-
Notifications
You must be signed in to change notification settings - Fork 1
/
onnx_submission.py
119 lines (98 loc) · 5.42 KB
/
onnx_submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# import torch
import onnx
import onnxruntime
import cv2
from utils.util import *
from pyctcdecode import build_ctcdecoder
import time
import glob
import csv
from utils import get_args
import nnet
from utils.preprocess import detect_text_lines
vi_dict = ['', 'a', 'A', 'à', 'À', 'ả', 'Ả', 'ã', 'Ã', 'á', 'Á', 'ạ', 'Ạ', 'ă', 'Ă', 'ằ', 'Ằ', 'ẳ', 'Ẳ', 'ẵ', 'Ẵ', 'ắ', 'Ắ', 'ặ', 'Ặ', 'â', 'Â', 'ầ', 'Ầ', 'ẩ', 'Ẩ', 'ẫ', 'Ẫ', 'ấ', 'Ấ', 'ậ', 'Ậ', 'b', 'B', 'c', 'C', 'd', 'D', 'đ', 'Đ', 'e', 'E', 'è', 'È', 'ẻ', 'Ẻ', 'ẽ', 'Ẽ', 'é', 'É', 'ẹ', 'Ẹ', 'ê', 'Ê', 'ề', 'Ề', 'ể', 'Ể', 'ễ', 'Ễ', 'ế', 'Ế', 'ệ', 'Ệ', 'f', 'F', 'g', 'G', 'h', 'H', 'i', 'I', 'ì', 'Ì', 'ỉ', 'Ỉ', 'ĩ', 'Ĩ', 'í', 'Í', 'ị', 'Ị', 'j', 'J', 'k', 'K', 'l', 'L', 'm', 'M', 'n', 'N', 'o', 'O', 'ò', 'Ò', 'ỏ', 'Ỏ', 'õ', 'Õ', 'ó', 'Ó', 'ọ', 'Ọ', 'ô', 'Ô', 'ồ', 'Ồ', 'ổ', 'Ổ', 'ỗ', 'Ỗ', 'ố', 'Ố', 'ộ', 'Ộ', 'ơ', 'Ơ', 'ờ', 'Ờ', 'ở', 'Ở', 'ỡ', 'Ỡ', 'ớ', 'Ớ', 'ợ', 'Ợ', 'p', 'P', 'q', 'Q', 'r', 'R', 's', 'S', 't', 'T', 'u', 'U', 'ù', 'Ù', 'ủ', 'Ủ', 'ũ', 'Ũ', 'ú', 'Ú', 'ụ', 'Ụ', 'ư', 'Ư', 'ừ', 'Ừ', 'ử', 'Ử', 'ữ', 'Ữ', 'ứ', 'Ứ', 'ự', 'Ự', 'v', 'V', 'w', 'W', 'x', 'X', 'y', 'Y', 'ỳ', 'Ỳ', 'ỷ', 'Ỷ', 'ỹ', 'Ỹ', 'ý', 'Ý', 'ỵ', 'Ỵ', 'z', 'Z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '!', '"', '#', '$', '%', '&', "'", "'", '(', ')', '*', '+', ',', '-', '.', '/', ':', ';', '<', '=', '>', '?', '@', '[', '\\', ']', '^', '_', '`', '{', '|', '}', '~', ' ', ' ']
# prepare decoder and decode logits via shallow fusion
decoder = build_ctcdecoder(
vi_dict,
kenlm_model_path='ckpt/ngram/address_fix_811.bin', # either .arpa or .bin file
alpha=0.3, # tuned on a val set
beta=2.0, # tuned on a val set
)
def check_num(word:str):
for i in word:
if i.isdigit():
return True
return False
path = "711_bestmodel.onnx"
# img_path = "./data/public_test/images/31/1.jpg"
sess = onnxruntime.InferenceSession(path, providers=['CPUExecutionProvider'])
output_names = [x.name for x in sess.get_outputs()]
print([x.name for x in sess.get_inputs()])
print([x.shape for x in sess.get_inputs()])
# output infro
print([x.name for x in sess.get_outputs()])
print([x.shape for x in sess.get_outputs()])
def submission(args, use_lm=True):
with open('./onnx.csv', 'a+') as f:
writer = csv.writer(f, delimiter=',')
writer.writerow(["id", "answer"])
imgC, imgH, imgW = (3,48,720)
max_wh_ratio = imgW / imgH
postprocess = nnet.get_postprocess(args)
start = time.time()
norm_img_batch = []
# Get a list of all subfolders
subfolders = glob.glob("./data/public_test/images/*")
# subfolders = glob.glob("./data/kalapa_fixed_raw/train/images_note")
# Get a list of all images in all subfolders
image_path = []
images = []
for subfolder in subfolders:
image_path += glob.glob(subfolder + "/*.*")
for i in image_path:
print(i)
start = time.time()
image = cv2.imread(i)
image_name = "/".join(i.rsplit("/", 2)[-2:])
image = detect_text_lines(image)
if image is None:
writer.writerow([image_name, ""])
continue
norm_img = resize_norm_img(image, max_wh_ratio)
# norm_img = norm_img[np.newaxis, :]
logits = sess.run(output_names, {"image": np.expand_dims(norm_img, axis=0)})[0]
if args.decode_type == use_lm:
try:
text = decoder.decode(logits, beam_prune_logp=-15, token_min_logp=-7)
text = text.replace(" "," ").replace("uỵ", "ụy")
writer.writerow([image_name, text])
except:
print("hihi")
elif args.decode_type=="both":
text_last_output = ""
# do lm first
text_lm_output = decoder.decode(logits[0], beam_prune_logp=-15, token_min_logp=-7)
# postprocessed_output = decoder.decode(output[0].cpu().detach().numpy())
text_lm_output = text_lm_output.replace(" "," ").replace("uỵ", "ụy")
# do normal
normal_output = postprocess(logits)
text_normal_output = normal_output[0][0]
print(text_normal_output)
# print(batch_nolm_output)
if len(text_lm_output.split(" ")) > len(text_normal_output.split(" ")):
text_last_output = text_lm_output
elif len(text_lm_output.split(" ")) < len(text_normal_output.split(" ")):
text_last_output = text_normal_output
else:
text_last_output = text_lm_output
for lm_word, nolm_word in zip(text_lm_output.split(" "), text_normal_output.split(" ")):
if check_num(lm_word):
text_last_output.replace(lm_word, nolm_word)
end = time.time() - start
print(f"process time: {end}")
writer.writerow([image_name, text_last_output])
if __name__=="__main__":
args = get_args()
# args.device = torch.device("cpu")
args.decode_type = "both"
submission(args, use_lm=False)