-
Notifications
You must be signed in to change notification settings - Fork 0
/
AES_Library.cpp
278 lines (250 loc) · 9.27 KB
/
AES_Library.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// AES_Library.cpp : Defines the functions for the static library.
//
#include "pch.h"
#include "framework.h"
#include "AES_Library.h"
/*--------------------------------------------------------------------------------
Constants
--------------------------------------------------------------------------------*/
BYTE const NumberOfRounds[] = { 10, 12, 14 };
/*-------------------------------------------------------------------------------
AES_ECBmodeCBCmodeEncrypt
Electronic Code Book mode & Cipher Block Chaining mode, need for data padding since data is encrypted
Inputs: Key, KeySize, Iv, dwBufsize
Input/Output: Buffer
-------------------------------------------------------------------------------*/
void AES_ECBmodeCBCmodeEncrypt(BYTE* const Key, BYTE KeySize, BYTE* Buffer, DWORD dwBufsize, BYTE* Iv, short Mode)
{
UINT round = 0;
BYTE* roundkeys;
BYTE sbox[256] = { 0x00 };
BYTE xorvector[AES_BLOCKSIZE];
UINT keysizeaswords;
UINT numberofrounds;
int i;
int numberofblocks;
numberofblocks = dwBufsize / AES_BLOCKSIZE;
if (dwBufsize % AES_BLOCKSIZE != 0)
{
numberofblocks++;
}
AES_Initialize_SBox(sbox);
keysizeaswords = KeySize / 4;
i = keysizeaswords / 2 - 2;
numberofrounds = NumberOfRounds[i];
i = (numberofrounds + 1) * 16;
roundkeys = (BYTE*)malloc(i);
memset(roundkeys, 0, i);
AES_ExpandRoundKeys(Key, keysizeaswords, numberofrounds, roundkeys, sbox);
if (Mode == AES_MODECBC)
memcpy(xorvector, Iv, AES_BLOCKSIZE); // not needed in ECB
for (i = 0; i < numberofblocks; i++)
{
if (Mode == AES_MODECBC)
AES_AddVector(Buffer, xorvector, AES_BLOCKSIZE);
AES_AddRoundKey(0, roundkeys, Buffer);
for (round = 1; round <= numberofrounds; round++)
{
AES_SubstituteBytes(Buffer, sbox);
AES_ShiftRows(Buffer, ENCRYPT);
if (round < numberofrounds) // Mix Columns is not in last round
AES_MixColumns(Buffer, ENCRYPT);
AES_AddRoundKey(round, roundkeys, Buffer);
}
if (Mode == AES_MODECBC)
memcpy(xorvector, Buffer, AES_BLOCKSIZE);
Buffer += AES_BLOCKSIZE;
}
free(roundkeys);
}
/*-------------------------------------------------------------------------------
AES_ECBmodeCBCmodeDecrypt
Electronic Code Book mode & Cipher Block Chaining mode, need for data padding since data is decrypted
Inputs: Key, KeySize, Iv, dwBufsize
Input/Output: Buffer
-------------------------------------------------------------------------------*/
void AES_ECBmodeCBCmodeDecrypt(BYTE* const Key, BYTE KeySize, BYTE* Buffer, DWORD dwBufsize, BYTE* Iv, short Mode)
{
INT32 round = 0;
BYTE* roundkeys;
BYTE sbox[256] = { 0x00 };
BYTE xorvector[AES_BLOCKSIZE];
BYTE tmp[AES_BLOCKSIZE];
UINT keysizeaswords;
UINT numberofrounds;
int i;
int numberofblocks;
numberofblocks = dwBufsize / AES_BLOCKSIZE;
if (dwBufsize % AES_BLOCKSIZE != 0)
{
numberofblocks++;
}
AES_Initialize_SBox(sbox);
keysizeaswords = KeySize / 4;
i = keysizeaswords / 2 - 2;
numberofrounds = NumberOfRounds[i];
i = (numberofrounds + 1) * 16;
roundkeys = (BYTE*)malloc(i);
memset(roundkeys, 0, i);
AES_ExpandRoundKeys(Key, keysizeaswords, numberofrounds, roundkeys, sbox);
AES_Inverse_SBox(sbox);
if (Mode == AES_MODECBC)
memcpy(xorvector, Iv, AES_BLOCKSIZE);
for (i = 0; i < numberofblocks; i++)
{
memcpy(tmp, Buffer, AES_BLOCKSIZE);
AES_AddRoundKey(numberofrounds, roundkeys, Buffer);
for (round = (numberofrounds - 1); round >= 0; round--)
{
AES_ShiftRows(Buffer, DECRYPT);
AES_SubstituteBytes(Buffer, sbox);
AES_AddRoundKey(round, roundkeys, Buffer);
if (round > 0) // Mix Column is not in last round
AES_MixColumns(Buffer, DECRYPT);
}
if (Mode == AES_MODECBC)
AES_AddVector(Buffer, xorvector, AES_BLOCKSIZE);
if (Mode == AES_MODECBC)
memcpy(xorvector, tmp, AES_BLOCKSIZE);
Buffer += AES_BLOCKSIZE;
}
free(roundkeys);
}
/*-------------------------------------------------------------------------------
AES_CTRmodeOFBmodeEncryptDecrypt
Counter mode & Output Feed Back mode, no need for data padding since vector is encrypted
Inputs: Key, KeySize, InitCtr, dwBufsize
Input/Output: Buffer
-------------------------------------------------------------------------------*/
void AES_CTRmodeOFBmodeEncryptDecrypt(BYTE* const Key, BYTE KeySize, BYTE* Buffer, DWORD dwBufsize, BYTE* InitCtr, short Mode)
{
UINT round = 0;
BYTE* roundkeys;
BYTE sbox[256] = { 0x00 };
BYTE counter[AES_BLOCKSIZE];
BYTE plaincounter[AES_BLOCKSIZE];
UINT keysizeaswords;
UINT numberofrounds;
int i;
int blocksize = AES_BLOCKSIZE;
int lastblocknumber;
lastblocknumber = dwBufsize / AES_BLOCKSIZE;
if (dwBufsize % AES_BLOCKSIZE == 0)
{
lastblocknumber--;
}
AES_Initialize_SBox(sbox);
//Generate Round Keys
keysizeaswords = KeySize / 4;
i = keysizeaswords / 2 - 2;
numberofrounds = NumberOfRounds[i];
i = (numberofrounds + 1) * 16;
roundkeys = (BYTE*)malloc(i);
memset(roundkeys, 0, i);
AES_ExpandRoundKeys(Key, keysizeaswords, numberofrounds, roundkeys, sbox);
// transfer initial counter value to internal counter
memcpy(plaincounter, InitCtr, AES_BLOCKSIZE);
for (i = 0; i < lastblocknumber; i++)
{
memcpy(counter, plaincounter, AES_BLOCKSIZE);
// encrypt counter value
AES_AddRoundKey(0, roundkeys, counter);
for (round = 1; round <= numberofrounds; round++)
{
AES_SubstituteBytes(counter, sbox);
AES_ShiftRows(counter, ENCRYPT);
if (round < numberofrounds) // Mix Columns is not in last round
AES_MixColumns(counter, ENCRYPT);
AES_AddRoundKey(round, roundkeys, counter);
}
// end of counter encryption
if (i == lastblocknumber) // last block could be smaller because of no padding
blocksize = dwBufsize - (i * AES_BLOCKSIZE);
// XOR input with encrypted counter
AES_AddVector(Buffer, counter, blocksize);
Buffer += AES_BLOCKSIZE;
if (Mode == AES_MODECTR)
{
// increment counter value by 1
int carry = 1;
for (int j = (AES_BLOCKSIZE - 1); j >= 0; j--)
{
if (carry == 1)
{
plaincounter[j] += 1;
if (plaincounter[j] == 0)
carry = 1;
else
carry = 0;
}
}
}
if (Mode == AES_MODEOFB)
memcpy(plaincounter, counter, AES_BLOCKSIZE);
}
free(roundkeys);
}
/*-------------------------------------------------------------------------------
AES_CFBmodeEncryptDecrypt
Cipher Feed Back mode, no need for data padding since vector is encrypted
Inputs: Key, KeySize, Iv, dwBufsize
Input/Output: Buffer
-------------------------------------------------------------------------------*/
void AES_CFBmodeEncryptDecrypt(BYTE* const Key, BYTE KeySize, BYTE* Buffer, DWORD dwBufsize, BYTE* Iv, short Mode)
{
UINT round = 0;
BYTE* roundkeys;
BYTE sbox[256] = { 0x00 };
BYTE xorvector[AES_BLOCKSIZE];
BYTE tmpbuf[AES_BLOCKSIZE];
UINT keysizeaswords;
UINT numberofrounds;
int i;
int blocksize = AES_BLOCKSIZE;
int lastblocknumber;
lastblocknumber = dwBufsize / AES_BLOCKSIZE;
if (dwBufsize % AES_BLOCKSIZE == 0)
{
lastblocknumber--;
}
AES_Initialize_SBox(sbox);
//Generate Round Keys
keysizeaswords = KeySize / 4;
i = keysizeaswords / 2 - 2;
numberofrounds = NumberOfRounds[i];
i = (numberofrounds + 1) * 16;
roundkeys = (BYTE*)malloc(i);
memset(roundkeys, 0, i);
AES_ExpandRoundKeys(Key, keysizeaswords, numberofrounds, roundkeys, sbox);
// transfer initial value to internal vector
memcpy(xorvector, Iv, AES_BLOCKSIZE);
for (i = 0; i <= lastblocknumber; i++)
{
// encrypt vector value
AES_AddRoundKey(0, roundkeys, xorvector);
for (round = 1; round <= numberofrounds; round++)
{
AES_SubstituteBytes(xorvector, sbox);
AES_ShiftRows(xorvector, ENCRYPT);
if (round < numberofrounds) // Mix Columns is not in last round
AES_MixColumns(xorvector, ENCRYPT);
AES_AddRoundKey(round, roundkeys, xorvector);
}
// end of vector encryption
// get copy of cyphered block for decrytion
if (Mode == DECRYPT)
memcpy(tmpbuf, Buffer, AES_BLOCKSIZE);
if (i == lastblocknumber) // last block could be smaller because of no padding
blocksize = dwBufsize - (i * AES_BLOCKSIZE);
// XOR input with encrypted counter
AES_AddVector(Buffer, xorvector, blocksize);
// crypted input block will be used for next iteration
if (Mode == DECRYPT)
memcpy(xorvector, tmpbuf, AES_BLOCKSIZE);
else
memcpy(xorvector, Buffer, AES_BLOCKSIZE);
// move data buffer pointer 1 block further
Buffer += AES_BLOCKSIZE;
}
free(roundkeys);
}