Skip to content

Commit

Permalink
fix
Browse files Browse the repository at this point in the history
  • Loading branch information
IshiguroYoshihiro committed Jul 16, 2024
1 parent c4511e0 commit 21c0005
Showing 1 changed file with 36 additions and 36 deletions.
72 changes: 36 additions & 36 deletions theories/absolute_continuity.v
Original file line number Diff line number Diff line change
Expand Up @@ -875,6 +875,7 @@ exists (bigcap2 S setT)=> [i |]; last by rewrite bigcap2E setIT.
by rewrite /bigcap2; case: ifP => // _; case: ifP => // _; apply: openT.
Qed.

(*
Lemma Gdelta_restriction_open (R : topologicalType) (S U : set R) :
Gdelta S -> open U -> S `<=` U -> exists (s_ : (set R)^nat),
[/\ (forall n, s_ n `<=` U), (forall n, open (s_ n)) & S = \bigcap_i s_ i].
Expand Down Expand Up @@ -902,7 +903,7 @@ rewrite /S_.
have := Gdelta_restriction_open GdeltaS openU SU.
rewrite /Gdelta_restr.
case: cid.
Admitted.
Abort.
Lemma Gdelta_restriction_Gdelta (R : topologicalType) (S U : set R) :
Gdelta S -> Gdelta U -> S `<=` U -> exists (s_ : (set R)^nat),
Expand Down Expand Up @@ -930,7 +931,7 @@ rewrite /=.
move=> x.
by move=> [].
*)

*)
Context (R : realType).

Lemma Gdelta_measurable (S : set R) : Gdelta S -> (@measurable _ R) S.
Expand Down Expand Up @@ -2978,7 +2979,8 @@ Qed.
Notation mu := (@lebesgue_measure R).

Lemma measure_image_nondecreasing_fun (G : (set R)^nat) :
\bigcap_k (G k) `<=` `]a, b[ ->
(* \bigcap_k (G k) `<=` `]a, b[ -> *)
(forall k, G k `<=` `]a, b[) ->
(forall k, open (G k)) ->
let Z := \bigcap_k (G k) in
mu (F @` Z) = mu (\bigcap_k F @` G k).
Expand All @@ -2987,59 +2989,50 @@ have ndF' : {in `[a, b]%classic &, {homo F : n m / n <= m}}.
move=> x y.
rewrite !inE/=.
exact: ndF.
move=> UGab oG.
pose G' := (fun n => (G n) `&` `]a, b[).
have G'ab k : G' k `<=` `[a, b].
apply: (@subset_trans _ `]a, b[%classic).
exact: subIsetr.
move=> Gab oG.
have Gab' : forall k, G k `<=` `[a, b].
move=> k.
apply: (@subset_trans _ `]a, b[%classic) => //.
exact: subset_itv_oo_cc.
have [HSl HSr] := lemma1 F G'ab.
have [HSl HSr] := lemma1 F Gab'.
move=> Z.
have ZE : Z = \bigcap_k G' k.
by rewrite bigcapIl// setIidl.
apply/eqP; rewrite eq_le; apply/andP; split.
apply: le_outer_measure.
rewrite ZE.
apply: (subset_trans HSr).
apply: subset_bigcap => /= i _.
apply: image_subset.
exact: subIsetl.
rewrite [leLHS](_:_= mu (\bigcap_i [set F x | x in G' i] `\` preimages_gt1 F)); last first.
exact: image_subset.
rewrite [leLHS](_:_= mu (\bigcap_i [set F x | x in G i] `\` preimages_gt1 F)); last first.
rewrite measureD /=; last 3 first.
apply: bigcap_measurable => // k _.
apply: measurable_image_open_nondecreasing_fun.
exact: subIsetr.
apply: openI => //.
exact: interval_open.
exact: Gab.
exact: oG.
exact: is_borel_preimages_gt1_nondecreasing_fun => //.
apply: (@le_lt_trans _ _ (mu (F @` G' 0%N))).
apply: (@le_lt_trans _ _ (mu (F @` G 0%N))).
apply: le_outer_measure.
exact: (@bigcap_inf _ _ _ setT).
apply: (@le_lt_trans _ _ (mu (F @` `]a, b[))).
apply: le_outer_measure.
apply: image_subset.
exact: subIsetr.
exact: Gab.
rewrite integral_continuous_nondecreasing_itv //; last first.
move: ndF.
apply: in2_subset_itv.
exact: subset_itv_oo_cc.
by rewrite -EFinB ltey.
rewrite [X in (_ - X)%E](_:_ = 0) ?sube0//.
apply/eqP; rewrite eq_le; apply/andP; split.


admit.
admit.
apply/eqP; rewrite eq_le; apply/andP; split => //.
rewrite [leRHS](_:_ = mu (preimages_gt1 F)); last first.
apply: esym.
rewrite countable_lebesgue_measure0//.
exact: is_countable_preimages_gt1_nondecreasing_fun.
apply: le_outer_measure.
exact: subIsetr.
rewrite ZE.
apply/eqP; rewrite eq_le; apply/andP; split.
rewrite [leRHS](_:_ = mu (preimages_gt1 F)); last first.
apply: esym.
rewrite countable_lebesgue_measure0//.
apply: is_countable_preimages_gt1_nondecreasing_fun.
exact: ab.
exact: ndF'.
apply: le_outer_measure.
exact: subIsetr.
exact: outer_measure_ge0.
exact: le_outer_measure.
Admitted.
Qed.

End lemma2iicontinuous.

Expand Down Expand Up @@ -3908,9 +3901,16 @@ have muFG0 : mu (\bigcap_k [set f x | x in G_ k]) = 0.
apply: bigcup_open => i _.
rewrite /E_ -(bigcup_mkord (n_ i) (fun k => `](ab_ i k).1, (ab_ i k).2[%classic)).
by apply: bigcup_open => j _; exact: interval_open.
have FIXME : \bigcap_k G_ k `<=` `]a, b[.
have Gab : forall k : nat, G_ k `<=` `]a, b[.
move=> k.
rewrite /G_.
apply: bigcup_sub => i /= ki.
rewrite /E_.
rewrite -(bigcup_mkord (n_ i) (fun k => `](ab_ i k).1, (ab_ i k).2[%classic)).
apply: bigcup_sub => j /= jni.
(* apply: (H3 _ _ _).2. *)
admit.
have := @measure_image_nondecreasing_fun R a b F ab nndf cf G_ FIXME Gopen.
have := @measure_image_nondecreasing_fun R a b F ab nndf cf G_ Gab Gopen.
by rewrite /= -/A -completed_lebesgue_measureE mfA0.
have : (e0%:num%:E <= limn (fun n => mu (F @` G_ n)))%E.
apply: lime_ge; last exact: nearW.
Expand Down

0 comments on commit 21c0005

Please sign in to comment.