The purpose of this RLoptimal
package is to easily construct an
adaptive allocation rule that directly optimizes a performance metric,
such as power, accuracy of the estimated target dose, or mean absolute
error over the estimated dose-response curve. Several high-level
functions are also provided to make it easy to perform simulation
studies.
You can install the stable version from CRAN as follows.
install.packages("RLoptimal")
You can install the development version from GitHub as follows.
# install.packages("remotes")
remotes::install_github("MatsuuraKentaro/RLoptimal")
We demonstrate computing an optimal adaptive allocation by reinforcement learning for the example in Section 3 of the original paper.
When you load RLoptimal
as follows, Python itself and the Python
packages to conduct reinforcement learning will be installed.
library(RLoptimal)
We build the dose-response models to be used in the MCPMod method, which we plan to execute at the end of the clinical trial.
doses <- c(0, 2, 4, 6, 8)
models <- DoseFinding::Mods(
doses = doses, maxEff = 1.65,
linear = NULL, emax = 0.79, sigEmax = c(4, 5)
)
We obtain an optimal adaptive allocation rule by executing
learn_allocation_rule()
with the models
.
allocation_rule <- learn_allocation_rule(
models,
N_total = 150, N_ini = rep(10, 5), N_block = 10, Delta = 1.3,
outcome_type = "continuous", sd_normal = sqrt(4.5),
seed = 123, rl_config = rl_config_set(iter = 1000),
alpha = 0.025
)
allocation_rule
#> <AllocationRule>
#> dir: allocation_rules/20241201_114609
#> created at: 2024-12-01 14:48:40
#> call:
#> learn_allocation_rule(models = models, N_total = 150, N_ini = rep(10,
#> 5), N_block = 10, Delta = 1.3, outcome_type = "continuous",
#> sd_normal = sqrt(4.5), seed = 123, rl_config = rl_config_set(iter = 1000),
#> alpha = 0.025)
#> iterations: 1000
#> checkpoints: 500, 600, 700, 800, 900, 1000
With the default settings, it takes roughly 10-50 seconds per iter, so
it would take about 3-14 hours when iter = 1000
.
To compute allocation ratios using the obtained allocation rule, pass
dose and response data to opt_allocation_probs()
.
some_doses <- c( 0, 0, 0, 0, 2, 2, 4, 4, 4, 6, 6, 8, 8, 8)
some_resps <- c(.2, .1, .0, .3, .2, .4, .1, .6, .8, .5, .8, 1.1, .9, 1.6)
allocation_rule$opt_allocation_probs(some_doses, some_resps)
#> 0 2 4 6 8
#> 6.023860e-02 5.389110e-06 3.485905e-04 1.684970e-05 9.393906e-01
When 10 subjects in the next block are allocated to each dose according
to these probabilities, we recommend using DoseFinding::rndDesign()
.
probs <- allocation_rule$opt_allocation_probs(some_doses, some_resps)
DoseFinding::rndDesign(probs, 10)
#> [1] 1 0 1 0 8
In general, an adaptive allocation may inflate alpha (see Section 3.3 in
the original paper). Therefore, the significance level should be
adjusted by simulation using adjust_significance_level
function.
adjusted_alpha <- adjust_significance_level(
allocation_rule, models,
N_total = 150, N_ini = rep(10, 5), N_block = 10,
outcome_type = "continuous", sd_normal = sqrt(4.5),
alpha = 0.025, n_sim = 10000, seed = 123
)
adjusted_alpha
#> [1] 0.02021423
A convenient high-level function (simulate_one_trial
) is provided to
evaluate the obtained allocation rule. The following is an example of
code to perform a simulation study similar to Section 3 in the original
paper.
eval_models <- DoseFinding::Mods(
doses = doses, maxEff = 1.65,
linear = NULL, emax = 0.79, sigEmax = c(4, 5), exponential = 1, quadratic = - 1/12
)
true_response_matrix <- DoseFinding::getResp(eval_models, doses = doses)
true_response_list <- as.list(data.frame(true_response_matrix, check.names = FALSE))
n_sim <- 1000 # the number of simulated clinical trials
sim_list <- list()
for (true_model_name in names(true_response_list)) {
true_response <- true_response_list[[true_model_name]]
for (simID in seq_len(n_sim)) {
sim_one <- simulate_one_trial(
allocation_rule, models,
true_response = true_response,
N_total = 150, N_ini = rep(10, 5), N_block = 10,
Delta = 1.3, outcome_type = "continuous", sd_normal = sqrt(4.5),
alpha = adjusted_alpha, seed = simID, eval_type = "all"
)
sim_list[[length(sim_list) + 1]] <- data.frame(
simID = simID, true_model_name = true_model_name, sim_one, check.names = FALSE)
}
}
d_sim <- do.call(rbind, sim_list)
head(d_sim, 10)
#> simID true_model_name min_p_value selected_model_name estimated_target_dose MAE n_of_0 n_of_2 n_of_4 n_of_6 n_of_8
#> 1 1 linear 2.664834e-03 linear 6.4373669 0.02152038 0.2800000 0.4866667 0.06666667 0.07333333 0.09333333
#> 2 2 linear 5.367406e-03 linear 7.5199780 0.16688577 0.4733333 0.1333333 0.06666667 0.18666667 0.14000000
#> 3 3 linear 1.146988e-04 sigEmax 5.3126300 0.31777648 0.2800000 0.4466667 0.06666667 0.07333333 0.13333333
#> 4 4 linear 2.559644e-02 <NA> NA NA 0.4133333 0.0800000 0.08666667 0.24000000 0.18000000
#> 5 5 linear 5.367572e-03 linear 7.3541945 0.14740065 0.3733333 0.2600000 0.12000000 0.13333333 0.11333333
#> 6 6 linear 6.299454e-04 emax 3.4787829 0.38459844 0.3466667 0.4200000 0.06666667 0.06666667 0.10000000
#> 7 7 linear 3.397589e-05 linear 5.2822467 0.19928701 0.3200000 0.3733333 0.06666667 0.08666667 0.15333333
#> 8 8 linear 2.107865e-02 <NA> NA NA 0.2866667 0.4733333 0.06666667 0.06666667 0.10666667
#> 9 9 linear 4.607294e-05 linear 5.6278953 0.12371108 0.3600000 0.2333333 0.14666667 0.06666667 0.19333333
#> 10 10 linear 4.710722e-04 emax 0.3685151 0.45576455 0.2533333 0.4933333 0.06666667 0.10666667 0.08000000
It is recommended that the models used in reinforcement learning include
possible models in addition to the models used in the MCPMod method.
Here, we add the exponential model according to the supporting
information in the original paper, and specify the argument rl_models
in learn_allocation_rule
function.
rl_models <- DoseFinding::Mods(
doses = doses, maxEff = 1.65,
linear = NULL, emax = 0.79, sigEmax = c(4, 5), exponential = 1
)
allocation_rule <- learn_allocation_rule(
models,
N_total = 150, N_ini = rep(10, 5), N_block = 10, Delta = 1.3,
outcome_type = "continuous", sd_normal = sqrt(4.5),
seed = 123, rl_models = rl_models, rl_config = rl_config_set(iter = 1000),
alpha = 0.025
)
The above workflow can be applied in the same way when the outcome is
binary. We build the dose-response models to be used in the MCPMod
method on the logit scale (see this
vignette
of DoseFinding
package), and specify the argument
outcome_type = "binary"
in learn_allocation_rule
function.
doses <- c(0, 0.5, 1.5, 2.5, 4)
models <- DoseFinding::Mods(
doses = doses,
placEff = qlogis(0.1),
maxEff = qlogis(0.35) - qlogis(0.1),
emax = c(0.25, 1), sigEmax = rbind(c(1, 3), c(2.5, 4)), betaMod = c(1.1, 1.1)
)
allocation_rule <- learn_allocation_rule(
models,
N_total = 200, N_ini = rep(10, 5), N_block = 10,
Delta = 1.4, outcome_type = "binary",
seed = 123, rl_config = rl_config_set(iter = 1000),
alpha = 0.05
)
The allocation_rule
above is an object of the Allocation Rule Class
(R6). Here is a brief explanation of how to use it.
The obtained allocation rule can be saved using saveRDS
, a standard R
function.
saveRDS(allocation_rule, file = "allocation_rule.RDS")
To load it, use readRDS
.
allocation_rule <- readRDS(file = "allocation_rule.RDS")
The inputs passed to the learn_allocation_rule
function can be
retrieved as follows.
allocation_rule$input
The statistics of returns during reinforcement learning can be retrieved as follows.
allocation_rule$log
Reinforcement learning can be resumed with the following function.
allocation_rule$resume_learning(iter = 100)
Multiple checkpoints are created by learn_allocation_rule
function. By
default, the last checkpoint is used to build an allocation rule. If you
want to build another allocation rule using another checkpoint, specify
the directory name created by learn_allocation_rule
function as
follows.
another_allocation_rule <- AllocationRule$new(dir = "checkpoints/20241201_114609_00900")