-
Notifications
You must be signed in to change notification settings - Fork 6
Home
Abel Vertesy edited this page Nov 27, 2023
·
4 revisions
Welcome to the Seurat.utils wiki!
Analysing-ambient-RNA---background-RNA-contamination---the-soup-with-Seurat.utils
(of connected functions)
flowchart LR
whitelist.subset.ls.Seurat(whitelist.subset.ls.Seurat) --> getMetadataColumn(getMetadataColumn)
umapHiLightSel(umapHiLightSel) --> getCellIDs.from.meta(getCellIDs.from.meta)
transfer_labels_seurat(transfer_labels_seurat) --> clUMAP(clUMAP)
transfer_labels_seurat(transfer_labels_seurat) --> isave.RDS(isave.RDS)
subsetSeuObj.and.Save(subsetSeuObj.and.Save) --> xsave(xsave)
subsetSeuObj.and.Save(subsetSeuObj.and.Save) --> getProject(getProject)
subsetSeuObj.and.Save(subsetSeuObj.and.Save) --> subsetSeuObj(subsetSeuObj)
seu.plot.PC.var.explained(seu.plot.PC.var.explained) --> seu.PC.var.explained(seu.PC.var.explained)
scBarplot.CellFractions(scBarplot.CellFractions) --> shorten_clustering_names(shorten_clustering_names)
save.parameters(save.parameters) --> ww.get.1st.Seur.element(ww.get.1st.Seur.element)
remove_clusters_and_drop_levels(remove_clusters_and_drop_levels) --> remove.residual.small.clusters(remove.residual.small.clusters)
remove_clusters_and_drop_levels(remove_clusters_and_drop_levels) --> dropLevelsSeurat(dropLevelsSeurat)
remove_clusters_and_drop_levels(remove_clusters_and_drop_levels) --> GetClusteringRuns(GetClusteringRuns)
remove.cells.by.UMAP(remove.cells.by.UMAP) --> clUMAP(clUMAP)
regress_out_and_recalculate_seurat(regress_out_and_recalculate_seurat) --> calc.q99.Expression.and.set.all.genes(calc.q99.Expression.and.set.all.genes)
regress_out_and_recalculate_seurat(regress_out_and_recalculate_seurat) --> qUMAP(qUMAP)
regress_out_and_recalculate_seurat(regress_out_and_recalculate_seurat) --> SetupReductionsNtoKdimensions(SetupReductionsNtoKdimensions)
regress_out_and_recalculate_seurat(regress_out_and_recalculate_seurat) --> clUMAP(clUMAP)
regress_out_and_recalculate_seurat(regress_out_and_recalculate_seurat) --> GetClusteringRuns(GetClusteringRuns)
regress_out_and_recalculate_seurat(regress_out_and_recalculate_seurat) --> isave.RDS(isave.RDS)
recall.parameters(recall.parameters) --> ww.get.1st.Seur.element(ww.get.1st.Seur.element)
recall.meta.tags.n.datasets(recall.meta.tags.n.datasets) --> ww.get.1st.Seur.element(ww.get.1st.Seur.element)
recall.genes.ls(recall.genes.ls) --> ww.get.1st.Seur.element(ww.get.1st.Seur.element)
recall.all.genes(recall.all.genes) --> ww.get.1st.Seur.element(ww.get.1st.Seur.element)
qQC.plots.BrainOrg(qQC.plots.BrainOrg) --> qUMAP(qUMAP)
qMarkerCheck.BrainOrg(qMarkerCheck.BrainOrg) --> multiFeaturePlot.A4(multiFeaturePlot.A4)
ww.check.if.3D.reduction.exist(ww.check.if.3D.reduction.exist) --> RecallReduction(RecallReduction)
plot.Gene.Cor.Heatmap(plot.Gene.Cor.Heatmap) --> check.genes(check.genes)
plot.Gene.Cor.Heatmap(plot.Gene.Cor.Heatmap) --> sparse.cor(sparse.cor)
multiFeatureHeatmap.A4(multiFeatureHeatmap.A4) --> check.genes(check.genes)
match_best_identity(match_best_identity) --> replace_by_most_frequent_categories(replace_by_most_frequent_categories)
match_best_identity(match_best_identity) --> clUMAP(clUMAP)
getClusterNames(getClusterNames) --> GetClusteringRuns(GetClusteringRuns)
get.clustercomposition(get.clustercomposition) --> clUMAP(clUMAP)
qUMAP(qUMAP) --> check.genes(check.genes)
calc.cluster.averages(calc.cluster.averages) --> qUMAP(qUMAP)
add.meta.fraction(add.meta.fraction) --> check.genes(check.genes)
SetupReductionsNtoKdimensions(SetupReductionsNtoKdimensions) --> BackupReduction(BackupReduction)
clUMAP(clUMAP) --> getDiscretePalette(getDiscretePalette)
clUMAP(clUMAP) --> GetClusteringRuns(GetClusteringRuns)
RenameClustering(RenameClustering) --> clUMAP(clUMAP)
PrctCellExpringGene(PrctCellExpringGene) --> ww.calc_helper(ww.calc_helper)
PrctCellExpringGene(PrctCellExpringGene) --> PrctCellExpringGene(PrctCellExpringGene)
PlotTopGenesPerCluster(PlotTopGenesPerCluster) --> GetTopMarkers(GetTopMarkers)
PlotTopGenesPerCluster(PlotTopGenesPerCluster) --> multiFeaturePlot.A4(multiFeaturePlot.A4)
PlotTopGenes(PlotTopGenes) --> multiFeaturePlot.A4(multiFeaturePlot.A4)
plot3D.umap.gene(plot3D.umap.gene) --> ww.check.quantile.cutoff.and.clip.outliers(ww.check.quantile.cutoff.and.clip.outliers)
plot3D.umap.gene(plot3D.umap.gene) --> ww.check.if.3D.reduction.exist(ww.check.if.3D.reduction.exist)
plot3D.umap.gene(plot3D.umap.gene) --> SavePlotlyAsHtml(SavePlotlyAsHtml)
plot3D.umap.gene(plot3D.umap.gene) --> Annotate4Plotly3D(Annotate4Plotly3D)
Plot3D.ListOfGenes(Plot3D.ListOfGenes) --> plot3D.umap.gene(plot3D.umap.gene)
plot3D.umap(plot3D.umap) --> ww.check.if.3D.reduction.exist(ww.check.if.3D.reduction.exist)
plot3D.umap(plot3D.umap) --> gg_color_hue(gg_color_hue)
plot3D.umap(plot3D.umap) --> SavePlotlyAsHtml(SavePlotlyAsHtml)
plot3D.umap(plot3D.umap) --> Annotate4Plotly3D(Annotate4Plotly3D)
Plot3D.ListOfCategories(Plot3D.ListOfCategories) --> plot3D.umap(plot3D.umap)
GetNumberOfClusters(GetNumberOfClusters) --> GetClusteringRuns(GetClusteringRuns)
GetNamedClusteringRuns(GetNamedClusteringRuns) --> GetClusteringRuns(GetClusteringRuns)
Downsample.Seurat.Objects.PC(Downsample.Seurat.Objects.PC) --> subsetSeuObj(subsetSeuObj)
Downsample.Seurat.Objects.PC(Downsample.Seurat.Objects.PC) --> isave.RDS(isave.RDS)
subsetSeuObj(subsetSeuObj) --> sampleNpc(sampleNpc)
isave.RDS(isave.RDS) --> .saveRDS.compress.in.BG(.saveRDS.compress.in.BG)
Downsample.Seurat.Objects(Downsample.Seurat.Objects) --> subsetSeuObj(subsetSeuObj)
Downsample.Seurat.Objects(Downsample.Seurat.Objects) --> isave.RDS(isave.RDS)
CalculateFractionInTrome(CalculateFractionInTrome) --> check.genes(check.genes)
Calc.Cor.Seurat(Calc.Cor.Seurat) --> sparse.cor(sparse.cor)
BulkGEScatterPlot(BulkGEScatterPlot) --> qqSaveGridA4(qqSaveGridA4)
multiFeaturePlot.A4(multiFeaturePlot.A4) --> check.genes(check.genes)
AutoLabelTop.logFC(AutoLabelTop.logFC) --> multiFeaturePlot.A4(multiFeaturePlot.A4)
AutoLabelTop.logFC(AutoLabelTop.logFC) --> GetTopMarkersDF(GetTopMarkersDF)
AutoLabel.KnownMarkers(AutoLabel.KnownMarkers) --> GetTopMarkersDF(GetTopMarkersDF)
Add.DE.combined.score(Add.DE.combined.score) --> SmallestNonAboveX(SmallestNonAboveX)
subgraph Jaccard toolkit
jPairwiseJaccardIndexList(jPairwiseJaccardIndexList) --> jJaccardIndexVec(jJaccardIndexVec)
jPairwiseJaccardIndex(jPairwiseJaccardIndex) --> jJaccardIndexBinary(jJaccardIndexBinary)
end
subgraph Gene Update
ConvertDropSeqfolders(ConvertDropSeqfolders) --> UpdateGenesSeurat(UpdateGenesSeurat)
Convert10Xfolders.old(Convert10Xfolders.old) --> UpdateGenesSeurat(UpdateGenesSeurat)
UpdateGenesSeurat(UpdateGenesSeurat) --> RenameGenesSeurat(RenameGenesSeurat)
UpdateGenesSeurat(UpdateGenesSeurat) --> HGNC.EnforceUnique(HGNC.EnforceUnique)
UpdateGenesSeurat(UpdateGenesSeurat) --> GetUpdateStats(GetUpdateStats)
Convert10Xfolders(Convert10Xfolders) --> UpdateGenesSeurat(UpdateGenesSeurat)
end
created by convert_igraph_to_mermaid()