-
Notifications
You must be signed in to change notification settings - Fork 0
/
tumour_classification.py
42 lines (31 loc) · 1.4 KB
/
tumour_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from keras.models import load_model
from PIL import Image, ImageOps
import numpy as np
def predict_tumour(image_path):
# Disable scientific notation for clarity
np.set_printoptions(suppress=True)
# Load the model
model = load_model("braintumour_model.h5", compile=False)
# Load the labels
class_names = open("labels.txt", "r").readlines()
# Create the array of the right shape to feed into the keras model
# The 'length' or number of images you can put into the array is
# determined by the first position in the shape tuple, in this case 1
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# Replace this with the path to your image
image = Image.open(image_path).convert("RGB")
# resizing the image to be at least 224x224 and then cropping from the center
size = (224, 224)
image = ImageOps.fit(image, size, Image.Resampling.LANCZOS)
# turn the image into a numpy array
image_array = np.asarray(image)
# Normalize the image
normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
# Load the image into the array
data[0] = normalized_image_array
# Predict the model
prediction = model.predict(data)
index = np.argmax(prediction)
class_name = class_names[index]
confidence_score = prediction[0][index]
return class_name[2:], round(confidence_score, 2)