forked from gremau/NMEG_FluxProc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
UNM_fill_met_gaps_from_nearby_site.m
493 lines (425 loc) · 19.1 KB
/
UNM_fill_met_gaps_from_nearby_site.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
function result = UNM_fill_met_gaps_from_nearby_site( sitecode, year, ...
varargin )
% UNM_FILL_MET_GAPS_FROM_NEARBY_SITE - fills gaps in site's meteorological data
% from the closest nearby site
%
% USAGE
% result = UNM_fill_met_gaps_from_nearby_site( sitecode, year )
% result = UNM_fill_met_gaps_from_nearby_site( sitecode, year, draw_plots )
%
% INPUTS
% sitecode [ UNM_sites object ]: code of site to be filled
% year [ integer ]: year to be filled
% PARAMETER-VALUE PAIRS
% write_output: true | {false}; if true, write new for_gapfilling_filled
% file
% draw_plots: {true} | false; if true, plot observed and filled
% T, Rg, RH.
%
% OUTPUTS
% result [ integer ]: 0 on success, -1 on failure
%
% SEE ALSO
% UNM_sites
%
% author: Timothy W. Hilton, UNM, March 2012
% modified by: Gregory E. Maurer, UNM, February 2015
% -----
% define optional inputs, with defaults and typechecking
% -----
[ this_year, ~, ~ ] = datevec( now() );
args = inputParser;
args.addRequired( 'sitecode', @(x) ( isintval( x ) | isa( x, 'UNM_sites' ) ) );
args.addRequired( 'year', ...
@(x) ( isintval( x ) & ( x >= 2006 ) & ( x <= this_year ) ) );
args.addParameter( 'write_output', false, ...
@(x) ( islogical( x ) & numel( x ) == 1 ) );
args.addParameter( 'draw_plots', true, ...
@(x) ( islogical( x ) & numel( x ) == 1 ) );
args.parse( sitecode, year, varargin{ : } );
% -----
sitecode = args.Results.sitecode;
year = args.Results.year;
write_output = args.Results.write_output;
draw_plots = args.Results.draw_plots;
if isintval( sitecode )
sitecode = UNM_sites( sitecode );
else
error( 'sitecode must be an integer' );
end
% initialize
filled_file_false = false;
%--------------------------------------------------
% Parse unfilled data from requested site
fprintf( 'parsing %s_flux_all_%d_for_gapfilling.txt ("destination")\n', ...
get_site_name( sitecode ), year );
thisData = parse_forgapfilling_file( sitecode, year, ...
'use_filled', filled_file_false );
% Fill in missing timestamps for this data
thisData = fillTstamps( thisData, thisData.timestamp, 1/48 );
%--------------------------------------------------
% Get Met gapfilling configuration
% We need to parse YAML config files for given year to do this
start_dt = datenum([ num2str( year ), '-01-01' ]);
end_dt = datenum([ num2str( year ), '-12-31' ]);
configFileName = 'MetFill';
thisConfig = parse_yaml_config( sitecode, configFileName, ...
[ start_dt, end_dt ] );
%--------------------------------------------------
% VPD will need to be recalculated for the Tair and
% RH gaps that are filled - make an index
recalcVPD = [];
%--------------------------------------------------
% Now we are going to fill selected met variables in thisData
% List of variables in thisData to fill
fillVars = { 'Tair', 'rH', 'Rg', 'Precip' };
% Struct to hold data from filling sites
fillData = struct();
for i = 1:length( fillVars )
% Get configurations for filling sites for this variable
varConfig = thisConfig.( [ 'fill' fillVars{ i } ] );
% If fillData doesn't already have the required data from each
% filling site listed in varConfig, load it
for j = 1:length( varConfig )
% Create a field name to look for in fillData
varConfig( j ).('fillDataField') = ...
[ varConfig( j ).siteType '_' ...
num2str( varConfig( j ).siteID ) ];
% If that field is not present run getFillData
if not( isfield( fillData, varConfig( j ).fillDataField ) )
fillData = getFillData( fillData, ...
varConfig( j ).siteType, varConfig( j ).siteID );
end
end
try
% Replace missing data in thisData with data from fillData
% NOTE this also returns indices of what was filled
[ thisData, varConfig ] = ...
fill_variable( thisData, fillData, fillVars{ i }, varConfig );
catch
fprintf([ 'ABORTING UNM_fill_met_gaps_from_nearby_site \n' ...
'There is not enough ancillary met data available \n' ...
'Filled file not written. \n' ]);
result = 1;
error( 'Met gapfilling failed' );
end
% Combine the two filled indices into one ( used for recalcVPD )
filledIdx = [];
for count=1:length( varConfig )
filledIdx = [ filledIdx; varConfig( count ).fillIdx ];
end
% Remove bad values from the now filled variables and recalc VPD
if strcmp( fillVars{ i }, 'rH' )
thisData.rH( thisData.rH > 100.0 ) = 100.0;
thisData.rH( thisData.rH < 0.0 ) = 0.0;
% Add filled indices to the vpd refill index
recalcVPD = [ recalcVPD ; filledIdx ];
elseif strcmp( fillVars{ i }, 'Tair' );
% Add filled indices to the vpd refill index
recalcVPD = [ recalcVPD ; filledIdx ];
elseif strcmp( fillVars{ i }, 'Rg' )
thisData.Rg( thisData.Rg < -50 ) = NaN;
elseif strcmp( fillVars{ i }, 'Precip' )
thisData.Precip( thisData.Precip < 0 ) = NaN;
end
% Draw a plot if requested
if draw_plots
h_fig = plot_filled_variable( thisData, fillVars{ i }, ...
varConfig, sitecode, year );
end
end
% Recalculate VPD
recalcVPD = unique( recalcVPD );
es = 6.1078 .* exp( (17.269 .* thisData.Tair )./(237.3 + thisData.Tair) );
vpd_temp = es - ( thisData.rH .* es ./ 100 );
thisData.VPD( recalcVPD ) = vpd_temp( recalcVPD );
% Replace NaNs with -9999
foo = table2array( thisData );
foo( isnan( foo ) ) = -9999;
thisData{:,:} = foo;
% Write filled data to file except for matlab datenum timestamp column
if write_output
outfile = fullfile( get_site_directory( sitecode ), ...
'processed_flux', ...
sprintf( '%s_flux_all_%d_for_gap_filling_filled.txt', ...
get_site_name( sitecode ), year ) );
fprintf( 'writing %s\n', outfile );
thisData.timestamp = [];
write_table_std( outfile, thisData, 'write_units', true );
end
result = 0;
%========================= SUBFUNCTIONS ==================================
% Function to get the filling site data
function filledStruct = getFillData( dataStruct, siteType, siteID )
% Copy data to new struct
filledStruct = dataStruct;
% Get the new field name for the data
if ischar( siteID )
newFieldName = [siteType '_' siteID];
else
newFieldName = [siteType '_' num2str( siteID )];
end
% Based on configuration, load filling site data, prepare the
% data, and put into fillSiteData structure
try
switch lower( siteType )
case 'nmeg'
fprintf( 'parsing %s_flux_all_%d_for_gapfilling.txt \n', ...
get_site_name( siteID ), year );
addData = parse_forgapfilling_file( siteID, year, ...
'use_filled', filled_file_false );
nmegSiteQC = parse_fluxall_qc_file( siteID, year );
addData.Precip = nmegSiteQC.precip;
case 'sev' % Parse the nearest Sevilletta met site
addData = UNM_parse_sev_met_data( year, siteID );
addData = prepare_met_data( addData, year, 'Sev' );
case 'vcp' % Parse the nearest VC met site
addData = UNM_parse_valles_met_data( siteID, year );
addData = prepare_met_data( addData, year, 'VCP' );
case 'snotel' % Parse the nearest SNOTEL site
addData = UNM_parse_SNOTEL_data( siteID, year );
addData = prepare_daily_precip( addData, 'Precip');
case 'ghcnd' % Parse the nearest GHCND site
addData = UNM_parse_GHCN_met_data( siteID, year );
addData = prepare_daily_precip( addData, 'PRCP' );
% Convert from tenths to mm
% Used to be needed - no more
%addData.Precip = addData.Precip ./ 10;
case 'prism'
addData = UNM_parse_PRISM_met_data( siteID, year );
addData = prepare_daily_precip( addData, 'Precip');
case 'daymet'
addData = UNM_parse_DayMet_data( sitecode, year );
addData = prepare_daily_precip( addData, 'prcp_mm_day_' );
end
% Fill the timestamps in this dataset and put in fillSiteData
filledStruct.( newFieldName ) = ...
fillTstamps( addData, thisData.timestamp, 1/48 );
catch
% Let missing data slide with a warning only in current year
% and fill with NaNs. This is an error in earlier years
if year == this_year;
warning( sprintf( 'The %s filling data failed to parse', ...
newFieldName ));
else
error( sprintf( 'The %s filling data failed to parse', ...
newFieldName ));
end
end
end
%==========================================================================
% Function to fill in timestamps of a new dataset
function filledTsData = fillTstamps( data, tStamps, delta )
% Subset data
data = data( ( data.timestamp >= min( tStamps ) & ...
data.timestamp <= max( tStamps ) ), : );
% Fill in timestamps
filledTsData = table_fill_timestamps( data, 'timestamp', ...
't_min', min( tStamps ), ...
't_max', max( tStamps ), ...
'delta_t', delta );
filledTsData.timestamp = datenum( filledTsData.timestamp );
end
%==========================================================================
function [ fillDest, varConfRet ] = fill_variable( fillDest, ...
fillSource, varName, varConf )
% replace missing values in on variable of dataset fillDest with
% corresponding values from dataset source1. Where source1 also
% has missing values, fall back to source2 if provided.
% Initialize some flags/counters
nodata = 0;
n_filled = 0;
n_missing = numel( find( isnan( fillDest.( varName ) ) ) );
varConfRet = varConf; % Copy conf for adding indices
[ varConfRet.fillIdx ] = deal( [] );
for k = 1:length( varConf )
% Get data source and set linfit and scaling options
source = fillSource.( varConf(k).fillDataField );
linfitSource = false;
scaleSource = false;
if isfield( varConf(k), 'linfit' ) && varConf(k).linfit
linfitSource = true;
end
if isfield( varConf(k), 'scale' ) && varConf(k).scale
scaleSource = true;
end
% Check that there is valid data in the filling data
if sum( ~isnan( source.( varName ))) == 0
nodata = nodata + 1;
warning(sprintf('There is no valid data in %s source %d', ...
varName, k ));
end
% Get the index of data in fillDest to fill with
% non-nan data from source
fillIdx = find( isnan( fillDest.( varName )) & ...
~isnan( source.( varName ) ) );
varConfRet( k ).fillIdx = fillIdx;
% Do a linear fit if requested
if linfitSource
replacement = linfit_var( source.( varName ), ...
fillDest.( varName ), fillIdx );
else
replacement = source.( varName );
end
% Scale the data if requested
if scaleSource
replacement = replacement * ( 1 + varConf(k).scale/100 );
end
% Put the replacement data in the fill destination and count
fillDest.( varName )( fillIdx ) = replacement( fillIdx );
n_filled = n_filled + numel( fillIdx );
end
if nodata > 1
error(sprintf('No data found in %s source 1 or %s source 2',...
varName, varName ));
end
% Calculate and display number of filled data
fprintf( '%s: replaced %d / %d missing observations\n', ...
varName, n_filled, n_missing );
end
%==========================================================================
function h_fig = plot_filled_variable( filledData, varName, ...
varConf, sitecode, year )
seconds = repmat( 0.0, size( filledData, 1 ), 1 );
ts = datenum( filledData.year, filledData.month, filledData.day, ...
filledData.hour, filledData.minute, seconds );
nobs = size( filledData, 1 );
jan1 = datenum( filledData.year, repmat( 1, nobs, 1 ), repmat( 1, nobs, 1 ) );
doy = ts - jan1 + 1;
% Make figure and plot all data
h_fig = figure();
handles(1) = plot( doy, filledData.( varName ), '.k' );
handleNames = {'observed'};
hold on;
% Then plot filled data from each source
mcolors = summer( length( varConf ) );
for l = 1:length( varConf )
fillIdx = varConf( l ).fillIdx;
if ~isempty( fillIdx )
handles(l+1) = plot( doy( fillIdx ), ...
filledData.( varName )( fillIdx ), ...
'.', 'MarkerEdgeColor', mcolors( l, : ), 'MarkerSize', 10 );
handleNames{ l + 1 } = [ 'filled ', num2str( l ) ];
else % if empty still plot something and acknowledge as none
handles(l+1) = plot( 1, nan, '.', 'MarkerEdgeColor', 'white' );
handleNames{ l + 1 } = [ 'filled ', num2str( l ), ...
' (none)' ];
end
end
ylabel( varName );
xlabel( 'day of year' );
title( sprintf( '%s %d', get_site_name( sitecode ), year ) );
legend( handles, handleNames );
end
%===========================================================================
function T = prepare_met_data( T_in, year, site )
% Initialize some met variables and configuration for the data
% If data are hourly, convert to 30min , if precip is in inches,
% convert it to mm
if strcmp(site, 'VCP')
hr_2_30min = true; prec_conv = false; % Conversions
varCell = { 'AvAirTemp', 'RelHumidty', 'SolarRad', 'Precip'};
[ TairVar, rhVar, RgVar, PrecVar ] = deal(varCell{:});
elseif strcmp(site, 'Sev')
hr_2_30min = true; prec_conv = false;
varCell = { 'Temp_C', 'Relative_Humidity', ...
'Solar_Radiation', 'Precipitation' };
[ TairVar, rhVar, RgVar, PrecVar ] = deal(varCell{:});
end
% Get subset of met variables and rename
T = T_in( : , {'timestamp', TairVar, rhVar, RgVar, PrecVar } );
T.Properties.VariableNames = { 'timestamp', 'Tair', 'rH', 'Rg', 'Precip' };
% Fill in missing timestamps for this data
%T = fillTstamps( T, T.timestamp, 1/24 );
% Convert rH from [ 0, 1 ] to [ 0, 100 ]
if nanmax( T.rH ) < 1.5
T.rH = T.rH * 100.0;
end
% Convert precip to mm
if prec_conv
T.Precip = T.Precip .* 25.4;
end
% If readings are hourly -- interpolate to 30 mins
if hr_2_30min
ts = T.timestamp;
thirty_mins = 30 / ( 60 * 24 ); % thirty minutes in units of days
ts_30 = ts + thirty_mins;
Tair_interp = interp30min( T, ts, ts_30, 'Tair' );
rH_interp = interp30min( T, ts, ts_30, 'rH' );
Rg_interp = interp30min( T, ts, ts_30, 'Rg' );
% Setting 30 min Precip to 0
Prec_interp = zeros(length(ts_30), 1);
T = vertcat( T, table( ts_30, rH_interp, Tair_interp, Rg_interp , ...
Prec_interp, 'VariableNames', ...
{ 'timestamp', 'rH', 'Tair', 'Rg', 'Precip' } ) );
end
% Interp subfunction (may fail if there are duplicate timestamps)
function varInterp = interp30min( dTable, tstamp, tstamp_30, varName )
valid = find( ~isnan( dTable.( varName) ) );
if length( valid ) < 2
varInterp = zeros( length( tstamp_30 ), 1) * nan;
else
varInterp = interp1( tstamp( valid ), ...
dTable.( varName )( valid ), tstamp_30 );
end
end
% filter out bogus values
T.Tair( abs( T.Tair ) > 100 ) = NaN;
T.rH( T.rH > 100.0 ) = NaN;
T.rH( T.rH < 0.0 ) = NaN;
T.Rg( T.Rg < -20.0 ) = NaN;
% sort by timestamp
[ ~, idx ] = sort( T.timestamp );
T = T( idx, : );
end
%==========================================================================
function T_resamp = prepare_daily_precip( T, varname )
%
%
T = T( : , { 'timestamp', varname } );
T.Properties.VariableNames = { 'timestamp', 'Precip' };
% remove duplicated timestamps
dup_timestamps = find( abs( diff( T.timestamp ) ) < 1e-10 );
T( dup_timestamps, : ) = [];
% Resample the timeseries to 30mins
nsamples = repmat(48, 1, length(T.timestamp) - 1);
x = cumsum([1 nsamples]);
ts_resamp = interp1(x, T.timestamp, x(1):x(end))';
% Create a new 30 min table and move values over
Precip = zeros(length(ts_resamp), 1);
T_resamp = table(ts_resamp, Precip);
match_rs = find(ismember(ts_resamp, T.timestamp)); %Match by timestamp
T_resamp.Precip(match_rs) = T.Precip;
% filter out nonsensical values
T_resamp.Precip( T_resamp.Precip < 0 ) = NaN;
T_resamp.Precip( T_resamp.Precip > 100 ) = NaN;
% sort by timestamp
[ discard, idx ] = sort( T_resamp.ts_resamp );
T_resamp = T_resamp( idx, : );
T_resamp.Properties.VariableNames{'ts_resamp'} = 'timestamp';
end
%===========================================================================
function result = linfit_var( x, y, idx )
% find timestamps without NaN in either variable
nan_idx = any( isnan( [ x, y ] ), 2 );
x_valid = x( ~nan_idx );
y_valid = y( ~nan_idx );
% linear regression of var2 against var1
slope = fminsearch( @(m) sse_linfit_slope_only( x_valid, y_valid, m ), ...
1.10 );
result = x;
result( idx ) = x( idx ) * slope;
function sse = sse_linfit_slope_only( x, y, m )
sse = sum( ( y - ( m * x ) ) .^ 2 );
end
end
function result = linfit_var2( x, y, idx )
% find timestamps without NaN in either variable
nan_idx = any( isnan( [ x, y ] ), 2 );
% linear regression of var2 against var1
linfit = polyfit( x( ~nan_idx ), y( ~nan_idx ), 1 );
% return prediction of var2 at idx based on regression
result = x;
result( idx ) = ( x( idx ) * linfit( 1 ) ) + linfit( 2 );
end
end