-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_cnf.py
330 lines (266 loc) · 12.8 KB
/
train_cnf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import numpy as np
import matplotlib.pyplot as plt
import os
import glob
from PIL import Image
from functools import partial
import jax
from typing import Any, Callable, Sequence, Optional, NewType
from jax import lax, random, vmap, scipy, numpy as jnp
# from jax.experimental.ode import odeint
from models.ode import odeint
import flax
from flax.training import train_state
from flax import traverse_util
from flax.core import freeze, unfreeze
from flax import linen as nn
from flax import serialization
import optax
from sklearn.datasets import make_circles, make_moons, make_s_curve
from tqdm import tqdm
os.environ['CUDA_VISIBLE_DEVICES'] = '3'
# os.environ['TF_FORCE_UNIFIED_MEMORY'] = '1'
# os.environ['XLA_PYTHON_CLIENT_ALLOCATOR'] = 'platform'
# os.environ['XLA_PYTHON_CLIENT_PREALLOCATE'] = 'false'
class HyperNetwork(nn.Module):
"""Hyper-network allowing f(z(t), t) to change with time.
Adapted from the Pytorch implementation at:
https://github.com/rtqichen/torchdiffeq/blob/master/examples/cnf.py
"""
in_out_dim: Any = 2
hidden_dim: Any = 32
width: Any = 64
@nn.compact
def __call__(self, t):
# predict params
blocksize = self.width * self.in_out_dim
params = lax.expand_dims(t, (0, 1))
params = nn.Dense(self.hidden_dim)(params)
params = nn.tanh(params)
params = nn.Dense(self.hidden_dim)(params)
params = nn.tanh(params)
params = nn.Dense(3 * blocksize + self.width)(params)
# restructure
params = lax.reshape(params, (3 * blocksize + self.width,))
W = lax.reshape(params[:blocksize], (self.width, self.in_out_dim, 1))
U = lax.reshape(params[blocksize:2 * blocksize], (self.width, 1, self.in_out_dim))
G = lax.reshape(params[2 * blocksize:3 * blocksize], (self.width, 1, self.in_out_dim))
U = U * nn.sigmoid(G)
B = lax.expand_dims(params[3 * blocksize:], (1, 2))
return W, B, U
class CNF(nn.Module):
"""Adapted from the Pytorch implementation at:
https://github.com/rtqichen/torchdiffeq/blob/master/examples/cnf.py
"""
in_out_dim: Any = 2
hidden_dim: Any = 32
width: Any = 64
@nn.compact
def __call__(self, t, states):
z, logp_z = states[:, :2], states[:, 2:]
W, B, U = HyperNetwork(self.in_out_dim, self.hidden_dim, self.width)(t)
def dzdt(z):
h = nn.tanh(vmap(jnp.matmul, (None, 0))(z, W) + B)
return jnp.matmul(h, U).mean(0)
# Naive version
# def h(z):
# return nn.tanh(vmap(jnp.matmul, (None, 0))(z, W) + B)
# dh_dz = jax.jacrev(h)(z)
# matmul_1 = vmap(jnp.matmul, in_axes=(3, None), out_axes=3)
# matmul_2 = vmap(matmul_1, in_axes=(4, None), out_axes=4)
# u_dot_dh_dz = matmul_2(dh_dz, U).mean(0).sum(0)
# dlogp_z_dt = -1.0 * jnp.trace(u_dot_dh_dz, 0, 0, 2)
# More advanced.
# u_dot_dh_dz = jax.jacrev(dzdt)(z).sum(0)
# dlogp_z_dt = -1.0 * jnp.trace(u_dot_dh_dz, 0, 0, 2)
# Final version
dz_dt = dzdt(z)
sum_dzdt = lambda z: dzdt(z).sum(0)
df_dz = jax.jacrev(sum_dzdt)(z)
dlogp_z_dt = -1.0 * jnp.trace(df_dz, 0, 0, 2)
return lax.concatenate((dz_dt, lax.expand_dims(dlogp_z_dt, (1,))), 1)
class Neg_CNF(nn.Module):
"""Negative CNF for jax's odeint."""
in_out_dim: Any = 2
hidden_dim: Any = 32
width: Any = 64
@nn.compact
def __call__(self, t, states):
outputs = CNF(self.in_out_dim, self.hidden_dim, self.width)(-1.0 * t, states)
return -1.0 * outputs
def get_batch_circles(num_samples):
"""Adapted from the Pytorch implementation at:
https://github.com/rtqichen/torchdiffeq/blob/master/examples/cnf.py
"""
points, _ = make_circles(n_samples=num_samples, noise=0.06, factor=0.5)
x = jnp.array(points, dtype=jnp.float32)
logp_diff_t1 = jnp.zeros((num_samples, 1), dtype=jnp.float32)
return lax.concatenate((x, logp_diff_t1), 1)
def get_batch_moons(num_samples):
points, _ = make_moons(n_samples=num_samples, noise=0.05)
x = jnp.array(points, dtype=jnp.float32)
logp_diff_t1 = jnp.zeros((num_samples, 1), dtype=jnp.float32)
return lax.concatenate((x, logp_diff_t1), 1)
def get_batch_scurve(num_samples):
points, _ = make_s_curve(n_samples=num_samples, noise=0.05, random_state=0)
x1 = jnp.array(points, dtype=jnp.float32)[:, :1]
x2 = jnp.array(points, dtype=jnp.float32)[:, 2:]
x = lax.concatenate((x1, x2), 1)
logp_diff_t1 = jnp.zeros((num_samples, 1), dtype=jnp.float32)
return lax.concatenate((x, logp_diff_t1), 1)
def multivariate_normal(z):
"""
Log probability of multivariate_normal.
"""
mean = jnp.array([0., 0.])
z_m = z - mean
cov = jnp.array([[0.1, 0.], [0., 0.1]])
logz = -jnp.log((2 * jnp.pi)) + -0.5 * jnp.log(jnp.linalg.det(cov)) + -0.5 * jnp.matmul(jnp.matmul(z_m.T, jnp.linalg.inv(cov)), z_m)
return logz
def create_train_state(rng, learning_rate, in_out_dim, hidden_dim, width):
"""Creates initial 'TrainState'."""
inputs = jnp.ones((1, 2))
neg_cnf = Neg_CNF(in_out_dim, hidden_dim, width)
params = neg_cnf.init(rng, jnp.array(10.), inputs)['params']
set_params(params)
tx = optax.adam(learning_rate)
return train_state.TrainState.create(
apply_fn=neg_cnf.apply, params=params, tx=tx
)
def set_params(params):
# Convert all value of Params to certain constant
params = unfreeze(params)
# Get flattened-key: value list.
flat_params = {'/'.join(k): v for k, v in traverse_util.flatten_dict(params).items()}
unflat_params = traverse_util.unflatten_dict({tuple(k.split('/')): 0.1 * jnp.ones_like(v) for k, v in flat_params.items()})
new_params = freeze(unflat_params)
test_x = jnp.array([[0., 1.], [2., 3.], [4., 5.]])
test_log_p = jnp.zeros((3, 1))
test_inputs = lax.concatenate((test_x, test_log_p), 1)
Neg_CNF().apply({'params': new_params}, jnp.array(0.), test_inputs)
@partial(jax.jit, static_argnums=(2, 3, 4, 5, 6))
def train_step(state, batch, in_out_dim, hidden_dim, width, t0, t1):
p_z0 = lambda x: scipy.stats.multivariate_normal.logpdf(x,
mean=jnp.array([0., 0.]),
cov=jnp.array([[0.1, 0.], [0., 0.1]]))
def loss_fn(params):
func = lambda states, t: Neg_CNF(in_out_dim, hidden_dim, width).apply({'params': params}, t, states)
outputs, _ = odeint(
func,
batch,
-1.0 * jnp.array([t1, t0]),
atol=1e-5,
rtol=1e-5
)
z_t, logp_diff_t = outputs[:, :, :2], outputs[:, :, 2:]
z_t0, logp_diff_t0 = z_t[-1], logp_diff_t[-1]
logp_x = p_z0(z_t0) - lax.squeeze(logp_diff_t0, dimensions=(1,))
loss = -logp_x.mean(0)
return loss
grad_fn = jax.value_and_grad(loss_fn)
loss, grads = grad_fn(state.params)
state = state.apply_gradients(grads=grads)
return state, loss
def train(learning_rate, n_iters, batch_size, in_out_dim, hidden_dim, width, t0, t1, visual, dataset):
"""Train the model."""
rng = jax.random.PRNGKey(0)
state = create_train_state(rng, learning_rate, in_out_dim, hidden_dim, width)
if dataset == "circles":
get_batch = lambda num_samples: get_batch_circles(num_samples)
elif dataset == "moons":
get_batch = lambda num_samples: get_batch_moons(num_samples)
elif dataset == "scurve":
get_batch = lambda num_samples: get_batch_scurve(num_samples)
for itr in range(1, n_iters+1):
batch = get_batch(batch_size)
state, loss = train_step(state, batch, in_out_dim, hidden_dim, width, t0, t1)
print("iter: %d, loss: %.2f" % (itr, loss))
if visual is True:
# Convert Params of Neg_CNF to CNF
neg_params = state.params
neg_params = unfreeze(neg_params)
# Get flattened-key: value list.
neg_flat_params = {'/'.join(k): v for k, v in traverse_util.flatten_dict(neg_params).items()}
pos_flat_params = {key[6:]: jnp.array(np.array(neg_flat_params[key])) for key in list(neg_flat_params.keys())}
pos_unflat_params = traverse_util.unflatten_dict({tuple(k.split('/')): v for k, v in pos_flat_params.items()})
pos_params = freeze(pos_unflat_params)
jax.profiler.save_device_memory_profile("memory.prof")
output = viz(neg_params, pos_params, in_out_dim, hidden_dim, width, t0, t1, dataset)
z_t_samples, z_t_density, logp_diff_t, viz_timesteps, target_sample, z_t1 = output
create_plots(z_t_samples, z_t_density, logp_diff_t, t0, t1, viz_timesteps, target_sample, z_t1, dataset)
def solve_dynamics(dynamics_fn, initial_state, t):
def f(initial_state, t):
return odeint(dynamics_fn, initial_state, t, atol=1e-5, rtol=1e-5)
return f(initial_state, t)
def viz(neg_params, pos_params, in_out_dim, hidden_dim, width, t0, t1, dataset):
"""Adapted from PyTorch """
viz_samples = 30000
viz_timesteps = 41
if dataset == "circles":
get_batch = lambda num_samples: get_batch_circles(num_samples)
elif dataset == "moons":
get_batch = lambda num_samples: get_batch_moons(num_samples)
elif dataset == "scurve":
get_batch = lambda num_samples: get_batch_scurve(num_samples)
target_sample = get_batch(viz_samples)[:, :2]
if not os.path.exists('results_%s/' % dataset):
os.makedirs('results_%s/' % dataset)
z_t0 = jnp.array(np.random.multivariate_normal(mean=np.array([0., 0.]),
cov=np.array([[0.1, 0.], [0., 0.1]]),
size=viz_samples))
logp_diff_t0 = jnp.zeros((viz_samples, 1), dtype=jnp.float32)
func_pos = lambda states, t: CNF(in_out_dim, hidden_dim, width).apply({'params': pos_params}, t, states)
output = solve_dynamics(func_pos, lax.concatenate((z_t0, logp_diff_t0), 1), jnp.linspace(t0, t1, viz_timesteps))
z_t_samples, _ = output[..., :2], output[..., 2:]
# Generate evolution of density
x = jnp.linspace(-1.5, 1.5, 100)
y = jnp.linspace(-1.5, 1.5, 100)
points = np.vstack(np.meshgrid(x, y)).reshape([2, -1]).T
z_t1 = jnp.array(points, dtype=jnp.float32)
logp_diff_t1 = jnp.zeros((z_t1.shape[0], 1), dtype=jnp.float32)
func_neg = lambda states, t: Neg_CNF(in_out_dim, hidden_dim, width).apply({'params': neg_params}, t, states)
output = solve_dynamics(func_neg, lax.concatenate((z_t1, logp_diff_t1), 1), -jnp.linspace(t1, t0, viz_timesteps))
z_t_density, logp_diff_t = output[..., :2], output[..., 2:]
return z_t_samples, z_t_density, logp_diff_t, viz_timesteps, target_sample, z_t1
def create_plots(z_t_samples, z_t_density, logp_diff_t, t0, t1, viz_timesteps, target_sample, z_t1, dataset):
# Create plots for each timestep
for (t, z_sample, z_density, logp_diff) in zip(
tqdm(np.linspace(t0, t1, viz_timesteps)),
z_t_samples, z_t_density, logp_diff_t
):
fig = plt.figure(figsize=(12, 4), dpi=200)
plt.tight_layout()
plt.axis('off')
plt.margins(0, 0)
fig.suptitle(f'{t:.2f}s')
ax1 = fig.add_subplot(1, 3, 1)
ax1.set_title('Target')
ax1.get_xaxis().set_ticks([])
ax1.get_yaxis().set_ticks([])
ax2 = fig.add_subplot(1, 3, 2)
ax2.set_title('Samples')
ax2.get_xaxis().set_ticks([])
ax2.get_yaxis().set_ticks([])
ax3 = fig.add_subplot(1, 3, 3)
ax3.set_title('Log Probability')
ax3.get_xaxis().set_ticks([])
ax3.get_yaxis().set_ticks([])
ax1.hist2d(*jnp.transpose(target_sample), bins=300, density=True,
range=[[-1.5, 1.5], [-1.5, 1.5]])
ax2.hist2d(*jnp.transpose(z_sample), bins=300, density=True,
range=[[-1.5, 1.5], [-1.5, 1.5]])
p_z0 = lambda x: scipy.stats.multivariate_normal.logpdf(x,
mean=jnp.array([0., 0.]),
cov=jnp.array([[0.1, 0.], [0., 0.1]]))
logp = p_z0(z_density) - lax.squeeze(logp_diff, dimensions=(1,))
ax3.tricontourf(*jnp.transpose(z_t1),
jnp.exp(logp), 200)
plt.savefig(os.path.join('results_%s/' % dataset, f"cnf-viz-{int(t * 1000):05d}.jpg"),
pad_inches=0.2, bbox_inches='tight')
plt.close()
img, *imgs = [Image.open(f) for f in sorted(glob.glob(os.path.join('results_%s/' % dataset, f"cnf-viz-*.jpg")))]
img.save(fp=os.path.join('results_%s/' % dataset, "cnf-viz.gif"), format='GIF', append_images=imgs,
save_all=True, duration=250, loop=0)
print('Saved visualization animation at {}'.format(os.path.join('results_%s/' % dataset, "cnf-viz.gif")))
if __name__ == '__main__':
train(0.001, 1000, 512, 2, 32, 64, 0., 10., True, 'scurve')