-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #113 from Olender/newHABC
New habc
- Loading branch information
Showing
75 changed files
with
636,186 additions
and
10 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
import firedrake as fire | ||
import spyro | ||
|
||
|
||
# build temp space | ||
|
||
mesh = spyro.RectangleMesh(nx, ny, Lx, Ly, quadrilateral=True) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
import spyro | ||
import math | ||
from generate_velocity_model_from_paper import get_paper_velocity | ||
|
||
dictionary = {} | ||
dictionary["options"] = { | ||
"cell_type": "T", # simplexes such as triangles or tetrahedra (T) or quadrilaterals (Q) | ||
"variant": 'lumped', # lumped, equispaced or DG, default is lumped "method":"MLT", # (MLT/spectral_quadrilateral/DG_triangle/DG_quadrilateral) You can either specify a cell_type+variant or a method | ||
"degree": 4, # p order | ||
"dimension": 2, # dimension | ||
} | ||
|
||
# Number of cores for the shot. For simplicity, we keep things serial. | ||
# spyro however supports both spatial parallelism and "shot" parallelism. | ||
dictionary["parallelism"] = { | ||
"type": "automatic", # options: automatic (same number of cores for evey processor) or spatial | ||
} | ||
|
||
# Define the domain size without the PML. Here we'll assume a 1.00 x 1.00 km | ||
# domain and reserve the remaining 250 m for the Perfectly Matched Layer (PML) to absorb | ||
# outgoing waves on three sides (eg., -z, +-x sides) of the domain. | ||
dictionary["mesh"] = { | ||
"Lz": 2.4, # depth in km - always positive | ||
"Lx": 4.8, # width in km - always positive | ||
"Ly": 0.0, # thickness in km - always positive | ||
"mesh_file": None, | ||
"user_mesh": None, | ||
"mesh_type": "SeismicMesh", | ||
} | ||
|
||
# Create a source injection operator. Here we use a single source with a | ||
# Ricker wavelet that has a peak frequency of 5 Hz injected at the center of the mesh. | ||
# We also specify to record the solution at a microphone near the top of the domain. | ||
# This transect of receivers is created with the helper function `create_transect`. | ||
dictionary["acquisition"] = { | ||
"source_type": "ricker", | ||
"source_locations": [(-0.6, 4.8-1.68)], | ||
"frequency": 5.0, | ||
"delay": 1.5, | ||
"receiver_locations": [(-0.6, 4.8-1.68)], | ||
} | ||
|
||
# Simulate for 1.0 seconds. | ||
dictionary["time_axis"] = { | ||
"initial_time": 0.0, # Initial time for event | ||
"final_time": 1.00, # Final time for event | ||
"dt": 0.0005, # timestep size | ||
"amplitude": 1, # the Ricker has an amplitude of 1. | ||
"output_frequency": 100, # how frequently to output solution to pvds | ||
"gradient_sampling_frequency": 100, # how frequently to save solution to RAM | ||
} | ||
|
||
dictionary["visualization"] = { | ||
"forward_output": True, | ||
"forward_output_filename": "results/figeigteen_forward_output.pvd", | ||
"fwi_velocity_model_output": False, | ||
"velocity_model_filename": None, | ||
"gradient_output": False, | ||
"gradient_filename": None, | ||
"debug_output": True, | ||
} | ||
|
||
Wave_obj = spyro.HABC(dictionary=dictionary) | ||
|
||
cpw = 6.0 | ||
lba = 1.5 / 5.0 | ||
edge_length = lba / cpw | ||
Wave_obj.set_mesh(mesh_parameters={"edge_length": edge_length}) | ||
V = Wave_obj.function_space | ||
mesh = Wave_obj.mesh | ||
c = get_paper_velocity(mesh, V) | ||
|
||
Wave_obj.set_initial_velocity_model(velocity_model_function=c) | ||
Wave_obj._get_initial_velocity_model() | ||
|
||
Wave_obj.c = Wave_obj.initial_velocity_model | ||
# Wave_obj.get_and_set_maximum_dt(fraction=0.5) | ||
Wave_obj.no_boundary_forward_solve() | ||
Wave_obj.set_damping_field() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
import spyro | ||
from spyro.habc import HABC | ||
import firedrake as fire | ||
import math | ||
|
||
|
||
def test_eikonal_values_fig8(): | ||
dictionary = {} | ||
dictionary["options"] = { | ||
"cell_type": "T", # simplexes such as triangles or tetrahedra (T) or quadrilaterals (Q) | ||
"variant": 'lumped', # lumped, equispaced or DG, default is lumped "method":"MLT", # (MLT/spectral_quadrilateral/DG_triangle/DG_quadrilateral) You can either specify a cell_type+variant or a method | ||
"degree": 1, # p order | ||
"dimension": 2, # dimension | ||
} | ||
|
||
# Number of cores for the shot. For simplicity, we keep things serial. | ||
# spyro however supports both spatial parallelism and "shot" parallelism. | ||
dictionary["parallelism"] = { | ||
"type": "automatic", # options: automatic (same number of cores for evey processor) or spatial | ||
} | ||
|
||
# Define the domain size without the PML. Here we'll assume a 1.00 x 1.00 km | ||
# domain and reserve the remaining 250 m for the Perfectly Matched Layer (PML) to absorb | ||
# outgoing waves on three sides (eg., -z, +-x sides) of the domain. | ||
dictionary["mesh"] = { | ||
"Lz": 1.0, # depth in km - always positive | ||
"Lx": 1.0, # width in km - always positive | ||
"Ly": 0.0, # thickness in km - always positive | ||
"mesh_file": None, | ||
"user_mesh": None, | ||
"mesh_type": "firedrake_mesh", | ||
} | ||
|
||
# Create a source injection operator. Here we use a single source with a | ||
# Ricker wavelet that has a peak frequency of 5 Hz injected at the center of the mesh. | ||
# We also specify to record the solution at a microphone near the top of the domain. | ||
# This transect of receivers is created with the helper function `create_transect`. | ||
dictionary["acquisition"] = { | ||
"source_type": "ricker", | ||
"source_locations": [(-0.5, 0.25)], | ||
"frequency": 5.0, | ||
"delay": 1.5, | ||
"receiver_locations": spyro.create_transect( | ||
(-0.10, 0.1), (-0.10, 0.9), 20 | ||
), | ||
} | ||
|
||
# Simulate for 2.0 seconds. | ||
dictionary["time_axis"] = { | ||
"initial_time": 0.0, # Initial time for event | ||
"final_time": 2.00, # Final time for event | ||
"dt": 0.001, # timestep size | ||
"amplitude": 1, # the Ricker has an amplitude of 1. | ||
"output_frequency": 100, # how frequently to output solution to pvds | ||
"gradient_sampling_frequency": 100, # how frequently to save solution to RAM | ||
} | ||
|
||
dictionary["visualization"] = { | ||
"forward_output" : True, | ||
"output_filename": "results/forward_output.pvd", | ||
"fwi_velocity_model_output": False, | ||
"velocity_model_filename": None, | ||
"gradient_output": False, | ||
"gradient_filename": None, | ||
} | ||
|
||
Wave_no_habc = spyro.AcousticWave(dictionary=dictionary) | ||
|
||
Lx = 1 | ||
Lz = 1 | ||
user_mesh = fire.RectangleMesh(80, 80, Lz, Lx, diagonal="crossed") | ||
user_mesh.coordinates.dat.data[:, 0] *= -1.0 | ||
z, x = fire.SpatialCoordinate(user_mesh) | ||
|
||
cond = fire.conditional(x < 0.5, 3.0, 1.5) | ||
|
||
Wave_no_habc.set_mesh(user_mesh=user_mesh) | ||
|
||
Wave_no_habc.set_initial_velocity_model(conditional=cond) | ||
Wave_no_habc._get_initial_velocity_model() | ||
|
||
Wave_no_habc.c = Wave_no_habc.initial_velocity_model | ||
|
||
habc = HABC(Wave_no_habc, h_min=0.0125) | ||
|
||
eikonal = habc.eikonal | ||
|
||
min_value = eikonal.min_value | ||
max_value = eikonal.max_value | ||
|
||
paper_min = 0.085 | ||
paper_max = 0.56 | ||
|
||
test_min = math.isclose(min_value, paper_min, rel_tol=0.1) | ||
test_max = math.isclose(max_value, paper_max, rel_tol=0.2) | ||
print("min_value: ", min_value) | ||
print("paper_min: ", paper_min) | ||
print("max_value: ", max_value) | ||
print("paper_max: ", paper_max) | ||
|
||
assert all([test_min, test_max]) | ||
|
||
|
||
# Verificar valores das distancias como lref e velocidades | ||
if __name__ == "__main__": | ||
test_eikonal_values_fig8() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
import firedrake as fire | ||
from firedrake import And, File | ||
|
||
|
||
def apply_box(mesh, c, x1, y1, x2, y2, value): | ||
y1 = 2.4 - y1 | ||
y2 = 2.4 - y2 | ||
x1 = 4.8 - x1 | ||
x2 = 4.8 - x2 | ||
y, x = fire.SpatialCoordinate(mesh) | ||
box = fire.conditional( | ||
And(And(x1 >= x, x >= x2), And(y1 >= -y, -y >= y2)), value, c | ||
) | ||
|
||
c.interpolate(box) | ||
return c | ||
|
||
|
||
def apply_slope(mesh, c, x1, y1, x3, y3, value): | ||
y, x = fire.SpatialCoordinate(mesh) | ||
y1 = 2.4 - y1 | ||
y3 = 2.4 - y3 | ||
x1 = 4.8 - x1 | ||
x3 = 4.8 - x3 | ||
slope = (y3 - y1) / (x3 - x1) | ||
|
||
slope = fire.conditional( | ||
And((-y - y1) / (x - x1) <= slope, x < x1), value, c | ||
) | ||
c.interpolate(slope) | ||
return c | ||
|
||
|
||
def apply_vs_from_list(velmat, mesh, Lx, Ly, c): | ||
# (x1, y1, x2, y2, cm) | ||
for box in velmat: | ||
x1 = box[0] * Lx | ||
y1 = box[1] * Ly | ||
x2 = box[2] * Lx | ||
y2 = box[3] * Ly | ||
cm = box[4] | ||
c = apply_box(mesh, c, x1, y1, x2, y2, cm) | ||
|
||
return c | ||
|
||
|
||
def get_paper_velocity(mesh, V, output=True, units='km/s'): | ||
if units == 'km/s': | ||
multiplier = 1.0 | ||
elif units == 'm/s': | ||
multiplier = 1000.0 | ||
velmat = [] | ||
velmat.append([0.00, 0.00, 0.35, 0.10, 2.9 * multiplier]) | ||
velmat.append([0.00, 0.10, 0.25, 0.30, 2.9 * multiplier]) | ||
velmat.append([0.00, 0.30, 0.25, 0.70, 2.0 * multiplier]) | ||
velmat.append([0.00, 0.70, 0.10, 1.00, 3.7 * multiplier]) | ||
velmat.append([0.10, 0.70, 0.30, 0.90, 3.7 * multiplier]) | ||
velmat.append([0.25, 0.10, 0.75, 0.30, 2.5 * multiplier]) | ||
velmat.append([0.25, 0.30, 0.40, 0.70, 2.5 * multiplier]) | ||
velmat.append([0.35, 0.00, 0.70, 0.10, 2.1 * multiplier]) | ||
velmat.append([0.70, 0.00, 0.90, 0.10, 3.4 * multiplier]) | ||
velmat.append([0.80, 0.10, 0.90, 0.35, 3.4 * multiplier]) | ||
velmat.append([0.90, 0.00, 1.00, 0.20, 3.4 * multiplier]) | ||
velmat.append([0.90, 0.20, 1.00, 0.65, 2.6 * multiplier]) | ||
velmat.append([0.75, 0.10, 0.80, 0.50, 4.0 * multiplier]) | ||
velmat.append([0.80, 0.35, 0.90, 0.80, 4.0 * multiplier]) | ||
velmat.append([0.85, 0.80, 0.90, 0.95, 3.6 * multiplier]) | ||
velmat.append([0.90, 0.65, 1.00, 1.00, 3.6 * multiplier]) | ||
velmat.append([0.00, 0.00, 0.00, 0.00, 1.5 * multiplier]) | ||
|
||
Lx = 4.8 | ||
Ly = 2.4 | ||
|
||
c = fire.Function(V) | ||
|
||
c.dat.data[:] = 1.5 * multiplier | ||
|
||
c = apply_slope( | ||
mesh, c, 0.4 * Lx, 0.3 * Ly, 0.75 * Lx, 0.65 * Ly, 3.3 * multiplier | ||
) | ||
c = apply_vs_from_list(velmat, mesh, Lx, Ly, c) | ||
|
||
if output is True: | ||
File("testing.pvd").write(c) | ||
|
||
return c |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
from spyro.solvers import HABC_wave | ||
|
||
|
||
dictionary = {} | ||
dictionary["options"] = { | ||
"cell_type": "T", # simplexes such as triangles or tetrahedra (T) or quadrilaterals (Q) | ||
"variant": 'lumped', # lumped, equispaced or DG, default is lumped "method":"MLT", # (MLT/spectral_quadrilateral/DG_triangle/DG_quadrilateral) You can either specify a cell_type+variant or a method | ||
"degree": 1, # p order | ||
"dimension": 2, # dimension | ||
} | ||
|
||
# Number of cores for the shot. For simplicity, we keep things serial. | ||
# spyro however supports both spatial parallelism and "shot" parallelism. | ||
dictionary["parallelism"] = { | ||
"type": "automatic", # options: automatic (same number of cores for evey processor) or spatial | ||
} | ||
|
||
# Define the domain size without the PML. Here we'll assume a 1.00 x 1.00 km | ||
# domain and reserve the remaining 250 m for the Perfectly Matched Layer (PML) to absorb | ||
# outgoing waves on three sides (eg., -z, +-x sides) of the domain. | ||
dictionary["mesh"] = { | ||
"Lz": 1.0, # depth in km - always positive | ||
"Lx": 1.0, # width in km - always positive | ||
"Ly": 0.0, # thickness in km - always positive | ||
"mesh_type": "firedrake_mesh", # options: firedrake_mesh or user_mesh | ||
"mesh_file": None, # specify the mesh file | ||
} | ||
|
||
# Create a source injection operator. Here we use a single source with a | ||
# Ricker wavelet that has a peak frequency of 5 Hz injected at the center of the mesh. | ||
# We also specify to record the solution at a microphone near the top of the domain. | ||
# This transect of receivers is created with the helper function `create_transect`. | ||
dictionary["acquisition"] = { | ||
"source_type": "ricker", | ||
"source_locations": [(-1.0, 1.0)], | ||
"frequency": 5.0, | ||
"delay": 1.5, | ||
"receiver_locations": [(-0.0, 0.5)], | ||
} | ||
|
||
# Simulate for 2.0 seconds. | ||
dictionary["time_axis"] = { | ||
"initial_time": 0.0, # Initial time for event | ||
"final_time": 1.0, # Final time for event | ||
"dt": 0.0005, # timestep size | ||
"amplitude": 1, # the Ricker has an amplitude of 1. | ||
"output_frequency": 100, # how frequently to output solution to pvds | ||
"gradient_sampling_frequency": 1, # how frequently to save solution to RAM | ||
} | ||
|
||
dictionary["visualization"] = { | ||
"forward_output": False, | ||
"output_filename": "results/forward_output.pvd", | ||
"fwi_velocity_model_output": False, | ||
"velocity_model_filename": None, | ||
"gradient_output": False, | ||
"gradient_filename": None, | ||
} | ||
|
||
|
||
Wave_obj = HABC_wave(dictionary=dictionary) | ||
Wave_obj.set_mesh(dx=0.02) | ||
Wave_obj.forward_solve() |
Oops, something went wrong.