Skip to content

Latest commit

 

History

History
95 lines (67 loc) · 6.03 KB

regressions-msmarco-doc-docTTTTTquery-per-passage.md

File metadata and controls

95 lines (67 loc) · 6.03 KB

Anserini: Regressions for MS MARCO Document Ranking

This page documents regression experiments for the MS MARCO document ranking task, which is integrated into Anserini's regression testing framework. Note that there are four different regression conditions for this task, and this page describes the following:

  • Indexing Condition: each MS MARCO document is first segmented into passages, each passage is treated as a unit of indexing
  • Expansion Condition: doc2query-T5

All four conditions are described in detail here, in the context of doc2query-T5.

The exact configurations for these regressions are stored in this YAML file. Note that this page is automatically generated from this template as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

Indexing

Typical indexing command:

nohup sh target/appassembler/bin/IndexCollection -collection JsonCollection \
 -input /path/to/msmarco-doc-docTTTTTquery-per-passage \
 -index indexes/lucene-index.msmarco-doc-docTTTTTquery-per-passage.pos+docvectors+raw \
 -generator DefaultLuceneDocumentGenerator \
 -threads 1 -storePositions -storeDocvectors -storeRaw \
  >& logs/log.msmarco-doc-docTTTTTquery-per-passage &

The directory /path/to/msmarco-doc-docTTTTTquery-per-passage/ should be a directory containing the expanded document collection; see this link for how to prepare this collection.

For additional details, see explanation of common indexing options.

Retrieval

Topics and qrels are stored in src/main/resources/topics-and-qrels/. The regression experiments here evaluate on the 5193 dev set questions.

After indexing has completed, you should be able to perform retrieval as follows:

nohup target/appassembler/bin/SearchCollection -index indexes/lucene-index.msmarco-doc-docTTTTTquery-per-passage.pos+docvectors+raw \
 -topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.msmarco-doc.dev.txt \
 -output runs/run.msmarco-doc-docTTTTTquery-per-passage.bm25-default.topics.msmarco-doc.dev.txt \
 -bm25 -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 &

nohup target/appassembler/bin/SearchCollection -index indexes/lucene-index.msmarco-doc-docTTTTTquery-per-passage.pos+docvectors+raw \
 -topicreader TsvInt -topics src/main/resources/topics-and-qrels/topics.msmarco-doc.dev.txt \
 -output runs/run.msmarco-doc-docTTTTTquery-per-passage.bm25-tuned.topics.msmarco-doc.dev.txt \
 -bm25 -bm25.k1 2.56 -bm25.b 0.59 -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 &

Evaluation can be performed using trec_eval:

tools/eval/trec_eval.9.0.4/trec_eval -m map -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt runs/run.msmarco-doc-docTTTTTquery-per-passage.bm25-default.topics.msmarco-doc.dev.txt

tools/eval/trec_eval.9.0.4/trec_eval -m map -c -m recall.100 -c -m recall.1000 -c src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt runs/run.msmarco-doc-docTTTTTquery-per-passage.bm25-tuned.topics.msmarco-doc.dev.txt

Effectiveness

With the above commands, you should be able to reproduce the following results:

MAP BM25 (Default) BM25 (Tuned)
MS MARCO Doc Ranking: Dev 0.3182 0.3211
R@100 BM25 (Default) BM25 (Tuned)
MS MARCO Doc Ranking: Dev 0.8481 0.8627
R@1000 BM25 (Default) BM25 (Tuned)
MS MARCO Doc Ranking: Dev 0.9490 0.9530

The setting "default" refers the default BM25 settings of k1=0.9, b=0.4, while "tuned" refers to the tuned setting of k1=2.56, b=0.59. Note that here we are using trec_eval to evaluate the top 1000 hits for each query; beware, an official MS MARCO document ranking task leaderboard submission comprises only 100 hits per query.

Use the following commands to convert the TREC run files into the MS MARCO format and use the official eval script to compute MRR@100:

$ python tools/scripts/msmarco/convert_trec_to_msmarco_run.py --input runs/run.msmarco-doc-docTTTTTquery-per-passage.bm25-default.topics.msmarco-doc.dev.txt --output runs/run.msmarco-doc-docTTTTTquery-per-passage.bm25-default.topics.msmarco-doc.dev.msmarco.txt --k 100 --quiet
$ python tools/scripts/msmarco/msmarco_doc_eval.py --judgments src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt --run runs/run.msmarco-doc-docTTTTTquery-per-passage.bm25-default.topics.msmarco-doc.dev.msmarco.txt
#####################
MRR @100: 0.31779258157039647
QueriesRanked: 5193
#####################

$ python tools/scripts/msmarco/convert_trec_to_msmarco_run.py --input runs/run.msmarco-doc-docTTTTTquery-per-passage.bm25-tuned.topics.msmarco-doc.dev.txt --output runs/run.msmarco-doc-docTTTTTquery-per-passage.bm25-tuned.topics.msmarco-doc.dev.msmarco.txt --k 100 --quiet
$ python tools/scripts/msmarco/msmarco_doc_eval.py --judgments src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt --run runs/run.msmarco-doc-docTTTTTquery-per-passage.bm25-tuned.topics.msmarco-doc.dev.msmarco.txt
#####################
MRR @100: 0.32081861579183807
QueriesRanked: 5193
#####################