Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

summary now functional #3

Merged
merged 1 commit into from
Aug 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 6 additions & 10 deletions bin/plot.R
100644 → 100755
Original file line number Diff line number Diff line change
@@ -1,13 +1,10 @@
#!/usr/bin/env Rscript


install.packages("argparser")
library(tidyverse)
library(broom)
library(ggplot2)
library("magrittr")
library(dplyr)
library(readr)
library(tidyr)
library(argparser)


p <- arg_parser("create visuals for Varcraft summary")
# Add command line arguments

Expand All @@ -27,9 +24,9 @@ step<-argv$step
df <- read_csv("summary.csv") %>%
mutate(y = 100*n/length)

cash <- read_tsv("results.txt",col_names = c("name", "year_a", "ps"))
#cash <- read_tsv("results.txt",col_names = c("name", "year_a", "ps"))

mash <- read_tsv("results.txt", col_names = c("sample", "mock", "true_ani")) %>%
mash <- read_tsv("mash.txt", col_names = c("sample", "mock", "true_ani")) %>%
mutate(x=100*(1-true_ani)) %>%
select(sample, mock, true_ani, x) #list column name to select
library(stringr)
Expand Down Expand Up @@ -66,7 +63,6 @@ mash <- mash %>%

df <- merge(df, mash, by=c("sample","ani","rep")) %>% unique()


p <- ggplot(df, aes(x=100*ani, y=true_ani))+
geom_point()+
labs(x="Predicted ANI (Mash)", y = "Actual ANI")+
Expand Down
63 changes: 63 additions & 0 deletions bin/summary.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
#!/usr/bin/env Rscript

library(tidyverse)
library(broom)

# load dataframe
df <- read_csv("summary.csv") %>%
mutate(ani = 100*ani,
y = 100*n/length)

mash <- read_tsv("mash.txt", col_names = c("sample", "mock", "true_ani")) %>%
separate_wider_delim(cols = c("mock"), delim = '_', names = c("id","ani","rep")) %>%
mutate(true_ani = as.numeric(true_ani),
sample = str_remove_all(id, pattern = '.ani'),
ani = str_remove_all(ani, pattern = '.rep'),
ani = 100*as.numeric(str_replace_all(ani, pattern = '-', replacement = '.')),
rep = str_remove_all(rep, pattern = ".fasta")
) %>%
select(sample, ani, rep, true_ani)

df <- merge(df, mash, by=c("sample","ani","rep"))

p <- ggplot(df, aes(x=ani, y=true_ani))+
geom_point()+
labs(x="Predicted ANI (Mash)", y = "Actual ANI")+
theme_bw()
ggsave(plot = p, filename = "pred-vs-ani_act.jpg", dpi = 300, width = 5, height = 4)
#
p <- df %>%
mutate(diff = ani-true_ani) %>%
ggplot(aes(x=ani, y=diff))+
geom_point()+
labs(x="Predicted ANI", y = "Difference (Actual ANI - Predicted ANI)")+
theme_bw()
ggsave(plot = p, filename = "ani_diff.jpg", dpi = 300, width = 5, height = 4)

# https://douglas-watson.github.io/post/2018-09_exponential_curve_fitting/
fit <- nls(y ~ SSasymp(true_ani, yf, y0, log_alpha), data = df)
sink("summary.nls.txt")
summary(fit)
sink()

df.fitted <- augment(fit, newdata = data.frame(true_ani=seq(from=min(df$ani), to=max(df$ani), by = 0.0001)))
write.csv(x=df.fitted, file="df_fitted.csv", quote=F, row.names=F)

threshold <- df.fitted %>%
filter( abs(`.fitted`) == min(abs(`.fitted`))) %>%
filter( true_ani == max(true_ani)) %>%
.$true_ani %>%
as.character()
writeLines(threshold, "threshold.txt")
# output funtion from r script

# Threshold @ 0: 96.0936
cat(paste0("Threshold @ 0: ",threshold, sep = "\n"))

p <- ggplot(data = augment(fit), aes(x=as.numeric(true_ani), y=as.numeric(y)))+
geom_point()+
geom_line(data = df.fitted, aes(x=as.numeric(true_ani), y=as.numeric(.fitted)))+
geom_vline(xintercept = as.numeric(threshold), linetype="dashed", color = "red")+
theme_bw()+
labs(x="Sample-Reference % ANI", y = "% Ambiguous Bases (N) in Consensus")
ggsave(plot = p, filename = "nls.jpg", dpi = 300, width = 5, height = 4)
3 changes: 1 addition & 2 deletions conf/modules.config
Original file line number Diff line number Diff line change
Expand Up @@ -51,8 +51,7 @@ process {
stageInMode = 'copy'
publishDir = [
[
path: { "${params.outdir}/" },
pattern: "none",
path: { "${params.outdir}/summary/" },
mode: 'copy'
],
]
Expand Down
20 changes: 8 additions & 12 deletions modules/local/summary.nf
Original file line number Diff line number Diff line change
@@ -1,27 +1,23 @@
process SUMMARY {
label 'process_medium'

container 'docker.io/hnh0303/varcraft-tool:1.0'
container 'docker.io/jdj0303/epitome-base:1.0'

input:
tuple val(sample), path(assemblies), path(ref), path(summary)
//path assemblies
//val sample
//path summary
path assemblies
path mash

output:
path "${sample}_summary.csv", emit: summary
path "df_fitted.csv", emit: df_fitted
path "threshold.txt", emit: threshold
path "*.jpg", emit: plots

when:
task.ext.when == null || task.ext.when

script:
"""
cat ${summary}
ls ${assemblies} | wc -l > assembly_count.txt
cat ${assemblies} > all.fa
echo ${sample}
summary.sh all.fa
mv summary.csv ${sample}_summary.csv
summary.sh ${assemblies}
summary.R
"""
}
2 changes: 1 addition & 1 deletion nextflow.config
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ params {
input = null
max_ani = 0.2
min_ani = 0
step = 0.1
step = 0.05
rep = 1

// References
Expand Down
5 changes: 2 additions & 3 deletions workflows/varcraft.nf
Original file line number Diff line number Diff line change
Expand Up @@ -162,9 +162,8 @@ workflow VARCRAFT {
IVAR_CONSENSUS.out.consensus.collect().view()
SUMMARY (

IVAR_CONSENSUS.out.as_sample//.collect()
.combine(manifest.map{ sample, assembly, fastq_1, fastq_2 -> [ sample, assembly ] })
.combine(MASH.out.mash_summary).collect().view()
IVAR_CONSENSUS.out.consensus.splitFasta().collectFile(name: 'all.fa'),
MASH.out.mash_summary.map{ sample, summary -> summary }.splitText().collectFile(name: 'mash.txt')


)
Expand Down
Loading