-
Notifications
You must be signed in to change notification settings - Fork 52
/
run.py
144 lines (114 loc) · 3.89 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from lib.config import cfg, args
def run_dataset():
from lib.datasets import make_data_loader
import tqdm
cfg.train.num_workers = 0
data_loader = make_data_loader(cfg, is_train=False)
for batch in tqdm.tqdm(data_loader):
pass
def run_network():
from lib.networks import make_network
from lib.datasets import make_data_loader
from lib.utils.net_utils import load_network
import tqdm
import torch
import time
network = make_network(cfg).cuda()
load_network(network, cfg.trained_model_dir, epoch=cfg.test.epoch)
network.eval()
data_loader = make_data_loader(cfg, is_train=False)
total_time = 0
for batch in tqdm.tqdm(data_loader):
for k in batch:
if k != 'meta':
batch[k] = batch[k].cuda()
with torch.no_grad():
torch.cuda.synchronize()
start = time.time()
network(batch)
torch.cuda.synchronize()
total_time += time.time() - start
print(total_time / len(data_loader))
def run_evaluate():
from lib.datasets import make_data_loader
from lib.evaluators import make_evaluator
import tqdm
import torch
from lib.networks import make_network
from lib.utils import net_utils
from lib.networks.renderer import make_renderer
cfg.perturb = 0
cfg.eval = True
network = make_network(cfg).cuda()
net_utils.load_network(network,
cfg.trained_model_dir,
resume=cfg.resume,
epoch=cfg.test.epoch)
network.train()
data_loader = make_data_loader(cfg, is_train=False)
renderer = make_renderer(cfg, network)
evaluator = make_evaluator(cfg)
for batch in tqdm.tqdm(data_loader):
for k in batch:
if k != 'meta':
batch[k] = batch[k].cuda()
with torch.no_grad():
output = renderer.render(batch)
evaluator.evaluate(output, batch)
evaluator.summarize()
def run_visualize():
from lib.networks import make_network
from lib.datasets import make_data_loader
from lib.utils.net_utils import load_network
from lib.utils import net_utils
import tqdm
import torch
from lib.visualizers import make_visualizer
from lib.networks.renderer import make_renderer
cfg.perturb = 0
network = make_network(cfg).cuda()
load_network(network,
cfg.trained_model_dir,
resume=cfg.resume,
epoch=cfg.test.epoch,
strict=False)
network.train()
data_loader = make_data_loader(cfg, is_train=False)
renderer = make_renderer(cfg, network)
visualizer = make_visualizer(cfg)
for batch in tqdm.tqdm(data_loader):
for k in batch:
if k != 'meta':
batch[k] = batch[k].cuda()
with torch.no_grad():
output = renderer.render(batch)
visualizer.visualize(output, batch)
def run_light_stage():
from lib.utils.light_stage import ply_to_occupancy
ply_to_occupancy.ply_to_occupancy()
# ply_to_occupancy.create_voxel_off()
def run_evaluate_nv():
from lib.datasets import make_data_loader
from lib.evaluators import make_evaluator
import tqdm
from lib.utils import net_utils
data_loader = make_data_loader(cfg, is_train=False)
evaluator = make_evaluator(cfg)
for batch in tqdm.tqdm(data_loader):
for k in batch:
if k != 'meta':
batch[k] = batch[k].cuda()
evaluator.evaluate(batch)
evaluator.summarize()
def run_animation():
from tools import animate_mesh
animate_mesh.animate()
def run_raster():
from tools import rasterizer_mesh
renderer = rasterizer_mesh.Renderer()
renderer.render()
def run_lpips():
from tools import calculate_lpips
calculate_lpips.run()
if __name__ == '__main__':
globals()['run_' + args.type]()