-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap-connected2.tex
504 lines (421 loc) · 19.2 KB
/
chap-connected2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
\chapter{More on connectedness}
\section{For topological spaces}
\begin{prop}
The following are pairwise equivalent:
\begin{enumerate}
\item a topological space on a set~$U$ is connected.
\fxwarning{definition; can the topological definition be generalized
to filters?}
\item $U$ is connected regarding $f\sqcup f^{-1}$ if $f$ is the corresponding
complete funcoid.
\item $U$ is connected regarding $f\sqcup f^{-1}$ if $f$ is the corresponding
closure space.
\item $U$ is connected regarding $f\circ f^{-1}$ if $f$ is the corresponding
complete funcoid.
\end{enumerate}
\end{prop}
\begin{proof}
??
\end{proof}
\begin{prop}
There are filters $\mathcal{A}$, $\mathcal{B}$, such that there are no
filters $\mathcal{X} \sqsubseteq \mathcal{A}$, $\mathcal{Y} \sqsubseteq
\mathcal{B}$ such that $\mathcal{X} \sqcup \mathcal{Y} = \mathcal{A} \sqcup
\mathcal{B}$ and $\mathcal{X} \asymp \mathcal{Y}$.
\end{prop}
\begin{proof}
\url{https://math.stackexchange.com/questions/2639206}
(It also follows that sometimes $Z (D a)$ is not a complete lattice, because
otherwise we could prove this theorem.)
\end{proof}
\begin{prop}
If $\mathcal{A}$, $\mathcal{B}$ are filters and $\mathcal{A} \sqcup
\mathcal{B} = U$ is principal filter, then there are sets $X \sqsubseteq
\mathcal{A}$, $Y \sqsubseteq \mathcal{B}$ such that $X \sqcup Y = U$ and $X
\asymp Y$.
\end{prop}
\begin{proof}
Take $X = \Cor \mathcal{A}$ and $Y' = \Cor \mathcal{B}$. Then $X
\sqcup Y' = U$ because of co-separability of $\mathfrak{F} (U)$. Take $Y = U
\setminus X$. Then $X \sqcup Y = U$ and $X \asymp Y$.
\end{proof}
\begin{prop}
A principal filter $A$ is connected regarding endofuncoid $\mu$ iff
\[ \forall X, Y \in \mathscr{P} (\Ob \mu) \setminus \{ \bot \} :
\left( X \sqcup Y = A \wedge X \asymp Y \Rightarrow X \mathrel{[\mu]} Y
\right) . \]
\end{prop}
\begin{proof}
Easily follows from ??.
\end{proof}
\begin{defn}
\emph{Connected component} of a filter regarding a funcoid or a reloid
is a maximal
connected subfilter of this filter.
\end{defn}
\begin{obvious}
Subfilter of a connected filter is connected.
\end{obvious}
\begin{prop}
If $U$ is a principal filter, then it is connected regarding $\mu$ iff it is
connected regarding $S (\mu)$.
\fxnote{It should be presented as a corollary of a below theorem.}
\end{prop}
\begin{proof}
If $U$ is connected regarding $\mu$, it is connected regarding $S (\mu)$,
obviously.
Suppose $U$ is connected regarding $S (\mu)$. Then for $X, Y \in \mathscr{P}
(\Ob \mu) \setminus \{ \bot \}$ we have if $X \sqcup Y = U$ and $X
\asymp Y$, then $X \mathrel{[S (\mu)]} Y$. So $X \times Y \nasymp 1 \sqcup
\mu \sqcup \mu^2 \sqcup \ldots$ and thus by distributivity for principal
filter we have $X \times Y \nasymp \mu^n$ for some $n \geq ? ?$ that is $X
\mathrel{[\mu^n]} Y$ for some $n$ and thus there are atomic filters $p_0,
\ldots, p_n$ such that $p_0 \in \atoms^{\mathfrak{F}} X$, $p_n \in
\atoms^{\mathfrak{F}} Y$ and $p_i \mathrel{[\mu]} p_{i + 1}$. Thus
there is $k$ such that $p_k \mathrel{[\mu]} p_{k + 1}$ and $p_k \in
\atoms^{\mathfrak{F}} X$, $p_{k + 1} \in \atoms^{\mathfrak{F}}
Y$. Thus $X \mathrel{[\mu]} Y$. We have $U$ connected regarding $\mu$.
\end{proof}
Also for $S^{\ast}$
\begin{example}
Connected components may not form a weak partition.
\end{example}
\begin{proof}
Consider funcoid $1^{\mathsf{FCD}(\mathbb{R})}\sqcup(\Delta \times^{\mathsf{FCD}} \Delta)$ on real line.
Then connected components are (prove!) non-zero singletons and $\Delta$. It
is not a weak partition.
\end{proof}
\begin{conjecture}
If the set of connected components is finite, then it is
a strong partition. Moreover the set of connected
components is a tearing.
\end{conjecture}
Add more counter-examples (for non-principal filters).
\begin{obvious}
Improper filter $\bot^{\mathscr{F}}$ is connected regarding:
\begin{enumerate}
\item every funcoid;
\item every reloid.
\end{enumerate}{\hspace*{\fill}}{\medskip}
\end{obvious}
\begin{prop}
The only filter connected regarding
\begin{enumerate}
\item $\bot^{\mathsf{FCD} (A)}$;
\item $\bot^{\mathsf{RLD} (A)}$
\end{enumerate}
is the improper filter $\bot^{\mathscr{F}}$.
\end{prop}
\begin{proof}
~
\begin{enumerate}
\item Let $\mathcal{A}$ be a filter. Take $\mathcal{X} = \mathcal{Y} =
\mathcal{A} \in \mathscr{F} (\Ob \mu) \setminus \{ \bot \}$. Then
$\mathcal{X} \sqcup \mathcal{Y} = \mathcal{A}$ but not $\mathcal{X}
\mathrel{[\mu]} \mathcal{Y}$.
\item $S^{\ast}_1 (\bot^{\mathsf{RLD} (A)}) = S_1
(\bot^{\mathsf{RLD} (A)}) = \bot^{\mathsf{RLD} (A)}$. Thus
the only connected filter is~$\bot^{\mathscr{F}}$.
\end{enumerate}
\end{proof}
\begin{prop}
Connected filters regarding
\begin{enumerate}
\item $1^{\mathsf{FCD} (A)}$;
\item $1^{\mathsf{RLD} (A)}$
\end{enumerate}
are exactly ultrafilters and the improper filter.
\end{prop}
\begin{proof}
1. That ultrafilters are connected follows from the fact that for every
non-least $\mathcal{X}$, $\mathcal{Y}$ such that $\mathcal{X} \sqcup
\mathcal{Y} = \mathcal{A}$ we have $\mathcal{X} = \mathcal{Y} = \mathcal{A}$
and thus $\mathcal{X} \mathrel{[1^{\mathsf{FCD} (A)}]} \mathcal{Y}$.
So ultrafilters are connected; so is improper filter too, because improper
filter is always connected.
It remains to prove that filters containing more than one distinct
ultrafilter are not connected. Really let distinct ultrafilters $a, b \in
\atoms \mathcal{A}$. Then not $a \mathrel{[1^{\mathsf{FCD}
(A)}]} b$. Thus $\mathcal{A}$ is not connected.
2. A filter $a$ is connected iff $S^{\ast}_1 (1^{\mathsf{RLD} (A)}
\sqcap (a \times^{\mathsf{RLD}} a)) \sqsupseteq a
\times^{\mathsf{RLD}} a$ that is iff $S^{\ast}_1
(\id^{\mathsf{RLD}}_a) \sqsupseteq a
\times^{\mathsf{RLD}} a$,
$\bigsqcap_{F \in \up \id^{\mathsf{RLD}}_a} S_1 (F)
\sqsupseteq a \times^{\mathsf{RLD}} a$ what by properties of
generalized filter bases is equivalent to $\bigsqcap_{A \in \up a} S_1
(\id_A) \sqsupseteq a \times^{\mathsf{RLD}} a$; $\bigsqcap_{A
\in \up a} \id_A \sqsupseteq a \times^{\mathsf{RLD}} a$;
$\id^{\mathsf{RLD}}_a \sqsupseteq a
\times^{\mathsf{RLD}} a$. This is true exactly for ultrafilters and
the improper filter.
\end{proof}
\begin{defn}
A \emph{path} regarding funcoid $\mu$ is a tuple $p_0, \ldots, p_n$ ($n
\in \mathbb{N}$) of atomic filters such that $p_i \mathrel{[\mu]} p_{i +
1}$ for every $i = 0, \ldots, n - 1$.
The number $n$ is called \emph{path length}.
A path is \emph{between} atomic filters $a$ and $b$ iff $p_0 = a$ and
$p_n = b$.
\end{defn}
\begin{example}
$\mu \sqsupseteq \id^{\mathsf{FCD}}_{\mathcal{A}}$ is not
necessary for a filter $\mathcal{A}$ to be connected regarding a funcoid
$\mu$. Moreover $\mu \sqsupseteq 1^{\mathsf{FCD}}$ is not necessary
for a filter $\top$ to be connected regarding a funcoid $\mu$.
\end{example}
\begin{proof}
For counterexample take $\mu = \top \setminus 1$.
$\langle \mu \rangle \{ x \} = \top \setminus \{ x \}$ (thus $\mu
\mathrel{\nsqsupseteq} 1^{\mathsf{FCD}}$) and $\langle \mu
\rangle a = \top$ for a nontrivial ultrafilter $a$.
Let $\mathcal{X}, \mathcal{Y} \in \mathscr{F} (\Ob \mu) \setminus \{
\bot \}$ and $\mathcal{X} \sqcup \mathcal{Y} = \top$. If $\mathcal{X}$ is a
trivial ultrafilter then $\langle \mu \rangle \mathcal{X} = \top \setminus
\{ x \}$ adn thus $\langle \mu \rangle \mathcal{X} \nasymp \mathcal{Y}$,
otherwise $\langle \mu \rangle \mathcal{X} \nasymp \mathcal{Y}$. So in any
case $\mathcal{X} \mathrel{[\mu]} \mathcal{Y}$. Funcoid $\mu$ is connected.
\end{proof}
\begin{prop}
If there is a nonzero-length path regarding $\mu$ in the filter
$\mathcal{A}$ between any two its atomic subfilters, then it is connected
regarding $\mu$.
\end{prop}
\begin{proof}
Let $\mathcal{X} \sqcup \mathcal{Y} = \mathcal{A}$, $\mathcal{X} \neq \bot$,
$\mathcal{Y} \neq \bot$. Let $p_0, \ldots, p_n$ ($n \geq 1$) be a path in
$\mathcal{A}$ and $p_0 \in \atoms \mathcal{X}$ and $p_n \in
\atoms \mathcal{Y}$. Then (take $k = \min \left\{ i \in \{ 0, \ldots,
n - 1 \} \hspace{1em} | \hspace{1em} p_{i + 1} \in \atoms \mathcal{Y}
\right\}$) there are $p_k, p_{k + 1}$ such that $p_k \in \atoms
\mathcal{X}$, $p_{k + 1} \in \atoms \mathcal{Y}$. But $p_k
\mathrel{[\mu]} p_{k + 1}$ by definition of path. Thus $\mathcal{X}
\mathrel{[\mu]} \mathcal{Y}$.
\end{proof}
\begin{prop}
If a filter $\mathcal{A}$ is connected regarding funcoid $\mu$ reflexive on
$\mathcal{A}$ then it is connected regarding every $\mu^n$ for $n \in
\mathbb{Z}_+$.
\end{prop}
\begin{proof}
Let $\mathcal{X} \sqcup \mathcal{Y} = \mathcal{A}$, $\mathcal{X} \neq \bot$,
$\mathcal{Y} \neq \bot$. We have $\langle \mu \rangle \mathcal{X} \nasymp
\mathcal{Y}$.
Then $\langle \mu \rangle \mathcal{X} \mathrel{\nsqsubseteq}
\mathcal{X}$; therefore by reflexivity $\langle \mu \rangle \mathcal{X}
\sqsupset \mathcal{X}$. Repeating this step we get $\langle \mu \rangle
\langle \mu \rangle \mathcal{X} \sqsupset \mathcal{X}$ that is $\langle
\mu^2 \rangle \mathcal{X} \sqsupset \mathcal{X}$, etc.
We have $\langle \mu^n \rangle \mathcal{X} \sqsupset \mathcal{X}$ and thus
$\langle \mu^n \rangle \mathcal{X} \nasymp \mathcal{Y}$ that is $\mathcal{X}
\mathrel{[\mu^n]} \mathcal{Y}$.
\end{proof}
\begin{example}
Connected funcoid without a path between given ultrafilters.
\end{example}
\begin{proof}
Consider $| \mathbb{R} |$. It is connected (prove!) but there is no
path (prove!) between two distinct singletons.
\end{proof}
\begin{thm}
If meet of two connected (regarding a funcoid) filters is non-least,
then their join is connected.
\end{thm}
\begin{proof}
Let $\mathcal{A}$ and $\mathcal{B}$ be intersecting filters, both
connected regarding an endofuncoid~$\mu$. Let $\mathcal{X}
\sqcup \mathcal{Y} = \mathcal{A} \sqcup \mathcal{B}$ for proper filters
$\mathcal{X}$, $\mathcal{Y}$. Then either $\mathcal{X}$ or $\mathcal{Y}$
intersects $\mathcal{A} \sqcap \mathcal{B}$. Without loss of generality assume
$\mathcal{X} \sqcap \mathcal{A} \sqcap \mathcal{B} \neq \bot$.
Also $\mathcal{Y}$ intersects
either $\mathcal{A}$ or $\mathcal{B}$. Without loss of generality assume
$\mathcal{Y} \sqcap \mathcal{A} \neq \bot$.
Note $\mathcal{X} \sqcap \mathcal{A} \neq \bot$.
We have $(\mathcal{X} \sqcap \mathcal{A}) \sqcup (\mathcal{Y} \sqcap
\mathcal{A}) = (\mathcal{X} \sqcup \mathcal{Y}) \sqcap \mathcal{A} =
(\mathcal{A} \sqcup \mathcal{B}) \sqcap \mathcal{A} = \mathcal{A}$. So
$\mathcal{X} \sqcap \mathcal{A} \mathrel{[\mu]} \mathcal{Y} \sqcap
\mathcal{A}$ because $\mathcal{A}$ is connected, consequently $\mathcal{X}
\mathrel{[\mu]} \mathcal{Y}$ that is $\mathcal{A} \sqcup \mathcal{B}$ is
connected.
\end{proof}
\begin{thm}
If meet of two connected (regarding a reloid) filters is nonempty, then
their join is connected.
\end{thm}
\begin{proof}
Let $S^{\ast}_1 (\mu \sqcap (\mathcal{A} \times \mathcal{A})) = \mathcal{A}
\times \mathcal{A}$; $S^{\ast}_1 (\mu \sqcap (\mathcal{B} \times
\mathcal{B})) = \mathcal{B} \times \mathcal{B}$ for filters $\mathcal{A}
\nasymp \mathcal{B}$.
$S^{\ast}_1 (\mu \sqcap ((\mathcal{A} \sqcup \mathcal{B}) \times
(\mathcal{A} \sqcup \mathcal{B}))) = S^{\ast}_1 (\mu \sqcap ((\mathcal{A}
\times \mathcal{A}) \sqcup (\mathcal{B} \times \mathcal{B}) \sqcup
(\mathcal{A} \times \mathcal{B}) \sqcup (\mathcal{B} \times \mathcal{A})))
\sqsupseteq S^{\ast}_1 (\mu \sqcap (\mathcal{A} \times \mathcal{A})) \sqcup
S^{\ast}_1 (\mu \sqcap (\mathcal{B} \times \mathcal{B})) \sqsupseteq
(\mathcal{A} \times \mathcal{A}) \sqcup (\mathcal{B} \times \mathcal{B})$.
Let for example $x \in \atoms \mathcal{A}$. Then $\langle S^{\ast}_1
(\mu \sqcap ((\mathcal{A} \sqcup \mathcal{B}) \times (\mathcal{A} \sqcup
\mathcal{B}))) \rangle x \sqsupseteq \mathcal{A}$ and (taking into account
$\mathcal{A} \nasymp \mathcal{B}$):
\[ \langle \mu \sqcap ((\mathcal{A} \sqcup \mathcal{B}) \times (\mathcal{A}
\sqcup \mathcal{B})) \rangle \langle S^{\ast}_1 (\mu \sqcap ((\mathcal{A}
\sqcup \mathcal{B}) \times (\mathcal{A} \sqcup \mathcal{B}))) \rangle x
\sqsupseteq \mathcal{B} . \]
Thus $\langle S^{\ast}_1 (\mu \sqcap ((\mathcal{A} \sqcup \mathcal{B})
\times (\mathcal{A} \sqcup \mathcal{B}))) \rangle x \sqsupseteq \mathcal{A}$
and $\langle S^{\ast}_1 (\mu \sqcap ((\mathcal{A} \sqcup \mathcal{B}) \times
(\mathcal{A} \sqcup \mathcal{B}))) \rangle x \sqsupseteq \mathcal{B}$ for
every ultrafilter $x \in \atoms (\mathcal{A} \sqcup \mathcal{B})$,
that is $\langle S^{\ast}_1 (\mu \sqcap ((\mathcal{A} \sqcup \mathcal{B})
\times (\mathcal{A} \sqcup \mathcal{B}))) \rangle x \sqsupseteq \mathcal{A}
\sqcup \mathcal{B}$. So $S^{\ast}_1 (\mu \sqcap ((\mathcal{A} \sqcup
\mathcal{B}) \times (\mathcal{A} \sqcup \mathcal{B}))) \sqsupseteq
\mathcal{A} \sqcup \mathcal{B}$ that is $\mathcal{A} \sqcup \mathcal{B}$ is
connected.
\end{proof}
\begin{cor}
Distinct connected components (for both a funcoid or a reloid) don't
intersect.
\end{cor}
\begin{proof}
If connected components $\mathcal{A} \neq \mathcal{B}$ intersect, then
$\mathcal{A} \sqcup \mathcal{B}$ is a connected filter and either
$\mathcal{A} \sqcup \mathcal{B} \sqsupset \mathcal{A}$ or $\mathcal{A}
\sqcup \mathcal{B} \sqsupset \mathcal{B}$ what contradicts to the definition
of connected components.
\end{proof}
If we add the requirement $\mathcal{X} \asymp \mathcal{Y}$ to the definition
of connected regarding funcoid, it is nonequivalent. Proof??: Consider
connectedness of an ultrafilter.
\begin{prop}
$S (\mu) = S_1 (\mu \sqcup 1)$ if $\mu$ is an endorelation, endofuncoid, or
endoreloid. \fxerror{for $S^{\ast}$, too.}
\end{prop}
\begin{proof}
By proved above $(\mu \sqcup 1)^n = 1 \sqcup \mu \sqcup \ldots \sqcup
\mu^n$.
Thus $S_1 (\mu \sqcup 1) = (1 \sqcup \mu) \sqcup (1 \sqcup \mu \sqcup \mu^2)
\sqcup \ldots = 1 \sqcup \mu \sqcup \mu^2 \sqcup \ldots = S (\mu)$.
\end{proof}
\fxnote{also algebraic properties of $S_1$ and $S^{\ast}_1$}
\begin{thm}
\fxnote{Move this theorem in the book,}
$\mathcal{X} \mathrel{\left[ \bigsqcap S \right]} \mathcal{Y}
\Leftrightarrow \forall f \in S : \mathcal{X} \suprel{f} \mathcal{Y}$ if
$S$ is a generalized filter base.
\end{thm}
\begin{proof}
$\mathcal{X} \mathrel{\left[ \bigsqcap S \right]} \mathcal{Y}
\Leftrightarrow (\mathcal{X} \times^{\mathsf{FCD}} \mathcal{Y})
\sqcap \bigsqcap S \neq \bot \Leftrightarrow \bigsqcap_{f \in S} f \sqcap
(\mathcal{X} \times^{\mathsf{FCD}} \mathcal{Y}) \neq \bot
\Leftrightarrow \text{(by properties of generalized filter bases)}
\Leftrightarrow \forall f \in S : f \sqcap (\mathcal{X}
\times^{\mathsf{FCD}} \mathcal{Y}) \neq \bot \Leftrightarrow \forall
f \in S : \mathcal{X} \suprel{f} \mathcal{Y}$.
\end{proof}
\begin{thm}
The following are pairwise equivalent for a funcoid $\mu$ and filter
$\mathcal{A}$:
\begin{enumerate}
\item $\mathcal{A}$ is connected regarding funcoid $\mu$
\item $\mathcal{A}$ is connected regarding every funcoid in $\up
\mu$.
\item $\mathcal{A}$ is connected regarding every funcoid in
$\up^{\Gamma} \mu$.
\end{enumerate}
\end{thm}
\begin{proof}
TODO: ``Connectedness'' should be moved after ``Funcoids are filters'' to
use $\Gamma$ in this proof.
1$\Rightarrow$2$\Rightarrow$3. Obvious.
3$\Rightarrow$1. Let $\mathcal{X}, \mathcal{Y} \in \mathscr{F} (\Ob
\mu)$ and $\mathcal{X} \sqcup \mathcal{Y} = \mathcal{A}$. Then $\forall f
\in \up^{\Gamma} \mu : \mathcal{X} \suprel{f} \mathcal{Y}$.
Therefore by the theorem ?? $\mathcal{X} \mathrel{\left[ \bigsqcap
\up^{\Gamma} \mu \right]} \mathcal{Y}$ that is $\mathcal{X}
\mathrel{[\mu]} \mathcal{Y}$. So $\mathcal{A}$ is connected regarding $\mu$.
\end{proof}
\begin{conjecture}
For a $\mathbf{Rel}$-morphism $F$ and a filter $\mathcal{A}$ the
following are pairwise equivalent:
\begin{enumerate}
\item $\mathcal{A}$ is connected regarding $\uparrow^{\mathsf{FCD}}
F$.
\item $\mathcal{A}$ is connected regarding $\uparrow^{\mathsf{RLD}}
F$.
\item there is a $F$-path in $\mathcal{A}$ for every two
ultrafilters $a,b\in\atoms\mathcal{A}$.
\end{enumerate}
\end{conjecture}
Proposed counterexample against $\mathcal{A}$ is connected regarding
$f$ iff it is connected regarding $\tofcd f$:
$f = \mathcal{A}\times^{\mathsf{RLD}}_{F}\mathcal{A}$.
First calculate
$(\mathcal{B}\times^{\mathsf{RLD}}_{F}\mathcal{C})\circ
(\mathcal{A}\times^{\mathsf{RLD}}_{F}\mathcal{B})$
(and also for oblique product).
Trying to calculate
$(\mathcal{B}\times^{\mathsf{RLD}}_{F}\mathcal{C})\circ
(\mathcal{A}\times^{\mathsf{RLD}}_{F}\mathcal{B})$:
\begin{lem}
There are such filters $\mathcal{A}$, $\mathcal{B}$, $\mathcal{C}$ and
binary relation $h$ that
\[ h \sqsupseteq \mathcal{A} \times^{\mathsf{FCD}} \mathcal{C} \wedge
\neg \exists g \in \mathbf{Rel} : (g \sqsupseteq \mathcal{B}
\times^{\mathsf{FCD}} \mathcal{C} \wedge h \sqsupseteq g \circ
(\mathcal{A} \times^{\mathsf{FCD}} \mathcal{B})) . \]
\end{lem}
\begin{proof}
Take $\mathcal{A}$ a principal filter, $\mathcal{B}$ a trivial ultrafilter
and $h \sqsupseteq \mathcal{A} \times^{\mathsf{FCD}} \mathcal{C}$
such that $h \notin \up (\mathcal{A} \times^{\mathsf{RLD}}
\mathcal{C})$. (It exists because $\mathcal{A} \times^{\mathsf{RLD}}
\mathcal{C} \neq \mathcal{A} \times^{\mathsf{RLD}}_F \mathcal{C}$.
Suppose that $g \sqsupseteq \mathcal{B} \times^{\mathsf{FCD}}
\mathcal{C}$. Then there is $C \in \up \mathcal{C}$ such that $g
\sqsupseteq \mathcal{B} \times C$. Therefore $g \circ (\mathcal{A}
\times^{\mathsf{FCD}} \mathcal{B}) = \mathcal{A}
\times^{\mathsf{FCD}} \supfun{g} \mathcal{B} \sqsupseteq
\mathcal{A} \times^{\mathsf{FCD}} C = \mathcal{A} \times C$.)
But $h \notin \up (\mathcal{A} \times^{\mathsf{RLD}} C) =
\up (\mathcal{A} \times C)$. Thus $h \mathrel{\not{\sqsupseteq}} g
\circ (\mathcal{A} \times^{\mathsf{FCD}} \mathcal{B})$.
\end{proof}
\begin{cor}
There are such filters $\mathcal{A}$, $\mathcal{B}$, $\mathcal{C}$ and
binary relation $h$ that
\[ h \sqsupseteq \mathcal{A} \times^{\mathsf{FCD}} \mathcal{C} \wedge
\neg \exists f, g \in \mathbf{Rel} : (f \sqsupseteq \mathcal{A}
\times^{\mathsf{FCD}} \mathcal{B} \wedge g \sqsupseteq \mathcal{B}
\times^{\mathsf{FCD}} \mathcal{C} \wedge h \sqsupseteq g \circ f)
. \]
\end{cor}
\begin{prop}
$(\mathcal{B} \times^{\mathsf{RLD}}_F \mathcal{C}) \circ (\mathcal{A}
\times^{\mathsf{RLD}}_F \mathcal{B}) \neq \mathcal{A}
\times^{\mathsf{RLD}}_F \mathcal{C}$ for some proper filters
$\mathcal{A}$, $\mathcal{B}$, $\mathcal{C}$.
\end{prop}
\begin{proof}
\fxerror{The proof is erroneous.}
Take (lemma)
$h \in \up (\mathcal{A}\times^{\mathsf{FCD}} \mathcal{C})$
such that for every $f \in \up
(\mathcal{A} \times^{\mathsf{RLD}}_F \mathcal{C})$, $g \in \up
(\mathcal{B} \times^{\mathsf{RLD}}_F \mathcal{C})$ we have
$h \nsqsupseteq g \circ f$.
We have $h \in \up (\mathcal{A} \times^{\mathsf{RLD}}_F
\mathcal{C})$ and for every $f \in \up
(\mathcal{A} \times^{\mathsf{RLD}}_F \mathcal{C})$, $g \in \up
(\mathcal{B} \times^{\mathsf{RLD}}_F \mathcal{C})$ we have
[error] $h \nsqsupseteq g \circ f$.
Thus $\up
((\mathcal{B} \times^{\mathsf{RLD}}_F \mathcal{C}) \circ (\mathcal{A}
\times^{\mathsf{RLD}}_F \mathcal{B})) \neq \up (\mathcal{A}
\times^{\mathsf{RLD}}_F \mathcal{C})$.
\end{proof}