Skip to content

Releases: vespa-engine/pyvespa

Version 0.30.0

10 Oct 08:16
7328de2
Compare
Choose a tag to compare
  • Move code that depended on the learntorank.query module and remove the learntorank library dependency (#382).
    • app.query and app.query_batch will now only accept YQL via the body parameter (lots of tests to rewrite and move to learntorank)
    • Moved app.collect_vespa_features and app.store_vespa_features features to learntorank
    • Removed gallery module from pyvespa

Version 0.29.0

04 Oct 14:34
ec80c6a
Compare
Choose a tag to compare

Remove query module from pyvespa. Users should use the query module from the learntorank library instead. (#381)

Version 0.28.0

04 Oct 08:54
b1b4f85
Compare
Choose a tag to compare

Deprecate query module. They are now moved to the learntorank library. (#380)

Version 0.27.0

23 Sep 15:39
2d7f74f
Compare
Choose a tag to compare
  • Remove evaluation code from pyvespa. Users should use the evaluation module from the learntorank library instead. (#377)

Version 0.26.0

23 Sep 12:30
357b6e2
Compare
Choose a tag to compare
  • Update Vespa syntax behind pyvespa code (#371)
  • Fix TensorFlow ONNX use case (#372)
  • Deprecate evaluation module and methods. They are now moved to the learntorank library. (#375)

Version 0.25.0

02 Sep 10:18
4f71161
Compare
Choose a tag to compare
  • Allow id_field to be customizable when feeding a data frame (#370). Example:
responses = app.feed_df(df=corpus_df, include_id=True, id_field="doc_id")

Version 0.24.0

16 Aug 14:33
5bf2694
Compare
Choose a tag to compare
  • Fix packaging issue with version 0.23.0.

Version 0.23.0

12 Aug 16:45
5bf2694
Compare
Choose a tag to compare
  • Return list of Vespa responses as output to app.feed_batch (#361)

Version 0.22.0

24 Jun 12:20
e16b304
Compare
Choose a tag to compare
  • ListwiseRankingFramework now accepts .csv file path as input to learn from data that are too large to load into memory (#350)
  • ListwiseRankingFramework fit functions now accept an optional hyperparameters argument. If a dict of hyperparameter values is provided the method will skip the hyperparameter search and use the provided values to fit the model. (#352)
  • Add parallel distribution strategy to the ListwiseRankingFramework hyperparameter search. (#354)

Version 0.21.0

10 Jun 14:17
273b54b
Compare
Choose a tag to compare
  • Remove duplicate documents when collecting Vespa features with app.collect_training_data_point (#345)
  • Create app.collect_vespa_features and app.store_vespa_features that use app.query_batch to speedup Vespa feature collection. (#347)
  • app.collect_training_data_point and app.collect_training_data will be deprecated in future releases and should be replaced by app.collect_vespa_features and app.store_vespa_features.