Skip to content

Latest commit

 

History

History
59 lines (46 loc) · 2.28 KB

Loaders.md

File metadata and controls

59 lines (46 loc) · 2.28 KB

Loaders

This page documents available file format loaders.

mnist

  • format details: MNIST dataset
  • simply specify the path to the mnist images file, and the mnist labels file will be located automatically, based on the name

norb

  • format details: NORB-small dataset
  • simply specify the path to the norb images file, and the norb labels file will be located automatically, based on the name

kgsv2

jpegs

(New, in 5.8.0!)

  • this format comprises:
    • jpeg images
    • and a single manifest text file
  • jpeg images should obey certain properties:
    • be uniformally sized
    • should not have spaces in the filename, or in the directory path
  • manifest format looks like this:
# format=deepcl-jpeg-list-v1 planes=1 width=28 height=28 N=1280
/norep/data/mnist/imagenet/R1313411/0.JPEG 5
/norep/data/mnist/imagenet/R1316044/1.JPEG 0
/norep/data/mnist/imagenet/R1311530/2.JPEG 4
/norep/data/mnist/imagenet/R1315845/3.JPEG 1
/norep/data/mnist/imagenet/R1316670/4.JPEG 9
/norep/data/mnist/imagenet/R1313848/5.JPEG 2
/norep/data/mnist/imagenet/R1315845/6.JPEG 1
... etc ...
  • ie, top line is a header line, stating the name of the format, and the dimensions of the data set
  • other lines all have one filepath, a single space, and the category label
    • category label is integer, zero-based
  • Simply pass in the name of the manifest file to deepcl commandline, and deepcl will handle the rest, eg:
./deepclrun datadir=/my/data/dir trainfile=train-manifest.txt validatefile=validate-manifest.txt
  • You can create a simple test dataset from mnist dataset, to reassure yourself this work, as follows:
./mnist-to-jpegs /my/data/dir/mnist/train-images-idx3-ubyte /my/data/dir/mnist/imagenet 1280
# train:
./deepclrun datadir=/my/data/dir/mnist/imagenet trainfile=manifest.txt validatefile=manifest.txt numtrain=1280 numtest=1280
# yes, this uses the same data file for validation and training, but it's just to show the format works, not to rigorously
# test our mnist validation accuracy ;-)