forked from ayyyq/T-LSTM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BERT_THREE_PARSER.py
305 lines (262 loc) · 11.7 KB
/
BERT_THREE_PARSER.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import torch
import os
from scipy.stats import pearsonr
from torch.utils.data import DataLoader
from Model import Baseline_xlnet_re
import torch
import torch.optim as optim
import torch.nn.functional as F
import json
import time
from conllu import parse_incr
from collections import defaultdict, Counter
import pandas as pd
from tqdm import trange
import numpy as np
import spacy
import torch
from torchtext import data, datasets
from torchtext.vocab import Vectors
from torch.nn import init
from S_lstm.SModel import SModel
from S_lstm.SModelBert import SModelBert
from data_utils.data_loader_three_xlnet import SelfThreeDataset
from data_utils.data_loader_three_xlnet_trans import SelfThreeDataset_trans
from data_utils.data_loader_uds_xlnet_trans import SelfDataset_uds_bert
from data_utils.load_data import LoadData
from data_utils.load_uds import S_get_g_data_loader_split
from data_utils import SelfDataset
import argparse
import nni
import logging
logger = logging.getLogger('TLSTM_autoML')
# three golve without trans
# train_dataset = SelfThreeDataset_trans("./unified/meantime/train.conll", "./unified/meantime/dev.conll",
# "./unified/meantime/test.conll", 'train')
# dev_dataset = SelfThreeDataset_trans("./unified/meantime/train.conll", "./unified/meantime/dev.conll",
# "./unified/meantime/test.conll", 'dev')
# test_dataset = SelfThreeDataset_trans("./unified/meantime/train.conll", "./unified/meantime/dev.conll",
# "./unified/meantime/test.conll", 'test')
train_dataset = SelfDataset_uds_bert('train')
dev_dataset = SelfDataset_uds_bert('dev')
test_dataset = SelfDataset_uds_bert('test')
def get_parmas():
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--lr', '-l', type=float, help="lr must", default=0.001)
parser.add_argument('--batch_size', '-b', type=int, help="batch_size must", default=32)
parser.add_argument('--epoch', '-e', type=int, help="epoch must", default=128)
parser.add_argument('--dropout', '-d', type=float, help="dropout must", default=0.3)
parser.add_argument('--in_size', '-i', type=int, help="in_size must", default=512)
parser.add_argument('--g_size', '-g', type=int, help="g_size must", default=300)
args, _ = parser.parse_known_args()
return args
def run(args):
torch.cuda.empty_cache()
os.environ['CUDA_LAUNCH_BLOCKING'] = "0"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# torch.manual_seed(0)
# torch.cuda.manual_seed_all(0)
# torch.backends.cudnn.deterministic = True
torch.cuda.set_device(0)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# fileObject = open('./jsonFile.json', 'w')
# for dict_line in counter:
# print(dict(dict_line))
# jsObj = json.dumps(dict(dict_line))
# print(jsObj)
# fileObject.write(jsObj)
#
# fileObject.close()
def tokenizer(text):
return [tok for tok in text]
def get_pad_mask(seq, pad_idx):
return (seq != pad_idx).unsqueeze(-2)
resume = 0
start_epoch = 0
epoch = args['epoch']
train_batch_size = args['batch_size']
dev_batch_size = args['batch_size']
test_batch_size = args['batch_size']
# three bert with out bert
# train_dataset = SelfDataset_uds_bert('train')
# dev_dataset = SelfDataset_uds_bert('dev')
# test_dataset = SelfDataset_uds_bert('test')
train_iter = DataLoader(dataset=train_dataset,
batch_size=train_batch_size,
shuffle=True)
dev_iter = DataLoader(dataset=dev_dataset,
batch_size=dev_batch_size,
shuffle=True, drop_last=True)
test_iter = DataLoader(dataset=test_dataset,
batch_size=test_batch_size,
shuffle=False)
model = SModelBert(1024, in_size=args['in_size'], g_size=args['g_size'], linear_h_size=args['in_size'],
dropout=args['dropout'])
model.to(device)
optimizer = optim.Adam(model.parameters(), lr=args['lr'], betas=(0.9, 0.999), weight_decay=5e-4)
# pad_emb = np.load("./unified/uds/uds_bert/pad_emb.npy", allow_pickle=True)
pad_emb = np.zeros((1, 1024))
def trainer_train(epoch):
best_acc = torch.tensor([0.945]).to(device)
for cycle in trange(epoch):
temp_loss = 0.0
temp_mse = 0.0
count = 0
for text, text_emb, index, trigger_index, eep in train_iter:
model.train()
x = []
x_mask = []
max_len = 0
for ind in index:
if len(train_dataset.data[ind].sentence) > max_len:
max_len = len(train_dataset.data[ind].sentence)
mode = torch.tensor([pad_emb[0] for _ in range(max_len)], dtype=torch.float)
mode_mask = torch.zeros(max_len)
adj = []
for ind in index:
temp_mask = mode_mask.clone()
temp_mask[:len(train_dataset.data[ind].sentence)] = 1
temp = mode.clone()
temp[:len(train_dataset.data[ind].sentence_emb)] = torch.tensor(
train_dataset.data[ind].sentence_emb)
x.append(temp)
x_mask.append(temp_mask)
adj.append(train_dataset.data[ind].trans_data(max_len))
x = torch.stack(x, 0).to(device)
x_mask = torch.stack(x_mask, 0).unsqueeze(-2).to(device)
trigger = trigger_index.flatten().to(device)
adj = torch.stack(adj, 0).to(device).to_dense()
eep = eep.squeeze().to(device)
optimizer.zero_grad()
# out = model(x, adj, trigger, x_mask)
out = model(x, trigger, adj)
loss = F.smooth_l1_loss(out, eep)
accu = F.l1_loss(out, eep)
loss.backward()
optimizer.step()
temp_loss += loss.item()
temp_mse += accu.item()
count += 1
if count % 10 == 0:
test_loss = trainer_test(1)
if test_loss < best_acc:
best_acc = test_loss
dev_loss = trainer_dev(1)
test_loss = trainer_test(1)
nni.report_intermediate_result(test_loss)
logger.debug('dev mae %g', dev_loss)
logger.debug('test mae %g', test_loss)
if test_loss < best_acc:
best_acc = test_loss
nni.report_final_result(best_acc)
def trainer_dev(epoch):
loss_list = 0.0
for cycle in trange(epoch):
temp_loss = 0.0
temp_mse = 0.0
count = 0
model.eval()
for text, text_emb, index, trigger_index, eep in dev_iter:
x = []
x_mask = []
max_len = 0
for ind in index:
if len(dev_dataset.data[ind].sentence) > max_len:
max_len = len(dev_dataset.data[ind].sentence)
mode = torch.tensor([pad_emb[0] for _ in range(max_len)], dtype=torch.float)
mode_mask = torch.zeros(max_len)
adj = []
for ind in index:
temp_mask = mode_mask.clone()
temp_mask[:len(dev_dataset.data[ind].sentence)] = 1
temp = mode.clone()
temp[:len(dev_dataset.data[ind].sentence_emb)] = torch.tensor(dev_dataset.data[ind].sentence_emb)
x.append(temp)
x_mask.append(temp_mask)
adj.append(dev_dataset.data[ind].trans_data(max_len))
x = torch.stack(x, 0).to(device)
x_mask = torch.stack(x_mask, 0).unsqueeze(-2).to(device)
trigger = trigger_index.flatten().to(device)
adj = torch.stack(adj, 0).to(device).to_dense()
eep = eep.squeeze().to(device)
# optimizer.zero_grad()
out = model(x, trigger, adj)
# loss = F.smooth_l1_loss(out, eep)
accu = F.l1_loss(out, eep)
# loss.backward()
# optimizer.step()
temp_loss += accu.item()
count += 1
# print("dev loss:",(temp_loss / count))
if count != 0:
loss_list += (temp_loss / count)
return (loss_list / epoch)
def trainer_test(epoch):
loss_list = 0.0
for cycle in trange(epoch):
temp_loss = 0.0
temp_mse = 0.0
count = 0
model.eval()
eval_history_out = []
eval_history_label = []
for text, text_emb, index, trigger_index, eep in test_iter:
x = []
x_mask = []
max_len = 0
for ind in index:
if len(test_dataset.data[ind].sentence) > max_len:
max_len = len(test_dataset.data[ind].sentence)
mode = torch.tensor([pad_emb[0] for _ in range(max_len)], dtype=torch.float)
mode_mask = torch.zeros(max_len)
adj = []
for ind in index:
temp_mask = mode_mask.clone()
temp_mask[:len(test_dataset.data[ind].sentence)] = 1
temp = mode.clone()
temp[:len(test_dataset.data[ind].sentence_emb)] = torch.tensor(test_dataset.data[ind].sentence_emb)
x.append(temp)
x_mask.append(temp_mask)
adj.append(test_dataset.data[ind].trans_data(max_len))
x = torch.stack(x, 0).to(device)
x_mask = torch.stack(x_mask, 0).unsqueeze(-2).to(device)
trigger = trigger_index.flatten().to(device)
adj = torch.stack(adj, 0).to(device).to_dense()
eep = eep.squeeze().to(device)
out = model(x, trigger, adj)
loss = F.l1_loss(out, eep)
temp_loss += loss.item()
count += 1
eval_history_out = eval_history_out + out.cpu().detach().numpy().tolist()
eval_history_label = eval_history_label + eep.cpu().detach().numpy().tolist()
# print("dev loss:",(temp_loss / count))
loss_list += (temp_loss / count)
r = pearsonr(eval_history_out, eval_history_label)
print("test", loss_list / epoch)
print("r", r)
return (loss_list / epoch)
if resume: # resume为参数,第一次训练时设为0,中断再训练时设为1
model_path = os.path.join('/media/user1/325655435655094D/baseline/checkpoint/uds',
'smodel_bert_new.pth.tar')
assert os.path.isfile(model_path)
# model.load_state_dict(torch.load(model_path))
checkpoint = torch.load(model_path)
best_acc = checkpoint['loss']
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
print('Load checkpoint at epoch {}.'.format(start_epoch))
print('Best accuracy so far {}.'.format(best_acc))
trainer_train(epoch)
fina = trainer_test(1)
if __name__ == '__main__':
try:
tuner_params = nni.get_next_parameter()
logger.debug(tuner_params)
params = vars(get_parmas())
params.update(tuner_params)
print(params)
run(params)
except Exception as exception:
logger.exception(exception)
raise