forked from LTH14/mar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_mar.py
310 lines (260 loc) · 13 KB
/
main_mar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import argparse
import datetime
import numpy as np
import os
import time
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from util.crop import center_crop_arr
import util.misc as misc
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from util.loader import CachedFolder
from models.vae import AutoencoderKL
from models import mar
from engine_mar import train_one_epoch, evaluate
import copy
def get_args_parser():
parser = argparse.ArgumentParser('MAR training with Diffusion Loss', add_help=False)
parser.add_argument('--batch_size', default=16, type=int,
help='Batch size per GPU (effective batch size is batch_size * # gpus')
parser.add_argument('--epochs', default=400, type=int)
# Model parameters
parser.add_argument('--model', default='mar_large', type=str, metavar='MODEL',
help='Name of model to train')
# VAE parameters
parser.add_argument('--img_size', default=256, type=int,
help='images input size')
parser.add_argument('--vae_path', default="pretrained_models/vae/kl16.ckpt", type=str,
help='images input size')
parser.add_argument('--vae_embed_dim', default=16, type=int,
help='vae output embedding dimension')
parser.add_argument('--vae_stride', default=16, type=int,
help='tokenizer stride, default use KL16')
parser.add_argument('--patch_size', default=1, type=int,
help='number of tokens to group as a patch.')
# Generation parameters
parser.add_argument('--num_iter', default=64, type=int,
help='number of autoregressive iterations to generate an image')
parser.add_argument('--num_images', default=50000, type=int,
help='number of images to generate')
parser.add_argument('--cfg', default=1.0, type=float, help="classifier-free guidance")
parser.add_argument('--cfg_schedule', default="linear", type=str)
parser.add_argument('--label_drop_prob', default=0.1, type=float)
parser.add_argument('--eval_freq', type=int, default=40, help='evaluation frequency')
parser.add_argument('--save_last_freq', type=int, default=5, help='save last frequency')
parser.add_argument('--online_eval', action='store_true')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--eval_bsz', type=int, default=64, help='generation batch size')
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.02,
help='weight decay (default: 0.02)')
parser.add_argument('--grad_checkpointing', action='store_true')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-4, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--lr_schedule', type=str, default='constant',
help='learning rate schedule')
parser.add_argument('--warmup_epochs', type=int, default=100, metavar='N',
help='epochs to warmup LR')
parser.add_argument('--ema_rate', default=0.9999, type=float)
# MAR params
parser.add_argument('--mask_ratio_min', type=float, default=0.7,
help='Minimum mask ratio')
parser.add_argument('--grad_clip', type=float, default=3.0,
help='Gradient clip')
parser.add_argument('--attn_dropout', type=float, default=0.1,
help='attention dropout')
parser.add_argument('--proj_dropout', type=float, default=0.1,
help='projection dropout')
parser.add_argument('--buffer_size', type=int, default=64)
# Diffusion Loss params
parser.add_argument('--diffloss_d', type=int, default=12)
parser.add_argument('--diffloss_w', type=int, default=1536)
parser.add_argument('--num_sampling_steps', type=str, default="100")
parser.add_argument('--diffusion_batch_mul', type=int, default=1)
parser.add_argument('--temperature', default=1.0, type=float, help='diffusion loss sampling temperature')
# Dataset parameters
parser.add_argument('--data_path', default='./data/imagenet', type=str,
help='dataset path')
parser.add_argument('--class_num', default=1000, type=int)
parser.add_argument('--output_dir', default='./output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
# caching latents
parser.add_argument('--use_cached', action='store_true', dest='use_cached',
help='Use cached latents')
parser.set_defaults(use_cached=False)
parser.add_argument('--cached_path', default='', help='path to cached latents')
return parser
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
# augmentation following DiT and ADM
transform_train = transforms.Compose([
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, args.img_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
if args.use_cached:
dataset_train = CachedFolder(args.cached_path)
else:
dataset_train = datasets.ImageFolder(os.path.join(args.data_path, 'train'), transform=transform_train)
print(dataset_train)
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
# define the vae and mar model
vae = AutoencoderKL(embed_dim=args.vae_embed_dim, ch_mult=(1, 1, 2, 2, 4), ckpt_path=args.vae_path).cuda().eval()
for param in vae.parameters():
param.requires_grad = False
model = mar.__dict__[args.model](
img_size=args.img_size,
vae_stride=args.vae_stride,
patch_size=args.patch_size,
vae_embed_dim=args.vae_embed_dim,
mask_ratio_min=args.mask_ratio_min,
label_drop_prob=args.label_drop_prob,
class_num=args.class_num,
attn_dropout=args.attn_dropout,
proj_dropout=args.proj_dropout,
buffer_size=args.buffer_size,
diffloss_d=args.diffloss_d,
diffloss_w=args.diffloss_w,
num_sampling_steps=args.num_sampling_steps,
diffusion_batch_mul=args.diffusion_batch_mul,
grad_checkpointing=args.grad_checkpointing,
)
print("Model = %s" % str(model))
# following timm: set wd as 0 for bias and norm layers
n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Number of trainable parameters: {}M".format(n_params / 1e6))
model.to(device)
model_without_ddp = model
eff_batch_size = args.batch_size * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
# no weight decay on bias, norm layers, and diffloss MLP
param_groups = misc.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
# resume training
if args.resume and os.path.exists(os.path.join(args.resume, "checkpoint-last.pth")):
checkpoint = torch.load(os.path.join(args.resume, "checkpoint-last.pth"), map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
model_params = list(model_without_ddp.parameters())
ema_state_dict = checkpoint['model_ema']
ema_params = [ema_state_dict[name].cuda() for name, _ in model_without_ddp.named_parameters()]
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
print("With optim & sched!")
del checkpoint
else:
model_params = list(model_without_ddp.parameters())
ema_params = copy.deepcopy(model_params)
print("Training from scratch")
# evaluate FID and IS
if args.evaluate:
torch.cuda.empty_cache()
evaluate(model_without_ddp, vae, ema_params, args, 0, batch_size=args.eval_bsz, log_writer=log_writer,
cfg=args.cfg, use_ema=True)
return
# training
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_one_epoch(
model, vae,
model_params, ema_params,
data_loader_train,
optimizer, device, epoch, loss_scaler,
log_writer=log_writer,
args=args
)
# save checkpoint
if epoch % args.save_last_freq == 0 or epoch + 1 == args.epochs:
misc.save_model(args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, ema_params=ema_params, epoch_name="last")
# online evaluation
if args.online_eval and (epoch % args.eval_freq == 0 or epoch + 1 == args.epochs):
torch.cuda.empty_cache()
evaluate(model_without_ddp, vae, ema_params, args, epoch, batch_size=args.eval_bsz, log_writer=log_writer,
cfg=1.0, use_ema=True)
if not (args.cfg == 1.0 or args.cfg == 0.0):
evaluate(model_without_ddp, vae, ema_params, args, epoch, batch_size=args.eval_bsz // 2,
log_writer=log_writer, cfg=args.cfg, use_ema=True)
torch.cuda.empty_cache()
if misc.is_main_process():
if log_writer is not None:
log_writer.flush()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
args.log_dir = args.output_dir
main(args)