diff --git a/README.md b/README.md
index 54a436c..574f6a7 100644
--- a/README.md
+++ b/README.md
@@ -1,4 +1,4 @@
-# 🚧 pipegoose: Large scale 4D parallelism pre-training for 🤗 `transformers` in Mixture of Experts
+# 🚧 pipegoose: Large-scale 4D parallelism multi-modal pre-training for 🤗 `transformers` in Mixture of Experts
[](https://github.com/xrsrke/pipegoose) [![tests](https://github.com/xrsrke/pipegoose/actions/workflows/tests.yaml/badge.svg)](https://github.com/xrsrke/pipegoose/actions/workflows/tests.yaml) [](https://discord.gg/s9ZS9VXZ3p) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [](https://app.codecov.io/gh/xrsrke/pipegoose) [![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)
@@ -6,6 +6,14 @@
+We're building a library for an end-to-end framework for training multi-modal MoE in a decentralized way, as proposed by the paper [DiLoCo](https://arxiv.org/abs/2311.08105). The core papers that we are replicating are:
+- DiLoCo: Distributed Low-Communication Training of Language Models [[link]](https://arxiv.org/abs/2311.08105)
+- Pipeline MoE: A Flexible MoE Implementation with Pipeline Parallelism [[link]](https://arxiv.org/abs/2304.11414)
+- Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [[link]](https://arxiv.org/abs/2101.03961)
+- Flamingo: a Visual Language Model for Few-Shot Learning [[link]](https://arxiv.org/abs/2204.14198)
+- Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism [[link]](https://arxiv.org/abs/1909.08053)
+
+
⚠️ **The project is actively under development, and we're actively seeking collaborators. Come join us: [[discord link]](https://discord.gg/s9ZS9VXZ3p) [[roadmap]](https://github.com/users/xrsrke/projects/5) [[good first issue]](https://github.com/xrsrke/pipegoose/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)**
@@ -87,10 +95,10 @@ We did a small scale correctness test by comparing the validation losses between
- Distributed Optimizer ZeRO-1 Convergence: [[sgd link]](https://wandb.ai/xariusdrake/pipegoose/runs/fn4t9as4?workspace) [[adam link]](https://wandb.ai/xariusdrake/pipegoose/runs/yn4m2sky)
**Features**
-- Megatron-style 3D parallelism
+- End-to-end multi-modal including in 3D parallelism including distributed CLIP..
- Sequence parallelism and Mixture of Experts that work in 3D parallelism
- ZeRO-1: Distributed Optimizer
-- Highly optimized CUDA kernels port from Megatron-LM, DeepSpeed
+- Kernel fusion
- ...
**Appreciation**
diff --git a/tests/distributed/test_parallel_mode.py b/tests/distributed/test_parallel_mode.py
index dc8c802..4ee33d4 100644
--- a/tests/distributed/test_parallel_mode.py
+++ b/tests/distributed/test_parallel_mode.py
@@ -6,7 +6,7 @@ def test_parallel_mode():
assert hasattr(ParallelMode, "TENSOR")
assert hasattr(ParallelMode, "PIPELINE")
assert hasattr(ParallelMode, "DATA")
- assert hasattr(ParallelMode, "EXPERT")
+ assert hasattr(ParallelMode, "EXPERT_DATA")
assert ParallelMode.GLOBAL == ParallelMode.GLOBAL
assert ParallelMode.GLOBAL != ParallelMode.TENSOR