIQGZmJng8HqKjo7F9+3aUl5fjzJkzGDt2rPJPTAVaywN+/fVXhISEwNfXFydOnOCuoY4QiUQwMDAAoPqY00MT7SAQCBAWFoawsDD4+voiPj4eQqGQ++P46O0wAFw38YN9pVJpm8efM2cO9u7dC39/f2zdupWb83DIkCHIzc3FyZMnIZPJuK55bSISifDGG2/g5MmTKCkpadc+FN/2e/Q6BZquVaFQCMYYrK2tW3wm6LvvvsPZs2dx4MABBAUF4dKlS60ePysrC59//jlSUlJgbm6O2bNnc++HefPmISIiAkDTutwCgaCTz65zDBkyBKdPn8aVK1fg4+MDJycnfPrppzA1NcXcuXPx22+/4a233sL//u//Kuz32WeftXncB9fpo9coYwxffvmlwjRWD5w6dQoHDx7EnDlz8Prrr8PU1LTVYy9duhSvv/46RCIRTp48idWrVwMAnJycYGtrixMnTiAlJQWJiYkdCYVaPf6+fnD7q63ftUZGRtz3w4YN6/YxfBqPxrA9cnJy8Mknn+DcuXOwsLDAnDlzuP+XuXPn4oUXXoC+vj6mTZumVc9lPp4HfPPNN7h8+TLOnz8PJycnrF69utn1+UB7r+HWKCvm1AP4BNevX0dWVhb3OjU1Fc7OznBxccGFCxcANC059yTDhg3D3r17UVdXh6qqKuzfv5/bVlVVBTs7O0gkkma/bGJiYjBz5kyt+RT6uHnz5uG9996Dr6+vQvnQoUO5WJw8eRLW1tZt/jKn+LasZ8+euHv3LsrKylBfX889c2lhYQE7OzuuJ0AulyMtLQ0AcPPmTTz33HP44IMPYGFhgfz8fAwbNgzff/89gKaJ1x980q2srISJiQlMTU1RUFCAI0eOcD/byckJ1tbWiIuLw5w5c1R41h0zePBgHDhwAJaWlhAIBLC0tOQ+TQ8ePBjh4eH473//i+rqagBNS1MWFha2ec21Jjw8HF9//TX3rOmNGzdQU1ODW7duwdbWFgsXLsSCBQtw8eJFhISE4LfffkNJSQkkEgl++OEH7jgVFRXcoKkH86g+sGDBAsyePRvTpk3T2KS7Ix79XdvWAAWKYed69D2fnp7OPYddWVkJIyMjmJmZQSwW49ChQ9w+9vb2sLe3x9q1a7Xqd2pLeYCHhweApucBq6urFa5NExMTVFVVca/bmy+oOubak54rSXV1NZYuXYry8nIIhUK4ubnh22+/xdWrVzF//ny8++67CquStCYoKAiRkZHw9/dHjx49EBwczG374IMPEBISAhsbG4SEhChcOLNmzcLKlSubTXStLRwdHfHKK680K38w2MPPzw+GhobNfkE/juLbMn19fbz99tsYMGAAHBwc4OXlxW1LSkrC4sWLsXr1ajQ2NmL27Nnw9/fHsmXLkJOTA8YYxowZAx8fH7i6uiI2Nhaenp7w9vZGYGAggKa4e3l5oV+/fnB2dsaQIUMUfv7MmTNRWVmJvn37qvS8O8LX1xfFxcWYOXOmQll1dTWsra0xZswYXL16FYMGDQLQdDto+/btbV5zrVmwYAFyc3MRFBQExhhsbGywd+9enDx5Eh9//DF0dHRgbGyMbdu2wc7ODqtXr8agQYNgbm6uMJhn9erVmDZtGiwsLDBixAjk5ORw20QiEebOnas1f4DfeOMNTJ8+Hd9++y3Gjx/faj2KYedavHgx5s6dC09PT3h6enIrbfn7+yMwMBD9+vWDk5NTs/f8rFmzUFRUpFWLL7SWB5ibm8PHxwc9e/ZUeP/PmTMHixYtgoGBAc6cOYP33nuvXfmCqmOu9omgSdt2796N5ORkhXWOSeeh+CrXokWLMGjQIMTGxqq7Kd3G+fPnsWzZMm4ULOk4iuHTe/nllxEYGIj58+eruyndxtPGnHoANdjSpUtx6NAh/Pzzz+puilai+CpXQEAALCwsFKbqIcoVFxeHr7/+WuufW1MmiuHT69+/P4yMjPDpp5+quyndxrPEnHoACSGEEEK6GRoEQgghhBDSzVACSAghhBDSzVACSAghhBDSzVACSAghKnL9+nUEBATAxMRELYNjcnNzwePxnjh5OiFE+9EoYEKIVnNxcYFYLIZQKIRAIICXlxdiYmLw4osvgs9X7Wfgf/3rXxg+fHiLK7AQQogqUQ8gIUTr7d+/H1VVVbh16xZWrFiBjz76SC3zlN26dUthHWVCCFEXSgAJId2GmZkZRCIRdu7cifj4eKSnpwMADh48iMDAQJiamnLrej4wfvx4fPnllwrH8fPz45bRe9y+ffvg7e0Nc3NzhIWF4f/bu7+Qptc4juPvs0gtG+S/Atuw9YcuVg2CxFlrEdhFMSGimWJ5kyFYBBUUBCsioZBgUFh0I9j6BwqWEysynVQ0LeiPEK0rkQ1iEdqilaKdizg/ztBzjocTxHGfF/wufjw8z/Plufry/OH75s0bALZs2UJPTw8HDhxgwYIFRCKRlH49PT0pJRHLyspSqgu4XC7a29sBiMVi7Ny5k4KCAmw2W8px8uTkJGfPnmX58uXk5eXh9Xr5+PHjtLG2tbWxdOlSYx1EJH0oARSRtFNcXIzFYjEqPWRnZ9PS0sLIyAidnZ1cunTJSLZqamoIBAJG35cvXxKNRqctSxaJRKisrMTv9xOPx9m2bRsej4exsTEePnyIy+Xi4sWLfP78eUp5vJKSEt69e8eHDx8YHx/n1atXxGIxEokEyWSSZ8+e4XK5mJycxOPx4HA4iEajdHd34/f7jTrMFy5coL29nVAoRCwWIycnh/r6+imxNjc3c+zYMR48eMDq1at/2tqKyP+DEkARSUuFhYXGztjmzZtZs2YNJpOJtWvXUllZSSgUAn7UhY1EIkYx+KtXr1JRUUFGRsaUMW/dusX27dspKytj7ty5HD16lGQyyZMnT/4xnnnz5rF+/Xr6+vp4/vw5DoeDDRs28PjxY54+fcrKlSvJy8tjYGCAeDyOz+cjIyODZcuWUVtby82bNwG4fPkyDQ0NWCwWMjMzOXXqFK2trSkPP/x+P42NjfT29rJixYr/vJYi8v+jRyAikpai0Si5ubkAhMNhjh8/zuDgIGNjY3z79o1du3YBkJWVRUVFBYFAgJMnT3Ljxg1aW1unHTMWi1FUVGT8m0wmrFYr0Wh0RjG53W56e3uxWCy43W5ycnIIhUJkZmbidruBH/cIY7EYCxcuNPpNTEzgcrmM9h07dqQ8cJkzZw7v3783/hsbG/H5fFgslhnFJSKzj3YARSTtDAwMEI1G2bhxIwBVVVWUl5czPDzM6OgodXV1/LlKZk1NDdeuXaO7u5v58+fjdDqnHbewsJChoSHj//v37wwPD7NkyZIZxfVHAtjX14fb7cbtdhMKhQiFQkYCaLVasdlsjIyMGF8ikTBqWlutVrq6ulLav379mhLD/fv3OXPmDG1tbf9u4URk1lACKCJp49OnTwSDQXbv3k11dbXx6CKRSJCbm0tWVhb9/f1cv349pZ/T6cRkMnHkyBH27Nnzl+N7vV46Ozvp7u5mfHyc8+fPk5mZSWlp6YziKy0t5e3bt/T391NcXIzdbmdoaIhwOMymTZuAH/cXzWYz586dI5lMMjExweDgIAMDAwDU1dVx4sQJIxGNx+Pcvn07ZR673c7du3epr6/nzp07M1s8EZlVlACKyKzn8Xgwm81YrVYaGho4fPgwzc3NRntTUxM+nw+z2czp06fxer1Txti7dy+vX7+murr6L+dZtWoVgUCAgwcPkp+fT0dHBx0dHdPeF5xOdnY269atw263G32cTidFRUUsWrQI+HGcGwwGefHiBTabjfz8fPbt28fo6CgAhw4dory8nK1bt2I2mykpKSEcDk+Zy+FwEAwGqa2tpaura0bxicjs8dv3P59ziIjItFpaWrhy5QqPHj361aGIiPxn2gEUEfkHX758oampif379//qUEREfgolgCIif+PevXsUFBSwePFiqqqqfnU4IiI/hY6ARURERNKMdgBFRERE0owSQBEREZE0owRQREREJM0oARQRERFJM0oARURERNLM7ws3yEv1ab+5AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model.plot_components(forecast);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The model predicted the overall occupancy is in a downward trend in 2020. Holidays should have effects on occupancy, but we don't know which ones have the largest effects as yet." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The MSE is 0.011724841859149317\n" + ] + } + ], + "source": [ + "metric_df = forecast.set_index('ds')[['yhat']].join(df.set_index('ds').y).reset_index()\n", + "metric_df.dropna(inplace=True)\n", + "error = mean_squared_error(metric_df.y, metric_df.yhat)\n", + "print('The MSE is {}'. format(error))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}