Skip to content

Support for Speech2Text, Images-Classification, Tabular Data, Zero-Shot-NER, via Wav2Vec2, Tapas, VIT , 4000+ New Models, 90+ Languages, in John Snow Labs NLU 4.2.0

Compare
Choose a tag to compare
@C-K-Loan C-K-Loan released this 20 Mar 23:15
· 1 commit to release/4.2.0 since this release

Support for Speech2Text, Images-Classification, Tabular Data, Zero-Shot-NER, via Wav2Vec2, Tapas, VIT , 4000+ New Models, 90+ Languages, in John Snow Labs NLU 4.2.0

We are incredibly excited to announce NLU 4.2.0 has been released with new 4000+ models in 90+ languages and support for new 8 Deep Learning Architectures.
4 new tasks are included for the very first time,
Zero-Shot-NER, Automatic Speech Recognition, Image Classification and Table Question Answering powered
by Wav2Vec 2.0, HuBERT, TAPAS, VIT, SWIN, Zero-Shot-NER.

Additionally, CamemBERT based architectures are available for Sequence and Token Classification powered by Spark-NLPs
CamemBertForSequenceClassification and CamemBertForTokenClassification

Automatic Speech Recognition (ASR)

Demo Notebook
Wav2Vec 2.0 and HuBERT enable ASR for the very first time in NLU.
Wav2Vec2 is a transformer model for speech recognition that uses unsupervised pre-training on large amounts of unlabeled speech data to improve the accuracy of automatic speech recognition (ASR) systems. It is based on a self-supervised learning approach that learns to predict masked portions of speech signal, and has shown promising results in reducing the amount of labeled training data required for ASR tasks.

These Models are powered by Spark-NLP's Wav2Vec2ForCTC Annotator
Wav2Vec2

HuBERT models match or surpass the SOTA approaches for speech representation learning for speech recognition, generation, and compression. The Hidden-Unit BERT (HuBERT) approach was proposed for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss.

These Models is powered by Spark-NLP's HubertForCTC Annotator

HUBERT

Usage

You just need an audio-file on disk and pass the path to it or a folder of audio-files.

import nlu
# Let's download an audio file 
!wget https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/resources/en/audio/samples/wavs/ngm_12484_01067234848.wav
# Let's listen to it 
from IPython.display import Audio
FILE_PATH = "ngm_12484_01067234848.wav"
asr_df = nlu.load('en.speech2text.wav2vec2.v2_base_960h').predict('ngm_12484_01067234848.wav')
asr_df
text
PEOPLE WHO DIED WHILE LIVING IN OTHER PLACES

To test out HuBERT you just need to update the parameter for load()

asr_df = nlu.load('en.speech2text.hubert').predict('ngm_12484_01067234848.wav')
asr_df

Image Classification

Demo Notebook

For the first time ever NLU introduces state-of-the-art image classifiers based on
VIT and Swin giving you access to hundreds of image classifiers for various domains.

Inspired by the Transformer scaling successes in NLP, the researchers experimented with applying a standard Transformer directly to images, with the fewest possible modifications. To do so, images are split into patches and the sequence of linear embeddings of these patches were provided as an input to a Transformer. Image patches were actually treated the same way as tokens (words) in an NLP application. Image classification models were trained in supervised fashion.

You can check Scale Vision Transformers (ViT) Beyond Hugging Face article to learn deeper how ViT works and how it is implemeted in Spark NLP.
This is Powerd by Spark-NLP's VitForImageClassification Annotator

VIT

Swin is a hierarchical Transformer whose representation is computed with Shifted windows.
The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection.
This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks
This is powerd by Spark-NLP's Swin For Image Classification
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.

swin

Usage:

# Download an image
os.system('wget https://raw.githubusercontent.com/JohnSnowLabs/nlu/release/4.2.0/tests/datasets/ocr/vit/ox.jpg') 
# Load VIT model and predict on image file
vit = nlu.load('en.classify_image.base_patch16_224').predict('ox.jpg')

Lets download a folder of images and predict on it

!wget -q https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/resources/en/images/images.zip
import shutil
shutil.unpack_archive("images.zip", "images", "zip")
! ls /content/images/images/

Once we have image data its easy to label it, we just pass the folder with images to nlu.predict()
and NLU will return a pandas DF with one row per image detected

nlu.load('en.classify_image.base_patch16_224').predict('/content/images/images')

image_classification 1.png

To use SWIN we just update the parameter to load()

load('en.classify_image.swin.tiny').predict('/content/images/images')

Visual Table Question Answering

TapasForQuestionAnswering can load TAPAS Models with a cell selection head and optional aggregation head on top for question-answering tasks on tables (linear layers on top of the hidden-states output to compute logits and optional logits_aggregation), e.g. for SQA, WTQ or WikiSQL-supervised tasks. TAPAS is a BERT-based model specifically designed (and pre-trained) for answering questions about tabular data.

Demo Notebook

Powered by TAPAS: Weakly Supervised Table Parsing via Pre-training
TAPAS

Usage:

First we need a pandas dataframe on for which we want to ask questions. The so called "context"

import pandas as pd 

context_df = pd.DataFrame({
    'name':['Donald Trump','Elon Musk'], 
    'money': ['$100,000,000','$20,000,000,000,000'], 
    'married': ['yes','no'], 
    'age' : ['75','55'] })
context_df

Then we create an array of questions

questions = [
    "Who earns less than 200,000,000?",
    "Who earns more than 200,000,000?",
    "Who earns 100,000,000?",
    "How much money has Donald Trump?",
    "Who is the youngest?",
]
questions

Now Combine the data, pass it to NLU and get answers for your questions

import nlu
# Now we combine both to a tuple and we are done! We can now pass this to the .predict() method
tapas_data  = (context_df, questions)
# Lets load a TAPAS QA model and predict on (context,question). 
# It will give us an aswer for every question in the questions array, based on the context in context_df
answers = nlu.load('en.answer_question.tapas.wtq.large_finetuned').predict(tapas_data)
answers
sentence tapas_qa_UNIQUE_aggregation tapas_qa_UNIQUE_answer tapas_qa_UNIQUE_cell_positions tapas_qa_UNIQUE_cell_scores tapas_qa_UNIQUE_origin_question
Who earns less than 200,000,000? NONE Donald Trump [0, 0] 1 Who earns less than 200,000,000?
Who earns more than 200,000,000? NONE Elon Musk [0, 1] 1 Who earns more than 200,000,000?
Who earns 100,000,000? NONE Donald Trump [0, 0] 1 Who earns 100,000,000?
How much money has Donald Trump? SUM SUM($100,000,000) [1, 0] 1 How much money has Donald Trump?
Who is the youngest? NONE Elon Musk [0, 1] 1 Who is the youngest?

Zero-Shot NER

Demo Notebook
Based on John Snow Labs Enterprise-NLP ZeroShotNerModel
This architecture is based on RoBertaForQuestionAnswering.
Zero shot models excel at generalization, meaning that the model can accurately predict entities in very different data sets without the need to fine tune the model or train from scratch for each different domain.
Even though a model trained to solve a specific problem can achieve better accuracy than a zero-shot model in this specific task,
it probably won’t be be useful in a different task.
That is where zero-shot models shows its usefulness by being able to achieve good results in various domains.

Usage:

We just need to load the zero-shot NER model and configure a set of entity definitions.

import nlu 
# load zero-shot ner model
enterprise_zero_shot_ner = nlu.load('en.zero_shot.ner_roberta')

# Configure entity definitions
enterprise_zero_shot_ner['zero_shot_ner'].setEntityDefinitions(
    {
        "PROBLEM": [
            "What is the disease?",
            "What is his symptom?",
            "What is her disease?",
            "What is his disease?",
            "What is the problem?",
            "What does a patient suffer",
            "What was the reason that the patient is admitted to the clinic?",
        ],
        "DRUG": [
            "Which drug?",
            "Which is the drug?",
            "What is the drug?",
            "Which drug does he use?",
            "Which drug does she use?",
            "Which drug do I use?",
            "Which drug is prescribed for a symptom?",
        ],
        "ADMISSION_DATE": ["When did patient admitted to a clinic?"],
        "PATIENT_AGE": [
            "How old is the patient?",
            "What is the gae of the patient?",
        ],
    }
)

Then we can already use this pipeline to predict labels

# Predict entities
df = enterprise_zero_shot_ner.predict(
    [
        "The doctor pescribed Majezik for my severe headache.",
        "The patient was admitted to the hospital for his colon cancer.",
        "27 years old patient was admitted to clinic on Sep 1st by Dr."+
        "X for a right-sided pleural effusion for thoracentesis.",
    ]
)
df
document entities_zero_shot entities_zero_shot_class entities_zero_shot_confidence entities_zero_shot_origin_chunk entities_zero_shot_origin_sentence
The doctor pescribed Majezik for my severe headache. Majezik DRUG 0.646716 0 0
The doctor pescribed Majezik for my severe headache. severe headache PROBLEM 0.552635 1 0
The patient was admitted to the hospital for his colon cancer. colon cancer PROBLEM 0.88985 0 0
27 years old patient was admitted to clinic on Sep 1st by Dr. X for a right-sided pleural effusion for thoracentesis. 27 years old PATIENT_AGE 0.694308 0 0
27 years old patient was admitted to clinic on Sep 1st by Dr. X for a right-sided pleural effusion for thoracentesis. Sep 1st ADMISSION_DATE 0.956461 1 0
27 years old patient was admitted to clinic on Sep 1st by Dr. X for a right-sided pleural effusion for thoracentesis. a right-sided pleural effusion for thoracentesis PROBLEM 0.500266 2 0

New Notebooks

New Models Overview

Supported Languages are:
ab, am, ar, ba, bem, bg, bn, ca, co, cs, da, de, dv, el, en, es, et, eu, fa, fi, fon, fr, fy, ga, gam, gl, gu, ha, he, hi, hr, hu, id, ig, is, it, ja, jv, kin, kn, ko, kr, ku, ky, la, lg, lo, lt, lu, luo, lv, lwt, ml, mn, mr, ms, mt, nb, nl, no, pcm, pl, pt, ro, ru, rw, sg, si, sk, sl, sq, st, su, sv, sw, swa, ta, te, th, ti, tl, tn, tr, tt, tw, uk, unk, ur, uz, vi, wo, xx, yo, yue, zh, zu

Automatic Speech Recognition Models Overview

Language NLU Reference Spark NLP Reference Annotator Class
ab ab.speech2text.wav2vec_xlsr.gpu.by_hf_test asr_xls_r_ab_test_by_hf_test_gpu Wav2Vec2ForCTC
ba ba.speech2text.wav2vec_xlsr.v2_large_300m_gpu asr_wav2vec2_large_xls_r_300m_bashkir_cv7_opt_gpu Wav2Vec2ForCTC
bem bem.speech2text.wav2vec_xlsr.v2_large_gpu.by_csikasote asr_wav2vec2_large_xlsr_bemba_gpu Wav2Vec2ForCTC
bg bg.speech2text.wav2vec_xlsr.v2_large_300m_d2_gpu asr_wav2vec2_large_xls_r_300m_d2_gpu Wav2Vec2ForCTC
ca ca.speech2text.wav2vec2.voxpopuli.v2_large_gpu asr_wav2vec2_large_100k_voxpopuli_catala_by_ccoreilly_gpu Wav2Vec2ForCTC
cs cs.speech2text.wav2vec_xlsr.v2_large.by_arampacha asr_wav2vec2_large_xlsr_czech Wav2Vec2ForCTC
da da.speech2text.wav2vec2.v2_base asr_alvenir_wav2vec2_base_nst_cv9 Wav2Vec2ForCTC
de de.speech2text.wav2vec_xlsr.v3_large.by_marcel asr_wav2vec2_large_xlsr_german_demo Wav2Vec2ForCTC
el el.speech2text.wav2vec_xlsr.v3_large_gpu.by_skylord asr_wav2vec2_large_xlsr_greek_2_gpu Wav2Vec2ForCTC
en en.speech2text.wav2vec_xlsr.v2gpu.by_bakhtullah123 asr_xlsr_training_gpu Wav2Vec2ForCTC
fa fa.speech2text.wav2vec2.v2_gpu_s117_exp asr_exp_w2v2t_pretraining_s117_gpu Wav2Vec2ForCTC
fa fa.speech2text.wav2vec_xlsr.v2_s44_exp asr_exp_w2v2t_xls_r_s44 Wav2Vec2ForCTC
fi fi.speech2text.wav2vec2.voxpopuli.v2_base asr_wav2vec2_base_10k_voxpopuli Wav2Vec2ForCTC
fi fi.speech2text.wav2vec_xlsrby_aapot asr_wav2vec2_xlsr_1b_finnish_lm_by_aapot Wav2Vec2ForCTC
fon fon.speech2text.wav2vec_xlsr asr_fonxlsr Wav2Vec2ForCTC
fr fr.speech2text.wav2vec_xlsr.v2_s800_exp asr_exp_w2v2t_xlsr_53_s800 Wav2Vec2ForCTC
gu gu.speech2text.wav2vec_xlsr.v2_large_gpu asr_wav2vec2_large_xlsr_gpu Wav2Vec2ForCTC
hi hi.speech2text.wav2vec2.by_harveenchadha asr_hindi_model_with_lm_vakyansh Wav2Vec2ForCTC
hi hi.speech2text.wav2vec_xlsr.v2_large_gpu asr_wav2vec2_large_xlsr_hindi_gpu Wav2Vec2ForCTC
hu hu.speech2text.wav2vec2.voxpopuli.v2_base_gpu asr_wav2vec2_base_10k_voxpopuli_gpu Wav2Vec2ForCTC
hu hu.speech2text.wav2vec_xlsr.v2_large_gpu.by_gchhablani asr_wav2vec2_large_xlsr_gpu Wav2Vec2ForCTC
id id.speech2text.wav2vec_xlsr.v2_s449_exp asr_exp_w2v2t_xlsr_53_s449 Wav2Vec2ForCTC
it it.speech2text.wav2vec2.v2_gpu_s149_vp_exp asr_exp_w2v2t_vp_100k_s149_gpu Wav2Vec2ForCTC
it it.speech2text.wav2vec_xlsr.v2_s417_exp asr_exp_w2v2t_xls_r_s417 Wav2Vec2ForCTC
ja ja.speech2text.wav2vec_xlsr.v2_large asr_wav2vec2_large_xlsr_japanese_hiragana Wav2Vec2ForCTC
ko ko.speech2text.wav2vec_xlsr.v2_large_gpu asr_wav2vec2_large_xlsr_korean_gpu Wav2Vec2ForCTC
kr kr.speech2text.wav2vec_xlsr.v2 asr_wav2vec2_xlsr_korean_senior Wav2Vec2ForCTC
kr kr.speech2text.wav2vec_xlsr.v2_gpu asr_wav2vec2_xlsr_korean_senior_gpu Wav2Vec2ForCTC
ku ku.speech2text.wav2vec_xlsr.gpu asr_xlsr_kurmanji_kurdish_gpu Wav2Vec2ForCTC
ky ky.speech2text.wav2vec_xlsr.v2_large asr_wav2vec2_large_xlsr_53_kyrgyz Wav2Vec2ForCTC
ky ky.speech2text.wav2vec_xlsr.v2_large_gpu.by_iarfmoose asr_wav2vec2_large_xlsr_kyrgyz_by_iarfmoose_gpu Wav2Vec2ForCTC
la la.speech2text.wav2vec2.v2_base asr_wav2vec2_base_latin Wav2Vec2ForCTC
la la.speech2text.wav2vec2.v2_base_gpu asr_wav2vec2_base_latin_gpu Wav2Vec2ForCTC
lg lg.speech2text.wav2vec_xlsr.v2_multilingual_gpu asr_wav2vec2_xlsr_multilingual_56_gpu Wav2Vec2ForCTC
lt lt.speech2text.wav2vec_xlsr.v2_large_gpu.by_dundar asr_wav2vec2_large_xlsr_53_lithuanian_by_dundar_gpu Wav2Vec2ForCTC
lv lv.speech2text.wav2vec_xlsr.v2_large asr_wav2vec2_large_xlsr_53_latvian Wav2Vec2ForCTC
lv lv.speech2text.wav2vec_xlsr.v2_large_gpu.by_jimregan asr_wav2vec2_large_xlsr_latvian_gpu Wav2Vec2ForCTC
mn mn.speech2text.wav2vec_xlsr.v2_large_gpu.by_manandey asr_wav2vec2_large_xlsr_mongolian_by_manandey_gpu Wav2Vec2ForCTC
nl nl.speech2text.wav2vec_xlsr.v2_s972_exp asr_exp_w2v2t_xlsr_53_s972 Wav2Vec2ForCTC
pt pt.speech2text.wav2vec_xlsr.voxforge1.gpu.by_lgris asr_bp_voxforge1_xlsr_gpu Wav2Vec2ForCTC
ro ro.speech2text.wav2vec_xlsr.v2_large_gpu asr_wav2vec2_large_xlsr_53_romanian_by_gmihaila_gpu Wav2Vec2ForCTC
sg sg.speech2text.wav2vec_xlsr.v2_large_gpu asr_wav2vec2_large_xlsr_53_swiss_german_gpu Wav2Vec2ForCTC
su su.speech2text.wav2vec_xlsr.v2_large_gpu asr_wav2vec2_large_xlsr_sundanese_gpu Wav2Vec2ForCTC
sv sv.speech2text.wav2vec_xlsr.v2_large_gpu.by_marma asr_wav2vec2_large_xlsr_swedish_gpu Wav2Vec2ForCTC
tt tt.speech2text.wav2vec_xlsr.v2_large_small asr_wav2vec2_large_xlsr_53_W2V2_TATAR_SMALL Wav2Vec2ForCTC
tw tw.speech2text.wav2vec_xlsr.v2 asr_wav2vec2large_xlsr_akan Wav2Vec2ForCTC
uz uz.speech2text.wav2vec2 asr_uzbek_stt Wav2Vec2ForCTC
vi vi.speech2text.wav2vec_xlsr.v2_large_gpu.by_not_tanh asr_wav2vec2_large_xlsr_53_vietnamese_by_not_tanh_gpu Wav2Vec2ForCTC
wo wo.speech2text.wav2vec_xlsr.v2_300m_gpu asr_av2vec2_xls_r_300m_wolof_lm_gpu Wav2Vec2ForCTC
yue yue.speech2text.wav2vec_xlsr.v2_large_gpu asr_wav2vec2_large_xlsr_cantonese_by_ctl_gpu Wav2Vec2ForCTC

Image Classification Models Overview

Language NLU Reference Spark NLP Reference Annotator Class
en en.classify_image.Check_GoodBad_Teeth image_classifier_vit_Check_GoodBad_Teeth ViTForImageClassification
en en.classify_image.Check_Gum_Teeth image_classifier_vit_Check_Gum_Teeth ViTForImageClassification
en en.classify_image.Check_Missing_Teeth image_classifier_vit_Check_Missing_Teeth ViTForImageClassification
en en.classify_image.Infrastructures image_classifier_vit_Infrastructures ViTForImageClassification
en en.classify_image.Insectodoptera image_classifier_vit_Insectodoptera ViTForImageClassification
en en.classify_image.Tomato_Leaf_Classifier image_classifier_vit_Tomato_Leaf_Classifier ViTForImageClassification
en en.classify_image.Visual_transformer_chihuahua_cookies image_classifier_vit_Visual_transformer_chihuahua_cookies ViTForImageClassification
en en.classify_image._spectrogram image_classifier_vit__spectrogram ViTForImageClassification
en en.classify_image.age_classifier image_classifier_vit_age_classifier ViTForImageClassification
en en.classify_image.airplanes image_classifier_vit_airplanes ViTForImageClassification
en en.classify_image.animal_classifier image_classifier_vit_animal_classifier ViTForImageClassification
en en.classify_image.anomaly image_classifier_vit_anomaly ViTForImageClassification
en en.classify_image.apes image_classifier_vit_apes ViTForImageClassification
en en.classify_image.autotrain_cifar10__base image_classifier_vit_autotrain_cifar10__base ViTForImageClassification
en en.classify_image.autotrain_dog_vs_food image_classifier_vit_autotrain_dog_vs_food ViTForImageClassification
en en.classify_image.baked_goods image_classifier_vit_baked_goods ViTForImageClassification
en en.classify_image.base_beans image_classifier_vit_base_beans ViTForImageClassification
en en.classify_image.base_cats_vs_dogs image_classifier_vit_base_cats_vs_dogs ViTForImageClassification
en en.classify_image.base_cifar10 image_classifier_vit_base_cifar10 ViTForImageClassification
en en.classify_image.base_food101 image_classifier_vit_base_food101 ViTForImageClassification
en en.classify_image.base_movie_scenes_v1 image_classifier_vit_base_movie_scenes_v1 ViTForImageClassification
en en.classify_image.base_mri image_classifier_vit_base_mri ViTForImageClassification
en en.classify_image.base_patch16_224 image_classifier_vit_base_patch16_224 ViTForImageClassification
en en.classify_image.base_patch16_224.by_google image_classifier_vit_base_patch16_224 ViTForImageClassification
en en.classify_image.base_patch16_224_cifar10 image_classifier_vit_base_patch16_224_cifar10 ViTForImageClassification
en en.classify_image.base_patch16_224_finetuned_eurosat image_classifier_vit_base_patch16_224_finetuned_eurosat ViTForImageClassification
en en.classify_image.base_patch16_224_finetuned_kvasirv2_colonoscopy image_classifier_vit_base_patch16_224_finetuned_kvasirv2_colonoscopy ViTForImageClassification
en en.classify_image.base_patch16_224_in21k_snacks image_classifier_vit_base_patch16_224_in21k_snacks ViTForImageClassification
en en.classify_image.base_patch16_224_in21k_ucSat image_classifier_vit_base_patch16_224_in21k_ucSat ViTForImageClassification
en en.classify_image.base_patch16_224_recylce_ft image_classifier_vit_base_patch16_224_recylce_ft ViTForImageClassification
en en.classify_image.base_patch16_384 image_classifier_vit_base_patch16_384 ViTForImageClassification
en en.classify_image.base_patch16_384.by_google image_classifier_vit_base_patch16_384 ViTForImageClassification
en en.classify_image.base_patch32_384.by_google image_classifier_vit_base_patch32_384 ViTForImageClassification
en en.classify_image.base_xray_pneumonia image_classifier_vit_base_xray_pneumonia ViTForImageClassification
en en.classify_image.baseball_stadium_foods image_classifier_vit_baseball_stadium_foods ViTForImageClassification
en en.classify_image.beer_vs_wine image_classifier_vit_beer_vs_wine ViTForImageClassification
en en.classify_image.beer_whisky_wine_detection image_classifier_vit_beer_whisky_wine_detection ViTForImageClassification
en en.classify_image.blocks image_classifier_vit_blocks ViTForImageClassification
en en.classify_image.cifar10 image_classifier_vit_cifar10 ViTForImageClassification
en en.classify_image.cifar_10_2 image_classifier_vit_cifar_10_2 ViTForImageClassification
en en.classify_image.computer_stuff image_classifier_vit_computer_stuff ViTForImageClassification
en en.classify_image.croupier_creature_classifier image_classifier_vit_croupier_creature_classifier ViTForImageClassification
en en.classify_image.deit_base_patch16_224 image_classifier_vit_deit_base_patch16_224 ViTForImageClassification
en en.classify_image.deit_base_patch16_224.by_facebook image_classifier_vit_deit_base_patch16_224 ViTForImageClassification
en en.classify_image.deit_flyswot image_classifier_vit_deit_flyswot ViTForImageClassification
en en.classify_image.deit_small_patch16_224 image_classifier_vit_deit_small_patch16_224 ViTForImageClassification
en en.classify_image.deit_small_patch16_224.by_facebook image_classifier_vit_deit_small_patch16_224 ViTForImageClassification
en en.classify_image.deit_tiny_patch16_224 image_classifier_vit_deit_tiny_patch16_224 ViTForImageClassification
en en.classify_image.deit_tiny_patch16_224.by_facebook image_classifier_vit_deit_tiny_patch16_224 ViTForImageClassification
en en.classify_image.demo image_classifier_vit_demo ViTForImageClassification
en en.classify_image.denver_nyc_paris image_classifier_vit_denver_nyc_paris ViTForImageClassification
en en.classify_image.diam image_classifier_vit_diam ViTForImageClassification
en en.classify_image.digital image_classifier_vit_digital ViTForImageClassification
en en.classify_image.dog image_classifier_vit_dog ViTForImageClassification
en en.classify_image.dog_breed_classifier image_classifier_vit_dog_breed_classifier ViTForImageClassification
en en.classify_image.dog_food__base_patch16_224_in21k image_classifier_vit_dog_food__base_patch16_224_in21k ViTForImageClassification
en en.classify_image.dog_races image_classifier_vit_dog_races ViTForImageClassification
en en.classify_image.dog_vs_chicken image_classifier_vit_dog_vs_chicken ViTForImageClassification
en en.classify_image.doggos_lol image_classifier_vit_doggos_lol ViTForImageClassification
en en.classify_image.dogs image_classifier_vit_dogs ViTForImageClassification
en en.classify_image.dwarf_goats image_classifier_vit_dwarf_goats ViTForImageClassification
en en.classify_image.electric_2 image_classifier_vit_electric_2 ViTForImageClassification
en en.classify_image.electric_pole_type_classification image_classifier_vit_electric_pole_type_classification ViTForImageClassification
en en.classify_image.ex_for_evan image_classifier_vit_ex_for_evan ViTForImageClassification
en en.classify_image.finetuned_eurosat_kornia image_classifier_vit_finetuned_eurosat_kornia ViTForImageClassification
en en.classify_image.flowers image_classifier_vit_flowers ViTForImageClassification
en en.classify_image.food image_classifier_vit_food ViTForImageClassification
en en.classify_image.fruits image_classifier_vit_fruits ViTForImageClassification
en en.classify_image.garbage_classification image_classifier_vit_garbage_classification ViTForImageClassification
en en.classify_image.grain image_classifier_vit_grain ViTForImageClassification
en en.classify_image.greens image_classifier_vit_greens ViTForImageClassification
en en.classify_image.hot_dog_or_sandwich image_classifier_vit_hot_dog_or_sandwich ViTForImageClassification
en en.classify_image.hotdog_not_hotdog image_classifier_vit_hotdog_not_hotdog ViTForImageClassification
en en.classify_image.housing_categories image_classifier_vit_housing_categories ViTForImageClassification
en en.classify_image.hugging_geese image_classifier_vit_hugging_geese ViTForImageClassification
en en.classify_image.ice_cream image_classifier_vit_ice_cream ViTForImageClassification
en en.classify_image.iiif_manuscript_ image_classifier_vit_iiif_manuscript_ ViTForImageClassification
en en.classify_image.indian_snacks image_classifier_vit_indian_snacks ViTForImageClassification
en en.classify_image.koala_panda_wombat image_classifier_vit_koala_panda_wombat ViTForImageClassification
en en.classify_image.lawn_weeds image_classifier_vit_lawn_weeds ViTForImageClassification
en en.classify_image.llama_alpaca_guanaco_vicuna image_classifier_vit_llama_alpaca_guanaco_vicuna ViTForImageClassification
en en.classify_image.llama_alpaca_snake image_classifier_vit_llama_alpaca_snake ViTForImageClassification
en en.classify_image.llama_or_potato image_classifier_vit_llama_or_potato ViTForImageClassification
en en.classify_image.llama_or_what image_classifier_vit_llama_or_what ViTForImageClassification
en en.classify_image.lotr image_classifier_vit_lotr ViTForImageClassification
en en.classify_image.lucky_model image_classifier_vit_lucky_model ViTForImageClassification
en en.classify_image.lung_cancer image_classifier_vit_lung_cancer ViTForImageClassification
en en.classify_image.mit_indoor_scenes image_classifier_vit_mit_indoor_scenes ViTForImageClassification
en en.classify_image.modelversion01 image_classifier_vit_modelversion01 ViTForImageClassification
en en.classify_image.my_bean_VIT image_classifier_vit_my_bean_VIT ViTForImageClassification
en en.classify_image.new_york_tokyo_london image_classifier_vit_new_york_tokyo_london ViTForImageClassification
en en.classify_image.occupation_prediction image_classifier_vit_occupation_prediction ViTForImageClassification
en en.classify_image.opencampus_age_detection image_classifier_vit_opencampus_age_detection ViTForImageClassification
en en.classify_image.orcs_and_friends image_classifier_vit_orcs_and_friends ViTForImageClassification
en en.classify_image.oz_fauna image_classifier_vit_oz_fauna ViTForImageClassification
en en.classify_image.pasta_pizza_ravioli image_classifier_vit_pasta_pizza_ravioli ViTForImageClassification
en en.classify_image.pasta_shapes image_classifier_vit_pasta_shapes ViTForImageClassification
en en.classify_image.places image_classifier_vit_places ViTForImageClassification
en en.classify_image.planes_airlines image_classifier_vit_planes_airlines ViTForImageClassification
en en.classify_image.planes_trains_automobiles image_classifier_vit_planes_trains_automobiles ViTForImageClassification
en en.classify_image.puppies_classify image_classifier_vit_puppies_classify ViTForImageClassification
en en.classify_image.rare_bottle image_classifier_vit_rare_bottle ViTForImageClassification
en en.classify_image.roomclassifier image_classifier_vit_roomclassifier ViTForImageClassification
en en.classify_image.rust_image_classification_1 image_classifier_vit_rust_image_classification_1 ViTForImageClassification
en en.classify_image.skin_type image_classifier_vit_skin_type ViTForImageClassification
en en.classify_image.snacks image_classifier_vit_snacks ViTForImageClassification
en en.classify_image.south_indian_foods image_classifier_vit_south_indian_foods ViTForImageClassification
en en.classify_image.string_instrument_detector image_classifier_vit_string_instrument_detector ViTForImageClassification
en en.classify_image.vc_bantai__withoutAMBI_adunest image_classifier_vit_vc_bantai__withoutAMBI_adunest ViTForImageClassification
en en.classify_image.trainer_rare_puppers image_classifier_vit_trainer_rare_puppers ViTForImageClassification
en en.classify_image.world_landmarks image_classifier_vit_world_landmarks ViTForImageClassification

Install NLU

pip install nlu pyspark

Additional NLU resources