Skip to content

Analyzes user's Instagram location geotags to find most frequent locations, countries, cities ...

License

Notifications You must be signed in to change notification settings

100tomer/instagram-analyzer

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

36 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Instagram Analyzer

PyPI made-with-python Tweet

instagram-analyzer is an application written in Python that analyzes geotags using reverse geocoding in user's Instagram photos and videos.

It provides the data of specific locations, countries and cities you've visited so far, as well as how many times and which Instagram posts match the location.

Use responsibly.

What it does

πŸ“ Store all instagram media data πŸ“·

Application loads all user's instagram media and saves it in JSON format to insta_media_data.json. This data includes all media metadata, including likes, location, tagged users, comments, image url-s ...

πŸ“ Store all instagram location data πŸ“Š

Analyzes geotags and saves locations in JSON format to insta_locations_data.json. This data includes occurrence for each location as well as image and instagram media url-s ...

πŸ“ Store all instagram countries and cities location data πŸ“‚

Countries and cities are additionally analyzed using reverse geocoding with LocationIQ API. Data is saved in insta_countires_data.json and insta_cities_data.json files.

πŸ“ Prints occurrences for location, country and city ✈️

You have visited 99 different locations
You have visited 7  different countries
You have visited 32 different cities

πŸ“ Print table view of most visited location, countries and cities 🌍

For example, when executed for nejckorasa print for countries looks like this:

Countries: 

+------+-----------------+-------------+
| rank | country         | occurrences |
+------+-----------------+-------------+
|  1   | Slovenia        |     51      |
+------+-----------------+-------------+
|  2   | The Netherlands |     12      |
+------+-----------------+-------------+
|  3   | Spain           |      8      |
+------+-----------------+-------------+
|  4   | Poland          |      8      |
+------+-----------------+-------------+
|  5   | Russia          |      7      |
+------+-----------------+-------------+
|  6   | Croatia         |      7      |
+------+-----------------+-------------+
|  7   | Hungary         |      6      |
+------+-----------------+-------------+

Similar tables are printed for specific locations and cities.

Install

To install instagram-analyzer:

$ pip install instagram-analyzer

To update instagram-analyzer:

$ pip install instagram-analyzer --upgrade

Usage

Once installed, import it, configure it and run it:

from instagram_analyzer import InstaAnalyzer

InstaAnalyzer(
    insta_token='<INSTAGRAM_TOKEN_HERE>',
    location_iq_token='<LOCATION_IQ_TOKEN_HERE>').run()

Before you run it, see Configuration & Options

Configuration & Options

Acquire Tokens

Acquire Instagram Access Token

Go to Pixelunion, generate token, don't forget the token!

Acquire Location IQ Access Token

Go to Location IQ, sign up, get the token, don't forget the token!

Configure and run

Create InstaAnalyzer instance with token values.

analyzer = InstaAnalyzer(
    insta_token='<INSTAGRAM_TOKEN_HERE>',
    location_iq_token='<LOCATION_IQ_TOKEN_HERE>')
analyzer.read_media_from_file = False
analyzer.run()

Once instagram media data is stored in JSON, you can read it from there, instead of loading it again via Instagram API (API is limited to 200 request per hour). Set analyzer.read_media_from_file = True

Options

  • location_iq_token is optional. If not set only basic location analysis will be run and saved to file.
  • Once InstaAnalyzer has been run all data is available to access:
# Configure InstaAnalyzer
analyzer = InstaAnalyzer(
    insta_token='<INSTAGRAM_TOKEN_HERE>',
    location_iq_token='<LOCATION_IQ_TOKEN_HERE>')
    
# Run InstaAnalyzer    
analyzer.run()

# Access cities, countries and location data
cities = analyzer.cities
countires = analyzer.countires
locations = analyzer.locations

# Access instagram media data
instagram_media = analyzer.insta_media_data

# Print locations later
analyzer.print_locations()

Stored data examples

When executed for nejckorasa data for one country item (Spain) looks like this:

"Spain": {
    "count": 8,
    "media_items": [
      [
        {
          "id": "<post_id>",
          "image": "https://scontent.cdninstagram.com/vp/e7705068da5e289f5e44c0c396c08f74/5BD54C95/t51.2885-15/sh0.08/e35/p640x640/36149213_609452269436842_8766778259800064000_n.jpg?efg=eyJ1cmxnZW4iOiJ1cmxnZW5fZnJvbV9pZyJ9",
          "link": "https://www.instagram.com/p/Bkh3-KfgxL9/"
        }
      ],
      {
        "id": "<post_id>",
        "image": "https://scontent.cdninstagram.com/vp/2b239894a363f6bbe93d604ab2cdfa8a/5BE953CD/t51.2885-15/sh0.08/e35/p640x640/33941046_171665143683479_8766885676932136960_n.jpg?efg=eyJ1cmxnZW4iOiJ1cmxnZW5fZnJvbV9pZyJ9",
        "link": "https://www.instagram.com/p/Bj7Uj56gxBs/"
      },
      {
        "id": "<post_id>",
        "image": "https://scontent.cdninstagram.com/vp/9d7003f674af9ca05accf9961df893a6/5BE28FDA/t51.2885-15/sh0.08/e35/p640x640/33120615_197967877520708_8731075699906969600_n.jpg?efg=eyJ1cmxnZW4iOiJ1cmxnZW5fZnJvbV9pZyJ9",
        "link": "https://www.instagram.com/p/Bjmp-6bAYus/"
      },
      {
        "id": "<post_id>",
        "image": "https://scontent.cdninstagram.com/vp/1e7ca79fc44823ff3ef8b24e6dd55e61/5BD1E8C3/t51.2885-15/sh0.08/e35/p640x640/33608474_597094857325212_724188974242856960_n.jpg?efg=eyJ1cmxnZW4iOiJ1cmxnZW5fZnJvbV9pZyJ9",
        "link": "https://www.instagram.com/p/BjR_9lpAqpc/"
      },
      {
        "id": "<post_id>",
        "image": "https://scontent.cdninstagram.com/vp/1b046c05b1cbe9708f57f5e591b68d1c/5BD8E039/t51.2885-15/sh0.08/e35/p640x640/32947036_172314443452529_4611639929133334528_n.jpg?efg=eyJ1cmxnZW4iOiJ1cmxnZW5fZnJvbV9pZyJ9",
        "link": "https://www.instagram.com/p/BjNEIwiA6Py/"
      },
      {
        "id": "<post_id>",
        "image": "https://scontent.cdninstagram.com/vp/5ac0e05fb60700cba4c41d6d1216eb5b/5BC8A9DB/t51.2885-15/e15/10802615_318814311644936_1896556761_n.jpg?efg=eyJ1cmxnZW4iOiJ1cmxnZW5fZnJvbV9pZyJ9",
        "link": "https://www.instagram.com/p/vdWuHBkwuY/"
      },
      {
        "id": "<post_id>",
        "image": "https://scontent.cdninstagram.com/vp/40620d8f5e7e01a546e2b958d18bd42a/5BE9E99F/t51.2885-15/e15/10784835_319487204924131_388050040_n.jpg?efg=eyJ1cmxnZW4iOiJ1cmxnZW5fZnJvbV9pZyJ9",
        "link": "https://www.instagram.com/p/vYybQyEwiA/"
      },
      {
        "id": "<post_id>",
        "image": "https://scontent.cdninstagram.com/vp/b733c0bdf312ee5c21bb3fd6148e6221/5BE263EA/t51.2885-15/e15/10802986_691193854310946_2042620114_n.jpg?efg=eyJ1cmxnZW4iOiJ1cmxnZW5fZnJvbV9pZyJ9",
        "link": "https://www.instagram.com/p/vc9ZFakwrq/"
      },
      {
        "id": "<post_id>",
        "image": "https://scontent.cdninstagram.com/vp/875bff08c310444273eae90a67e525dd/5BC8F29F/t51.2885-15/e15/928044_671144066338855_1666493611_n.jpg?efg=eyJ1cmxnZW4iOiJ1cmxnZW5fZnJvbV9pZyJ9",
        "link": "https://www.instagram.com/p/vaWbQLEwqX/"
      }
    ]
  }

Of course, <post_id> will be an actual post ID.

Data for cities is almost the same. For specific location one location item looks like this:

"236678869": {
    "latitude": 45.7925,
    "longitude": 15.1647,
    "name": "Novo Mesto",
    "id": 236678869,
    "count": 4,
    "media_items": [
      {
        "id": "<post_id>",
        "image": "https://scontent.cdninstagram.com/vp/6941d16b164ec488dd3a303004344f78/5BE40DE8/t51.2885-15/sh0.08/e35/p640x640/31270267_1592482480868234_8257495365851283456_n.jpg?efg=eyJ1cmxnZW4iOiJ1cmxnZW5fZnJvbV9pZyJ9",
        "link": "https://www.instagram.com/p/Bij24yzAdHB/"
      },
      {
        "id": "<post_id>",
        "image": "https://scontent.cdninstagram.com/vp/3189c0f2e5931f47b4506046ff26afff/5BDB6109/t51.2885-15/e15/10724200_1496985983889525_746072573_n.jpg?efg=eyJ1cmxnZW4iOiJ1cmxnZW5fZnJvbV9pZyJ9",
        "link": "https://www.instagram.com/p/uDDPHekwtW/"
      },
      {
        "id": "<post_id>",
        "image": "https://scontent.cdninstagram.com/vp/fbf31b5c410c9036ce43862012249d02/5BEC3F36/t51.2885-15/e15/10488704_250740985124191_1862853011_n.jpg?efg=eyJ1cmxnZW4iOiJ1cmxnZW5fZnJvbV9pZyJ9",
        "link": "https://www.instagram.com/p/q94LWMkwlk/"
      },
      {
        "id": "<post_id>",
        "image": "https://scontent.cdninstagram.com/vp/27c6681709c7b71fc86d8477c11d2b88/5BCAD041/t51.2885-15/e15/10013254_641464529259998_1091484863_n.jpg?efg=eyJ1cmxnZW4iOiJ1cmxnZW5fZnJvbV9pZyJ9",
        "link": "https://www.instagram.com/p/mKDvsikwsC/"
      }
    ],
    "city": "Novo mesto",
    "additional_data": {
      "place_id": "113385772",
      "licence": "\u00a9 LocationIQ.org CC BY 4.0, Data \u00a9 OpenStreetMap contributors, ODbL 1.0",
      "osm_type": "way",
      "osm_id": "167321715",
      "lat": "45.7897769",
      "lon": "15.1680662",
      "display_name": "Krka, Novo mesto, Jugovzhodna Slovenija, 8000, Slovenia",
      "address": {
        "suburb": "Krka",
        "town": "Novo mesto",
        "state_district": "Jugovzhodna Slovenija",
        "postcode": "8000",
        "country": "Slovenia",
        "country_code": "si"
      },
      "boundingbox": [
        "45.7858017",
        "45.7927137",
        "15.1640388",
        "15.1725268"
      ]
    }
  }

Notice additional_data field, this data is populated using Location IQ API

FAQ

Why does it take so long to load additional location data?

For reverse geocoding, Location IQ API is used. Free version of that API si rate limited to 1 request per second. That is why additional data loading takes <different_location_count> seconds.

Contributing

Pull requests are welcome, Show your ❀ with a β˜…

About

Analyzes user's Instagram location geotags to find most frequent locations, countries, cities ...

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%