[TOC]
- Ubuntu18.04
- ROS Melodic
- carla-simulator 0.9.9.4
- carla-ros-bridge
样条曲线: 用于生成参考线。
Object Function: $$ J = w_{1} \sum_{i = 1}^{N-1} ((x[i] - x[i - 1]) ^2 + (y[i] - y[i-1])^2) + \ w_2 \sum_{i=0}^{N-1} ((x[i] - x_{\text{ref}}[i])^2 + (y[i] - y_{\text{ref}}[i])^2) + \w_3 \sum_{i = 1}^{N-2}((x[i+1] + x[i-1]-2x[i])^2 + (y[i+1]+y[i-1]-2y[i])^2) $$ Constraints: $$ x_{\text{ref}}[i] - b[i] \leq x[i] \leq x_{\text{ref}}[i] + b[i], i = 0,\ldots, N-1. \ y_{\text{ref}}[i] - b[i] \leq y[i] \leq y_{\text{ref}}[i] + b[i], i = 0,\ldots, N-1. \ ((x[i+1] + x[i-1]-2x[i])^2 + (y[i+1]+y[i-1]-2y[i])^2) \leq (k_{\max} \Delta s^2)^2 $$
其中,$b[i] , i = 0, \ldots,N-1$ 为waypoint 的上下界。$x_{\text{ref}}[i], y_{\text{ref}}[i]$ 为原始waypoint的坐标值。约束项第三项为曲率约束。
求解器: IPOPT
Robust and Efficient Computation of Closest Point on a Spline. Quaradic Minimization + Newton's Method
4. 碰撞检查
done
todo
纵向控制: PID
横向控制: Pure Pursuit
纵向控制: PID
横向控制: Stanley
todo