-
Notifications
You must be signed in to change notification settings - Fork 2
/
psnet.py
executable file
·389 lines (347 loc) · 22.1 KB
/
psnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
from tf_ops import *
import os
import numpy as np
from pprint import pprint as ppt
class PSNet():
def __init__(self,config, sess, train_dir,
mode = "train",
num_pts = 4096,
late_fusion = True,
**st_dict):
# define model structure
self.fe_layer_units = list(map(lambda x: int(x), config["modelstructure"]["fe_layer"].split(",")))
self.fc_layer_units = list(map(lambda x: int(x), config["modelstructure"]["fc_layer"].split(",")))
self.num_label = config["training"].getint("num_label")
self.base_lr = config["training"].getfloat("lr")
self.lr_decay_rate = config["training"].getfloat("lr_decay_rate")
self.lr_decay_step = config["training"].getfloat("lr_decay_step")
self.mode = mode
self.summary_loss = dict()
self.summary_grad = dict()
self.summary_hist = dict()
self.node = dict()
self.node_color = dict()
self.node_geo = dict()
self.kernal = dict()
# layers used to extract content representation and style representation
self.content_layer = list(map(lambda x: int(x),config["style_transfer"]["content_layer"].split(",")))
self.style_layer = list(map(lambda x: int(x),config["style_transfer"]["content_layer"].split(",")))
self.batch_size = config["training"].getint("batch_size")
self.num_points = num_pts
# input placeholders
if mode == "styletransfer":
self.from_image = st_dict["from_image"]
if config["style_transfer"]["color_init"].startswith("r"):
self.color = tf.get_variable(name="point_cloud_color",shape=[1, self.num_points, 3],
initializer=tf.truncated_normal_initializer(mean=0, stddev=0.5))
elif config["style_transfer"]["color_init"].startswith("c"):
self.color = tf.get_variable(name="point_cloud_color", shape=[1, self.num_points, 3],
initializer=st_dict["color_init"])
self.summary_hist["color"] = tf.summary.histogram(name="color", values=self.color)
if config["style_transfer"]["geo_init"].startswith("r") or self.from_image:
self.geo = tf.get_variable(name="point_cloud",shape=[1, self.num_points, 3],
initializer=tf.truncated_normal_initializer(mean=0, stddev=0.5))
elif config["style_transfer"]["geo_init"].startswith("c"):
self.geo = tf.get_variable(name="point_cloud", shape=[1, self.num_points, 3],
initializer=st_dict["geo_init"])
self.summary_hist["pts"] = tf.summary.histogram(name="pts", values=self.geo)
self.beta_geo = config["style_transfer"].getint("beta_geo")
self.pointclouds_pl = tf.concat([self.geo, self.color], axis=-1)
self.target_content_representation = st_dict["target_content"]
self.target_style_representation = st_dict["target_style"]
self.st_optimizer_type = config["style_transfer"]["optimizer_type"].split("_")[0]
self.st_lr = float(config["style_transfer"]["optimizer_type"].split("_")[1])
self.beta_color = config["style_transfer"].getint("beta_color")
elif mode == "train" or "test":
self.geo = tf.placeholder(tf.float32,
shape=[None, num_pts, 3], name="pc_geo")
self.color = tf.placeholder(tf.float32,
shape=[None, num_pts, 3], name="pc_color")
#self.pointclouds_pl = tf.placeholder(tf.float32,
# shape=[None, self.num_points, 6], name="point_clouds")
self.labels_pl = tf.placeholder(tf.int32, shape=(None,), name = "label")
self.bn_pl = tf.placeholder(dtype=tf.bool, shape=(), name="is_bn_training")
self.dropout_prob_pl = tf.placeholder(dtype=tf.float32, shape=(), name="dropout_prob")
self.late_fusion = late_fusion
self.sess = sess
# construct learning rate strategy
self.batch_step = tf.Variable(0, name="batch_step")
self._get_learning_rate()
# build model
self._build_model()
# summary writer and moder saver
if mode == "train":
self.summary_writer = tf.summary.FileWriter(train_dir, sess.graph) # already saved graph
elif self.mode.startswith("s"):
self.summary_writer = tf.summary.FileWriter(train_dir, sess.graph)
self.model_saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="cls"))
if self.mode.startswith("t"):
self.model_saver = tf.train.Saver(max_to_keep=200)
# logfile
self.log_fout = open(os.path.join(train_dir, 'log.txt'), 'a')
self.sess.run(tf.global_variables_initializer())
def _fe_layers(self, input_features, scope):
with tf.variable_scope(scope):
net = input_features
for idx, unit in enumerate(self.fe_layer_units):
after_relu, net = FE_layer(net, unit,aggregate_global=True, bn_is_training=self.bn_pl,scope="FE_{}".format(idx + 1))
self.node[scope + "_FE_" + str(idx + 1)] = after_relu
if "COLOR" in scope:
self.node_color[scope + "_FE_" + str(idx + 1)] = after_relu
if "PTS" in scope:
self.node_geo[scope + "_FE_" + str(idx + 1)] = after_relu
self.kernal[scope + "_FE_" + str(idx + 1)] = tf.get_default_graph().get_tensor_by_name("cls/" + scope + "/FE_{}/dense/kernel:0".format(idx + 1))
# self.summary[scope + "_FE_" + str(idx + 1)] = tf.summary.histogram(scope + "_FE_" + str(idx + 1), self.kernal[scope + "_FE_" + str(idx + 1)])
global_aggregated_feature = tf.reduce_mean(net, axis=1, name="aggregation") # batch_size, 4096
return global_aggregated_feature
def _fc_layers(self, input_vectors, scope):
with tf.variable_scope(scope):
net = input_vectors
for idx, unit in enumerate(self.fc_layer_units):
net = dense_norm_nonlinear(net, unit, norm_type="bn",is_training=self.bn_pl, scope="FC_{}".format(idx + 1))
self.node[scope + "_FC_" + str(idx + 1)] = net
net = tf.nn.dropout(net, self.dropout_prob_pl, name="dropout_{}".format(idx + 1))
logits = tf.layers.dense(net, self.num_label)
return logits
def _build_model(self):
# graph
with tf.variable_scope("cls"):
if self.late_fusion:
# if self.mode.startswith("t"):
# self.geo = self.pointclouds_pl[...,:3]
# self.color = self.pointclouds_pl[...,3:6]
self.color_aggregated = self._fe_layers(self.color, "FE_COLOR") # batchsize, num_units
self.pts_aggregated = self._fe_layers(self.geo, "FE_PTS") # batchsize, num_units
self.pts_color_aggregated = tf.concat([self.pts_aggregated, self.color_aggregated], -1)
else:
self.pts_color_aggregated = self._fe_layers(self.pointclouds_pl, "FE_PTS_COLOR")
self.logits = self._fc_layers(self.pts_color_aggregated, scope="FC")
# loss
if self.mode.startswith("t"):
print("Building cross entropy loss...")
self.loss = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.labels_pl), name="cross_entropy")
loss_sum = tf.summary.scalar(name="training_loss", tensor=self.loss)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
self.optim_op = tf.train.AdamOptimizer(learning_rate=self.lr) \
.minimize(self.loss, global_step=self.batch_step)
elif self.mode.startswith("s"):
print("Optimizer: {0} Learning Rate: {1}".format(self.st_optimizer_type, self.st_lr))
# style transfer loss
if self.st_optimizer_type == "sgd":
self.optimizer = tf.train.GradientDescentOptimizer(self.st_lr)
elif self.st_optimizer_type == "adadelta":
self.optimizer = tf.train.AdadeltaOptimizer(self.st_lr, rho=0.9)
elif self.st_optimizer_type == "adagrad":
self.optimizer = tf.train.AdagradOptimizer(self.st_lr)
elif self.st_optimizer_type == "adam":
self.optimizer = tf.train.AdamOptimizer(self.st_lr)
elif self.st_optimizer_type == "momentum":
self.optimizer = tf.train.MomentumOptimizer(learning_rate=self.st_lr, momentum=0.9, use_nesterov= False)
elif self.st_optimizer_type == "rmsprop":
self.optimizer = tf.train.RMSPropOptimizer(self.st_lr)
elif self.st_optimizer_type == "nesterov":
self.optimizer = tf.train.MomentumOptimizer(learning_rate=self.st_lr, momentum=0.9, use_nesterov= True)
else:
raise ValueError("Please choose the correct optimizer for style transfer!")
print("Building style transfer loss...")
if self.late_fusion:
if not self.from_image:
use_content_geo = ["FE_PTS_FE_{}".format(i) for i in self.content_layer]
use_style_geo = ["FE_PTS_FE_{}".format(i) for i in self.style_layer]
# content loss for geo
loss_geo_content = []
for layer in use_content_geo:
loss_geo_content.append(
tf.nn.l2_loss(self.target_content_representation[layer] - self.node[layer]) / tf.size(
self.node[layer], out_type=tf.float32))
self.loss_geo_content = tf.add_n(loss_geo_content)
# style loss for geo
loss_geo_gram = []
for layer in use_style_geo:
source_gram_pts = tf.matmul(tf.transpose(tf.squeeze(self.node[layer])),
tf.squeeze(self.node[layer])) / tf.size(self.node[layer],
out_type=tf.float32)
loss_geo_gram.append(tf.nn.l2_loss(self.target_style_representation[layer] - source_gram_pts))
self.loss_geo_style = tf.add_n(loss_geo_gram)
self.total_loss_geo = self.loss_geo_content + self.beta_geo * self.loss_geo_style
self.summary_loss["loss_geo"] = tf.summary.scalar("loss_geo", self.total_loss_geo)
self.summary_loss["loss_geo_content"] = tf.summary.scalar("loss_geo_content", self.loss_geo_content)
self.summary_loss["loss_geo_style"] = tf.summary.scalar("loss_geo_style", self.loss_geo_style)
use_content_color = ["FE_COLOR_FE_{}".format(i) for i in self.content_layer]
use_style_color = ["FE_COLOR_FE_{}".format(i) for i in self.style_layer]
# content loss for color
loss_color_content = []
for layer in use_content_color:
loss_color_content.append(
tf.nn.l2_loss(self.target_content_representation[layer] - self.node[layer]) / tf.size(self.node[layer],out_type=tf.float32))
self.loss_color_content = tf.add_n(loss_color_content)
# style loss for color
loss_color_gram = []
for layer in use_style_color:
source_gram_color = tf.matmul(tf.transpose(tf.squeeze(self.node[layer])),
tf.squeeze(self.node[layer])) / tf.size(self.node[layer],
out_type=tf.float32)
loss_color_gram.append(tf.nn.l2_loss(self.target_style_representation[layer] - source_gram_color))
self.loss_color_style = tf.add_n(loss_color_gram)
# total loss
self.total_loss_color = self.loss_color_content + self.beta_color * self.loss_color_style
self.summary_loss["loss_color"] = tf.summary.scalar("loss_color", self.total_loss_color)
self.summary_loss["loss_color_content"] = tf.summary.scalar("loss_color_content", self.loss_color_content)
self.summary_loss["loss_color_style"] = tf.summary.scalar("loss_color_style", self.loss_color_style)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
self.optim_op_color = self.optimizer \
.minimize(self.total_loss_color, global_step=self.batch_step, var_list=[self.color])
if not self.from_image:
self.optim_op_pts = self.optimizer \
.minimize(self.total_loss_geo, global_step=self.batch_step, var_list=[self.geo])
else: # early fusion
use_content = ["FE_PTS_COLOR_FE_{}".format(i) for i in self.content_layer]
use_style = ["FE_PTS_COLOR_FE_{}".format(i) for i in self.style_layer]
print("Building style transfer loss...")
# content loss
loss_content = []
for layer in use_content:
loss_content.append(
tf.nn.l2_loss(self.target_content_representation[layer] - self.node[layer]) / tf.size(
self.node[layer], out_type=tf.float32))
self.loss_content = tf.add_n(loss_content)
# style loss
loss_style_gram = []
for layer in use_style:
source_gram = tf.matmul(tf.transpose(tf.squeeze(self.node[layer])),
tf.squeeze(self.node[layer])) / tf.size(self.node[layer],
out_type=tf.float32)
loss_style_gram.append(tf.nn.l2_loss(self.target_style_representation[layer] - source_gram))
self.loss_style = tf.add_n(loss_style_gram)
# total loss
self.total_loss = self.loss_content + self.beta_geo * self.loss_style
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
self.optim_op_color = self.optimizer \
.minimize(self.total_loss, global_step=self.batch_step, var_list=[self.color])
self.optim_op_pts = self.optimizer \
.minimize(self.total_loss, global_step=self.batch_step, var_list=[self.geo])
self.optim_op_total = self.optimizer \
.minimize(self.total_loss, global_step=self.batch_step, var_list=[self.geo, self.color])
else:
raise ValueError("please choose the right mode!current mode is {}".format(self.mode))
# summary
# self.summary["grad_weight_FE1_pts"] = tf.summary.histogram("grad_weight_FE1_pts", tf.get_default_graph().\
# get_tensor_by_name("gradients/FE_PTS/FE_1/dense/Tensordot/MatMul_grad/MatMul_1:0"))
# self.summary["grad_weight_FE1_color"] = tf.summary.histogram("grad_weight_FE1_color", tf.get_default_graph(). \
# get_tensor_by_name("gradients/FE_COLOR/FE_1/dense/Tensordot/MatMul_grad/MatMul_1:0"))
# grad_color = tf.get_default_graph().get_tensor_by_name(
# "gradients/cls/FE_COLOR/FE_1/dense/Tensordot/MatMul_grad/MatMul_1:0")
# self.summary["grad_color"] = tf.summary.histogram("grad_color", grad_color)
# grad_pts = tf.get_default_graph().get_tensor_by_name(
# "gradients/cls/FE_PTS/FE_1/dense/Tensordot/MatMul_grad/MatMul_1:0")
# self.summary["grad_pts"] = tf.summary.histogram("grad_pts", grad_pts)
self.all_summary = tf.summary.merge_all()
return True
def style_transfer_one_step(self, update_property = "geometry"):
if self.late_fusion:
train_dict_color = self.sess.run({"loss_color": self.total_loss_color,
"loss_color_content": self.loss_color_content,
"loss_color_style": self.loss_color_style,
"optim_op": self.optim_op_color,
"batch_step": self.batch_step},
feed_dict={
self.bn_pl: False,
self.dropout_prob_pl: 1.0})
self.log_string("step: {0:5d} st_color_loss: {1:.8f} color_loss_content: {2:.8f} color_loss_style: {3:.8f}".
format(train_dict_color["batch_step"], train_dict_color["loss_color"],
train_dict_color["loss_color_content"], train_dict_color["loss_color_style"]))
if not self.from_image:
train_dict_pts = self.sess.run({"loss_geo": self.total_loss_geo,
"loss_geo_content":self.loss_geo_content,
"loss_geo_style": self.loss_geo_style,
"optim_op": self.optim_op_pts,
"batch_step": self.batch_step},
feed_dict={
self.bn_pl: False,
self.dropout_prob_pl:1.0})
self.log_string("step: {0:5d} st_pts_loss: {1:.8f} pts_loss_content: {2:.8f} pts_loss_style: {3:.8f}".
format(train_dict_pts["batch_step"], train_dict_pts["loss_geo"],
train_dict_pts["loss_geo_content"], train_dict_pts["loss_geo_style"]))
# geo only
# self.log_string("step: {0:5d} st_color_loss: {1:.3f} "
# "\n pts_loss_content: {2:.3f} pts_loss_style:{3:.3f}".
# format(train_dict_pts["batch_step"], train_dict_pts["loss_pts"],
# train_dict_pts["loss_pts_content"], train_dict_pts["loss_pts_style"]))
# # color only
# self.log_string("step: {0:5d} st_color_loss: {1:.3f} "
# "\n color_loss_content: {2:.3f} color_loss_style:{3:.3f}".
# format(train_dict_color["batch_step"], train_dict_color["loss_color"],
# train_dict_color["loss_color_content"], train_dict_color["loss_color_style"]))
else: # early fusion
if update_property.startswith("g"):
op = self.optim_op_pts
elif update_property.startswith("c"):
op = self.optim_op_color
elif update_property.startswith("t"):
op = self.optim_op_total
train_dict_pts = self.sess.run({"loss_total": self.total_loss,
"loss_content": self.loss_content,
"loss_style": self.loss_style,
"optim_op": op,
"batch_step": self.batch_step},
feed_dict={
self.bn_pl: False,
self.dropout_prob_pl: 1.0})
self.log_string("step: {0:5d} loss_total: {1:.5f} loss_content: {2:.5f} loss_style: {3:.5f}".format(
train_dict_pts["batch_step"],
train_dict_pts["loss_total"],
train_dict_pts["loss_content"],
train_dict_pts["loss_style"]))
def _get_learning_rate(self):
learning_rate = tf.train.exponential_decay(
self.base_lr, # Base learning rate.
self.batch_step * self.batch_size, # Current index into the dataset.
self.lr_decay_step, # Decay step.
self.lr_decay_rate, # Decay rate.
staircase=True)
self.lr = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
self.sum_lr = tf.summary.scalar(name="learning_rate", tensor=self.lr)
return True
def save_model(self, path, i):
"""
save model parameters
:param path:
:return:
"""
self.model_saver.save(self.sess, path, i)
return True
def restore_model(self, model_path):
"""
restore model graph and parameters from path
:param model_path:
:return:
"""
self.model_saver.restore(self.sess, model_path)
return True
def train_one_batch(self, batch_data, batch_label):
all_sum, _, loss, batch_step = self.sess.run([self.all_summary, self.optim_op, self.loss, self.batch_step],
feed_dict={
self.pointclouds_pl: batch_data,
self.labels_pl: batch_label,
self.bn_pl: True,
self.dropout_prob_pl:0.7})
self.summary_writer.add_summary(all_sum, batch_step)
self.log_string(
"global_step:{0:5d} train_loss: {1}".format(batch_step, loss))
return True
def eval_one_batch(self, batch_data, batch_label):
eval_dict = self.sess.run({"eval_logtis": self.logits}, feed_dict={
self.pointclouds_pl: batch_data,
self.labels_pl: batch_label,
self.bn_pl: False,
self.dropout_prob_pl:1.0})
return eval_dict
# def eval_one_epoch(self,):
def log_string(self, out_str):
self.log_fout.write(out_str + '\n')
self.log_fout.flush()
print(out_str)