there is a pytorch version, trained with mobilenetv2, it is more simple.
This is a tensorflow implement mobilenetv3-centernet framework, which can be easily deployeed on Android(MNN) and IOS(CoreML) mobile devices, end to end.
Purpose: Light detection algorithms that work on mobile devices is widely used, such as face detection. So there is an easy project contains model training and model converter.
** contact me if u have question [email protected] **
no test time augmentation.
model | input_size | map | [email protected] | [email protected] |
---|---|---|---|---|
mbv3-large-0.75-modified_head | 512x512 | 0.251 | 0.423 | 0.258 |
-
tensorflow 1.14
-
tensorpack 0.9.9 (for data provider)
-
opencv
-
python 3.6
-
MNNConverter
-
coremltools
-
download mscoco data, then run
python prepare_coco_data.py --mscocodir ./mscoco
-
download pretrained model from mbv3-large0.75 relese it in the current dir.
-
then, modify in config=mb3_config in train_config.py, then run:
python train.py
and if u want to check the data when training, u could set vis in confifs/mscoco/mbv3_config.py as True
-
After training, freeze the model as .pb by
python tools/auto_freeze.py --pretrained_mobile ./model/yourmodel.ckpt
it will produce a detector.pb
python model_eval/custome_eval.py [--model [TRAINED_MODEL]] [--annFile [cocostyle annFile]]
[--imgDir [the images dir]] [--is_show [show the result]]
python model_eval/custome_eval.py --model model/detector.pb
--annFile ../mscoco/annotations/instances_val2017.json
--imgDir ../mscoco/val2017
--is_show 1
ps, no test time augmentation is used.
- download the trained model, modify the config config.MODEL.pretrained_model='yourmodel.ckpt', and set config.MODEL.continue_train=True
python train.py
if u get a trained model and dont need to work on mobile device, run python tools/auto_freeze.py
, it will read the checkpoint file in ./model, and produce detector.pb, then
python visualization/vis.py
u can check th code in visualization to make it runable, it's simple.
I have carefully processed the postprocess, and it can works within the model, so it could be deployed end to end.
4.1 MNN
+ 4.1.1 convert model
just use the MNN converter, for example:
`./MNNConvert -f TF --modelFile detector.pb --MNNModel centernet.mnn --bizCode biz --fp16 1`
+ 4.1.2 visualization with mnn python wrapper
`python visualization/vis_with_mnn.py --mnn_model centernet.mnn --imgDir 'your image dir'`
4.2 coreml
+ 4.2.1 convert
`python tools/converter_to_coreml.py`
+ 4.2.2 visualization with coreml python wrapper
`python visualization/vis_with_coreml.py --coreml_model centernet.mlmodel --imgDir 'your image dir'`
ps, if you want to do quantization, please reffer to the official doc, it is easy.
- Android project.