Skip to content

[SIGGRAPH Asia 2023] Code for our paper "RT-Octree: Accelerate PlenOctree Rendering with Batched Regular Tracking and Neural Denoising for Real-time Neural Radiance Fields"

Notifications You must be signed in to change notification settings

LumiOwO/RT-Octree

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RT-Octree: Accelerate PlenOctree Rendering with Batched Regular Tracking and Neural Denoising for Real-time Neural Radiance Fields (SIGGRAPH Asia 2023)

Environment (Tested)

  • Ubuntu 20.04
  • Python 3.9
  • CUDA 11.x
  • Pytorch 1.11.0+cu113
  • Libtorch 1.11.0

Install

Conda Environment

conda create -n RTOctree python=3.9
conda activate RTOctree
pip install -r requirements.txt

Libtorch

Please unzip libtorch to the root of the repository.

wget https://download.pytorch.org/libtorch/cu113/libtorch-cxx11-abi-shared-with-deps-1.11.0%2Bcu113.zip
unzip libtorch-cxx11-abi-shared-with-deps-1.11.0+cu113.zip

You can download libtorch from these links:

Data

For inference, we use pretrained PlenOctree models download from here.

For training our GuidanceNet, NeRF-Synthetic dataset (Download Link) and TanksAndTemple dataset (Download Link) are used. The noisy input of these datasets can be rendered by disable the denoiser in renderer.

We also provide a preprocessed noisy dataset and trained model for each scene using SPP=6 (Download Link)

Renderer

Build

Linux

mkdir build
cd build
cmake ../renderer
make -j12

Windows

mkdir build
cd build
cmake ../renderer

Then find the .sln file in the build directory and use Visual Studio to build the project.

Run

Use volrend_headless to perform offscreen rendering. Here is an example.

export DATASET=blender
export SCENE=lego
export TREE=../data/nerf_synthetic/$SCENE/tree.npz
export POSES=../data/nerf_synthetic/$SCENE/transforms_test.json
export TS_MODULE=../data/nerf_synthetic/$SCENE/ts_latest.ts
export OUT_DIR=../logs/$SCENE/test
export OPTIONS=../renderer/options/opt.json

# Test and write images
./volrend_headless $TREE $POSES --options=$OPTIONS --ts_module=$TS_MODULE --dataset=$DATASET -o $OUT_DIR
# Test FPS only
./volrend_headless $TREE $POSES --options=$OPTIONS --ts_module=$TS_MODULE --dataset=$DATASET

For Tanks and Temples dataset, POSES is point to the directory containing *.txt poses, eg. export POSES=../data/TanksAndTemple/$SCENE/pose; For LLFF dataset, POSES is point to the poses_bounds.npy file, eg. export POSES=../data/nerf_llff_data/$SCENE/poses_bounds.npy

You can also run an ImGui window using volrend, for example:

./volrend $TREE --ts_module=$TS_MODULE

GuidanceNet Training

You need to prepare noisy images and place it under the same directory as $POSES. For example, there should be a ../data/nerf_synthetic/lego/spp_6 directory containing the noisy data for spp=6.

For example, you can render the noisy input using the following command:

export DATASET=blender
export SCENE=lego
export TREE=../data/nerf_synthetic/$SCENE/tree.npz
export POSES=../data/nerf_synthetic/$SCENE/transforms_test.json
export TS_MODULE=../data/nerf_synthetic/$SCENE/ts_latest.ts
export OUT_DIR=../data/nerf_synthetic/$SCENE/spp_6/test
export OPTIONS=../renderer/options/opt.json

# Write noisy buffers
./volrend_headless $TREE $POSES --options=$OPTIONS --ts_module=$TS_MODULE --dataset=$DATASET -o $OUT_DIR --write_buffer

Then you can train the denoiser by

python -m denoiser.main --config=denoiser/configs/blender.txt --task=train

The training settings is defined in denoiser/configs/*.txt. After training, the trained model will be saved as torchscript module to ts_<epoch>.ts files.

Reference

Citation

If you find this code helpful for your research, please cite:

@inproceedings{shu2023rtoctree,
  title={RT-Octree: Accelerate PlenOctree Rendering with Batched Regular Tracking and Neural Denoising for Real-time Neural Radiance Fields},
  author={Shu, Zixi and Yi, Ran and Meng, Yuqi and Wu, Yutong and Ma, Lizhuang},
  booktitle={SIGGRAPH Asia 2023 Conference Papers},
  pages={1--11},
  year={2023}
}

About

[SIGGRAPH Asia 2023] Code for our paper "RT-Octree: Accelerate PlenOctree Rendering with Batched Regular Tracking and Neural Denoising for Real-time Neural Radiance Fields"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •