Skip to content

Latest commit

 

History

History
270 lines (218 loc) · 8.25 KB

full_develop_en.md

File metadata and controls

270 lines (218 loc) · 8.25 KB

Full Development

Contents

Installation

1. Install PaddlePaddle

Versions

  • PaddlePaddle >= 2.0.2

  • Python >= 3.7+

Due to the high computational cost of model, PaddleSeg is recommended for GPU version PaddlePaddle. CUDA 10.0 or later is recommended. See PaddlePaddle official website for the installation tutorial.

2. Download the PaddleSeg repository

git clone https://github.com/PaddlePaddle/PaddleSeg

3. Installation

cd PaddleSeg/Matting
pip install "paddleseg>=2.5"
pip install -r requirements.txt

Dataset preparation

Using MODNet's open source PPM-100 dataset as our demo dataset for the tutorial. Custom dataset refer to dataset preparation.

Download the prepared PPM-100 dataset.

mkdir data && cd data
wget https://paddleseg.bj.bcebos.com/matting/datasets/PPM-100.zip
unzip PPM-100.zip
cd ..

The dataset structure is as follows.

PPM-100/
|--train/
|  |--fg/
|  |--alpha/
|
|--val/
|  |--fg/
|  |--alpha
|
|--train.txt
|
|--val.txt

Note : This dataset is only used as a tutorial demonstration and cannot be trained to produce a convergent model.

Model selection

The Matting project supports configurable direct drive, with model config files placed in configs directory. You can select a config file based on the actual situation to perform training, prediction et al. The trimap-based methods (DIM) do not support video processing.

This tutorial uses configs/quick_start/ppmattingv2-stdc1-human_512.yml for teaching demonstrations.

Training

export CUDA_VISIBLE_DEVICES=0
python tools/train.py \
       --config configs/quick_start/ppmattingv2-stdc1-human_512.yml \
       --do_eval \
       --use_vdl \
       --save_interval 500 \
       --num_workers 5 \
       --save_dir output

Using --do_eval will affect training speed and increase memory consumption, turning on and off according to needs. If opening the --do_eval, the historical best model will be saved to '{save_dir}/best_model' according to SAD. At the same time, 'best_sad.txt' will be generated in this directory to record the information of metrics and iter at this time.

--num_workers Read data in multi-process mode. Speed up data preprocessing.

Run the following command to view more parameters.

python tools/train.py --help

If you want to use multiple GPUs,please use python -m paddle.distributed.launch to run.

Finetune

If you want to finetune from a pretrained model, you can set the model.pretrained field in config file, whose content is the URL or filepath of the pretrained model weights.Here we use the official PP-MattingV2 pretrained model for finetuning as an example.

First, download the pretrained model in Models to pretrained_models.

mkdir pretrained_models && cd pretrained_models
wget https://paddleseg.bj.bcebos.com/matting/models/ppmattingv2-stdc1-human_512.pdparams
cd ..

Then modify the train_dataset.dataset_root, val_dataset.dataset_root, model.pretrained fields in the config file, meanwhile the lr is recommended to be reduced, and you can leave the rest of the config file unchanged.

train_dataset:
  type: MattingDataset
  dataset_root: path/to/your/dataset # Path to your own dataset
  mode: train

val_dataset:
  type: MattingDataset
  dataset_root: path/to/your/dataset # Path to your own dataset
  mode: val

model:
  type: PPMattingV2
  backbone:
    type: STDC1
    pretrained: https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet1.tar.gz
  decoder_channels: [128, 96, 64, 32, 16]
  head_channel: 8
  dpp_output_channel: 256
  dpp_merge_type: add
  pretrained: pretrained_models/ppmattingv2-stdc1-human_512.pdparams # The pretrained model file just downloaded
lr_scheduler:
  type: PolynomialDecay
  learning_rate: 0.001  # lr is recommended to be reduced
  end_lr: 0
  power: 0.9
  warmup_iters: 1000
  warmup_start_lr: 1.0e-5

Finally, you can finetune the model with your dataset following the instructions in Training.

Evaluation

export CUDA_VISIBLE_DEVICES=0
python tools/val.py \
       --config configs/quick_start/ppmattingv2-stdc1-human_512.yml \
       --model_path output/best_model/model.pdparams \
       --save_dir ./output/results \
       --save_results

--save_result The prediction results will be saved if turn on. If it is off, it will speed up the evaluation.

You can directly download the provided model for evaluation.

Run the following command to view more parameters.

python tools/val.py --help

Prediction

Image Prediction

export CUDA_VISIBLE_DEVICES=0
python tools/predict.py \
    --config configs/quick_start/ppmattingv2-stdc1-human_512.yml \
    --model_path output/best_model/model.pdparams \
    --image_path data/PPM-100/val/fg/ \
    --save_dir ./output/results \
    --fg_estimate True

If the model requires trimap information, pass the trimap path through '--trimap_path'.

--fg_estimate False can turn off foreground estimation, which improves prediction speed but reduces image quality.

You can directly download the provided model for evaluation.

Run the following command to view more parameters.

python tools/predict.py --help

Video Prediction

export CUDA_VISIBLE_DEVICES=0
python tools/predict_video.py \
    --config configs/ppmattingv2/ppmattingv2-stdc1-human_512.yml \
    --model_path output/best_model/model.pdparams \
    --video_path path/to/video \
    --save_dir ./output/results \
    --fg_estimate True

Background Replacement

Image Background Replacement

export CUDA_VISIBLE_DEVICES=0
python tools/bg_replace.py \
    --config configs/quick_start/ppmattingv2-stdc1-human_512.yml \
    --model_path output/best_model/model.pdparams \
    --image_path path/to/your/image \
    --background path/to/your/background/image \
    --save_dir ./output/results \
    --fg_estimate True

If the model requires trimap information, pass the trimap path through --trimap_path.

--background can pass a path of brackground image or select one of ('r', 'g', 'b', 'w') which represent red, green, blue and white. If it is not specified, a green background is used.

--fg_Estimate False can turn off foreground estimation, which improves prediction speed but reduces image quality.

note: --image_path must be a image path。

You can directly download the provided model for background replacement.

Run the following command to view more parameters.

python tools/bg_replace.py --help

Video Background Replacement

export CUDA_VISIBLE_DEVICES=0
python tools/bg_replace_video.py \
    --config configs/ppmattingv2/ppmattingv2-stdc1-human_512.yml \
    --model_path output/best_model/model.pdparams \
    --video_path path/to/video \
    --background 'g' \
    --save_dir ./output/results \
    --fg_estimate True

Export and Deployment

Model Export

python tools/export.py \
    --config configs/quick_start/ppmattingv2-stdc1-human_512.yml \
    --model_path output/best_model/model.pdparams \
    --save_dir output/export \
    --input_shape 1 3 512 512

If the model requires trimap information such as DIM, --trimap is need.

Run the following command to view more parameters.

python tools/export.py --help

Deployment

python deploy/python/infer.py \
    --config output/export/deploy.yaml \
    --image_path data/PPM-100/val/fg/ \
    --save_dir output/results \
    --fg_estimate True

If the model requires trimap information, pass the trimap path through '--trimap_path'.

--fg_Estimate False can turn off foreground estimation, which improves prediction speed but reduces image quality.

--video_path can pass a video path to have a video matting.

Run the following command to view more parameters.

python deploy/python/infer.py --help