Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

improve projection of PseudoDensities #159

Merged
merged 4 commits into from
Sep 24, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .JuliaFormatter.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
style = "blue"
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "TopOpt"
uuid = "53a1e1a5-51bb-58a9-8a02-02056cc81109"
authors = ["mohamed82008 <[email protected]>", "yijiangh <[email protected]>"]
version = "0.7.3"
version = "0.8.0"

[deps]
AbstractDifferentiation = "c29ec348-61ec-40c8-8164-b8c60e9d9f3d"
Expand Down
19 changes: 17 additions & 2 deletions src/TopOpt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,13 +8,28 @@ using Requires, Reexport, ChainRulesCore
struct PseudoDensities{I,P,F,T,N,A<:AbstractArray{T,N}} <: AbstractArray{T,N}
x::A
end
function Base.setindex!(A::PseudoDensities, x, inds...)
return A.x[inds...] = x
end
function PseudoDensities(x::A) where {T,N,A<:AbstractArray{T,N}}
return PseudoDensities{false,false,false,T,N,A}(x)
end
function PseudoDensities{I,P,F}(x::A) where {I,P,F,T,N,A<:AbstractArray{T,N}}
return PseudoDensities{I,P,F,T,N,A}(x)
end

Base.BroadcastStyle(::Type{T}) where {T<:PseudoDensities} = Broadcast.ArrayStyle{T}()
function Base.similar(
bc::Broadcast.Broadcasted{Broadcast.ArrayStyle{T}}, ::Type{ElType}
) where {T,ElType}
return similar(T, axes(bc))
end
function Base.similar(
::Type{<:TV}, axes::Tuple{Union{Integer,Base.OneTo},Vararg{Union{Integer,Base.OneTo}}}
) where {I,P,F,T,N,A,TV<:PseudoDensities{I,P,F,T,N,A}}
return PseudoDensities{I,P,F}(similar(A, axes))
end

function ChainRulesCore.rrule(
::Type{PseudoDensities{I,P,F,T,N,A}}, x::Matrix
) where {I,P,F,T,N,A}
Expand Down Expand Up @@ -104,6 +119,6 @@ export TopOpt,
MMA87,
MMA02,
HeavisideProjection,
ProjectedPenalty,
PowerPenalty
SigmoidProjection,
ProjectedPenalty
end
1 change: 1 addition & 0 deletions src/Utilities/Utilities.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ using ForwardDiff, Ferrite, IterativeSolvers, Requires
export AbstractPenalty,
PowerPenalty,
RationalPenalty,
SinhPenalty,
HeavisideProjection,
SigmoidProjection,
ProjectedPenalty,
Expand Down
21 changes: 15 additions & 6 deletions src/Utilities/penalties.jl
Original file line number Diff line number Diff line change
@@ -1,21 +1,27 @@
import ..TopOpt: PseudoDensities

abstract type AbstractPenalty{T} end
abstract type AbstractCPUPenalty{T} <: AbstractPenalty{T} end
abstract type AbstractProjection end

function (P::AbstractCPUPenalty)(x::PseudoDensities{I,<:Any,F}) where {I,F}
return PseudoDensities{I,true,F}(P.(x.x))
end

mutable struct PowerPenalty{T} <: AbstractCPUPenalty{T}
p::T
end
@inline (P::PowerPenalty)(x) = x^(P.p)
(P::PowerPenalty)(x::Real) = x^(P.p)

mutable struct RationalPenalty{T} <: AbstractCPUPenalty{T}
p::T
end
@inline (R::RationalPenalty)(x) = x / (1 + R.p * (1 - x))
(R::RationalPenalty)(x::Real) = x / (1 + R.p * (1 - x))

mutable struct SinhPenalty{T} <: AbstractCPUPenalty{T}
p::T
end
@inline (R::SinhPenalty)(x) = sinh(R.p * x) / sinh(R.p)
(R::SinhPenalty)(x::Real) = sinh(R.p * x) / sinh(R.p)

struct ProjectedPenalty{T,Tpen<:AbstractPenalty{T},Tproj} <: AbstractCPUPenalty{T}
penalty::Tpen
Expand All @@ -24,17 +30,20 @@ end
function ProjectedPenalty(penalty::AbstractPenalty{T}) where {T}
return ProjectedPenalty(penalty, HeavisideProjection(10 * one(T)))
end
@inline (P::ProjectedPenalty)(x) = P.penalty(P.proj(x))
@inline (P::ProjectedPenalty)(x::Real) = P.penalty(P.proj(x))
@forward_property ProjectedPenalty penalty

mutable struct HeavisideProjection{T} <: AbstractProjection
β::T
end
@inline (P::HeavisideProjection)(x) = 1 - exp(-P.β * x) + x * exp(-P.β)
@inline (P::HeavisideProjection)(x::Real) = 1 - exp(-P.β * x) + x * exp(-P.β)
(P::HeavisideProjection)(x::AbstractArray) = P.(x)

mutable struct SigmoidProjection{T} <: AbstractProjection
β::T
end
@inline (P::SigmoidProjection)(x) = 1 / (1 + exp((P.β + 1) * (-x + 0.5)))
@inline (P::SigmoidProjection)(x::Real) = 1 / (1 + exp((P.β + 1) * (-x + 0.5)))
(P::SigmoidProjection)(x::AbstractArray) = P.(x)

import Base: copy
copy(p::TP) where {TP<:AbstractPenalty} = TP(p.p)
Expand Down
34 changes: 27 additions & 7 deletions test/Functions/test_common_fns.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,11 +6,31 @@ using Ferrite: ndofs_per_cell, getncells

Random.seed!(1)

get_pen_T(::PseudoDensities{<:Any,T,<:Any}) where {T} = T

@testset "Projections and penalties" begin
for proj in (HeavisideProjection(5.0), SigmoidProjection(4.0))
for T1 in (true, false), T2 in (true, false), T3 in (true, false)
x = PseudoDensities{T1,T2,T3}(rand(4))
@test typeof(proj(x)) === typeof(x)
@test typeof(proj.(x)) === typeof(x)
end
end

for pen in (PowerPenalty(3.0), RationalPenalty(3.0), SinhPenalty(3.0))
for T1 in (true, false), T2 in (true, false), T3 in (true, false)
x = PseudoDensities{T1,T2,T3}(rand(4))
@test get_pen_T(pen(x)) === true
@test get_pen_T(ProjectedPenalty(pen)(x)) === true
end
end
end

@testset "Compliance" begin
nels = (2, 2)
problem = HalfMBB(Val{:Linear}, nels, (1.0, 1.0), 1.0, 0.3, 1.0)
for p in (1.0, 2.0, 3.0)
solver = FEASolver(Direct, problem; xmin=0.01, penalty=TopOpt.PowerPenalty(p))
solver = FEASolver(Direct, problem; xmin=0.01, penalty=PowerPenalty(p))
comp = Compliance(solver)
f = x -> comp(PseudoDensities(x))
for i in 1:3
Expand All @@ -29,7 +49,7 @@ end
nels = (2, 2)
problem = HalfMBB(Val{:Linear}, nels, (1.0, 1.0), 1.0, 0.3, 1.0)
for p in (1.0, 2.0, 3.0)
solver = FEASolver(Direct, problem; xmin=0.01, penalty=TopOpt.PowerPenalty(p))
solver = FEASolver(Direct, problem; xmin=0.01, penalty=PowerPenalty(p))
dp = Displacement(solver)
u = dp(PseudoDensities(solver.vars))
for _ in 1:3
Expand All @@ -50,7 +70,7 @@ end
nels = (2, 2)
problem = HalfMBB(Val{:Linear}, nels, (1.0, 1.0), 1.0, 0.3, 1.0)
for p in (1.0, 2.0, 3.0)
solver = FEASolver(Direct, problem; xmin=0.01, penalty=TopOpt.PowerPenalty(p))
solver = FEASolver(Direct, problem; xmin=0.01, penalty=PowerPenalty(p))
vol = Volume(solver)
constr = x -> vol(PseudoDensities(x)) - 0.3
for i in 1:3
Expand All @@ -69,8 +89,8 @@ end
nels = (2, 2)
problem = HalfMBB(Val{:Linear}, nels, (1.0, 1.0), 1.0, 0.3, 1.0)
for p in (1.0, 2.0, 3.0)
solver = FEASolver(Direct, problem; xmin=0.01, penalty=TopOpt.PowerPenalty(p))
filter = TopOpt.DensityFilter(solver; rmin=4.0)
solver = FEASolver(Direct, problem; xmin=0.01, penalty=PowerPenalty(p))
filter = DensityFilter(solver; rmin=4.0)
for i in 1:3
x = rand(prod(nels))
v = rand(prod(nels))
Expand Down Expand Up @@ -114,7 +134,7 @@ end
end
problem = MultiLoad(base_problem, F)
for p in (1.0, 2.0, 3.0)
solver = FEASolver(Direct, problem; xmin=0.01, penalty=TopOpt.PowerPenalty(p))
solver = FEASolver(Direct, problem; xmin=0.01, penalty=PowerPenalty(p))
exact_svd_block = BlockCompliance(problem, solver; method=:exact)
constr = Nonconvex.FunctionWrapper(
x -> exact_svd_block(x) .- 1000.0,
Expand All @@ -138,7 +158,7 @@ end
nels = (2, 2)
problem = HalfMBB(Val{:Linear}, nels, (1.0, 1.0), 1.0, 0.3, 1.0)
for p in (1.0, 2.0, 3.0)
solver = FEASolver(Direct, problem; xmin=0.01, penalty=TopOpt.PowerPenalty(p))
solver = FEASolver(Direct, problem; xmin=0.01, penalty=PowerPenalty(p))
st = StressTensor(solver)
# element stress tensor - element 1
est = st[1]
Expand Down