-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
104 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,16 +1,10 @@ | ||
venv | ||
.env | ||
__pycache__ | ||
# Ignore specific large files | ||
yolov8m-pose.pt | ||
*.mp4 # ignores all .mp4 files; remove this line if some .mp4 files should be tracked | ||
ball/lib/python3.11/site-packages/torch/lib/libtorch_cpu.dylib | ||
venv/lib/python3.11/site-packages/torch/lib/libtorch_cpu.dylib | ||
|
||
# Ignore entire directories | ||
ball/ | ||
src/pose_estimation/ | ||
tmp/ | ||
|
||
# Ignore all .json files in tmp/ directory; adjust as per requirement | ||
tmp/*.json |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
import cv2 | ||
import time | ||
import imageio | ||
import torch | ||
import math | ||
import json | ||
from ultralytics import YOLO | ||
|
||
|
||
class PoseEstimator: | ||
def __init__(self, model_path='yolov8m-pose.pt', video_path='test_video.mp4', combinations=None): | ||
self.model_path = model_path | ||
self.video_path = video_path | ||
self.model = YOLO(model_path) | ||
self.combinations = combinations if combinations is not None else [ | ||
(5, 7, 9), # Left arm: shoulder, elbow, wrist | ||
(6, 8, 10), # Right arm: shoulder, elbow, wrist | ||
(11, 13, 15), # Left leg: hip, knee, ankle | ||
(12, 14, 16), # Right leg: hip, knee, ankle | ||
(5, 6, 8), # Shoulder, right shoulder, right elbow (shoulder angle) | ||
(6, 5, 7), # Right shoulder, left shoulder, left elbow | ||
(11, 12, 14), # Hip, right hip, right knee | ||
(12, 11, 13), # Right hip, left hip, left knee | ||
(5, 11, 12), # Left shoulder, left hip, right hip | ||
(6, 12, 11) # Right shoulder, right hip, left hip | ||
] | ||
|
||
@staticmethod | ||
def compute_angle(p1, p2, p3): | ||
vector_a = p1 - p2 | ||
vector_b = p3 - p2 | ||
|
||
vector_a = vector_a / torch.norm(vector_a) | ||
vector_b = vector_b / torch.norm(vector_b) | ||
|
||
cosine_angle = torch.dot(vector_a, vector_b) | ||
angle_radians = torch.acos(cosine_angle) | ||
|
||
angle_degrees = angle_radians * 180 / math.pi | ||
|
||
return angle_degrees | ||
|
||
def estimate_pose(self): | ||
|
||
cap = cv2.VideoCapture(self.video_path) | ||
writer = imageio.get_writer("tmp/test_result.mp4", mode="I") | ||
|
||
pose_data = [] | ||
|
||
angle_names = [ | ||
"Left arm", "Right arm", "Left leg", "Right leg", | ||
"Shoulder (L-R-E)", "Right shoulder (R-L-E)", "Hip (L-R-K)", | ||
"Right hip (R-L-K)", "Left shoulder (L-H-RH)", "Right shoulder (R-H-LH)" | ||
] | ||
|
||
while cap.isOpened(): | ||
success, frame = cap.read() | ||
if success: | ||
start_time = time.time() | ||
results = self.model(frame, verbose=False) | ||
keypoints = results[0].keypoints.xy | ||
|
||
annotated_frame = results[0].plot() | ||
|
||
frame_pose_data = {'frame': cap.get(cv2.CAP_PROP_POS_FRAMES)} | ||
|
||
for idx, combination in enumerate(self.combinations): | ||
p1 = keypoints[0][combination[0]] | ||
p2 = keypoints[0][combination[1]] | ||
p3 = keypoints[0][combination[2]] | ||
|
||
angle_degrees = self.compute_angle(p1, p2, p3) | ||
|
||
print(f"{angle_names[idx]} Angle: {angle_degrees.item():.2f}°") | ||
|
||
frame_pose_data[f'angle_{idx}'] = angle_degrees.item() | ||
|
||
cv2.putText(annotated_frame, f"{angle_degrees:.2f}°", | ||
(int(p2[0]), int(p2[1])), cv2.FONT_HERSHEY_COMPLEX, | ||
0.5, (255, 255, 0), 1, cv2.LINE_AA) | ||
|
||
pose_data.append(frame_pose_data) | ||
|
||
end_time = time.time() | ||
fps = 1 / (end_time - start_time) | ||
|
||
cv2.putText(annotated_frame, f"FPS: {int(fps)}", (10, 50), | ||
cv2.FONT_HERSHEY_COMPLEX, 1.2, (255, 0, 255), 1, cv2.LINE_AA) | ||
|
||
annotated_frame = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB) | ||
writer.append_data(annotated_frame) | ||
|
||
if cv2.waitKey(1) & 0xFF == ord('q'): | ||
break | ||
else: | ||
break | ||
|
||
writer.close() | ||
cap.release() | ||
cv2.destroyAllWindows() | ||
|
||
with open("tmp/pose_data.json", "w") as f: | ||
json.dump(pose_data, f) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters