-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added spatially parallelizable shots in serial
- Loading branch information
Showing
5 changed files
with
165 additions
and
23 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
from mpi4py.MPI import COMM_WORLD | ||
from mpi4py import MPI | ||
import numpy as np | ||
import firedrake as fire | ||
import spyro | ||
import matplotlib.pyplot as plt | ||
|
||
|
||
def error_calc(p_numerical, p_analytical, nt): | ||
norm = np.linalg.norm(p_numerical, 2) / np.sqrt(nt) | ||
error_time = np.linalg.norm(p_analytical - p_numerical, 2) / np.sqrt(nt) | ||
div_error_time = error_time / norm | ||
return div_error_time | ||
|
||
|
||
def test_forward_3_shots(): | ||
final_time = 1.0 | ||
|
||
dictionary = {} | ||
dictionary["options"] = { | ||
"cell_type": "Q", # simplexes such as triangles or tetrahedra (T) or quadrilaterals (Q) | ||
"variant": "lumped", # lumped, equispaced or DG, default is lumped | ||
"degree": 4, # p order | ||
"dimension": 2, # dimension | ||
} | ||
dictionary["parallelism"] = { | ||
"type": "spatial", # options: automatic (same number of cores for evey processor) or spatial | ||
"shot_ids_per_propagation": [[0], [1]], | ||
} | ||
dictionary["mesh"] = { | ||
"Lz": 2.0, # depth in km - always positive # Como ver isso sem ler a malha? | ||
"Lx": 2.0, # width in km - always positive | ||
"Ly": 0.0, # thickness in km - always positive | ||
"mesh_file": None, | ||
"mesh_type": "firedrake_mesh", | ||
} | ||
dictionary["acquisition"] = { | ||
"source_type": "ricker", | ||
"source_locations": spyro.create_transect((-0.55, 0.7), (-0.55, 1.3), 3), | ||
"frequency": 5.0, | ||
"delay": 0.2, | ||
"delay_type": "time", | ||
"receiver_locations": spyro.create_transect((-0.75, 0.7), (-0.75, 1.3), 200), | ||
} | ||
dictionary["time_axis"] = { | ||
"initial_time": 0.0, # Initial time for event | ||
"final_time": final_time, # Final time for event | ||
"dt": 0.0005, # timestep size | ||
"amplitude": 1, # the Ricker has an amplitude of 1. | ||
"output_frequency": 100, # how frequently to output solution to pvds - Perguntar Daiane ''post_processing_frequnecy' | ||
"gradient_sampling_frequency": 1, | ||
} | ||
dictionary["visualization"] = { | ||
"forward_output": False, | ||
"forward_output_filename": "results/forward_output.pvd", | ||
"fwi_velocity_model_output": False, | ||
"velocity_model_filename": None, | ||
"gradient_output": False, | ||
"gradient_filename": None, | ||
} | ||
|
||
Wave_obj = spyro.AcousticWave(dictionary=dictionary) | ||
Wave_obj.set_mesh(mesh_parameters={"dx": 0.1}) | ||
|
||
mesh_z = Wave_obj.mesh_z | ||
cond = fire.conditional(mesh_z < -1.5, 3.5, 1.5) | ||
Wave_obj.set_initial_velocity_model(conditional=cond, output=True) | ||
|
||
Wave_obj.forward_solve() | ||
|
||
comm = Wave_obj.comm | ||
|
||
if comm.comm.rank == 0: | ||
analytical_p = spyro.utils.nodal_homogeneous_analytical( | ||
Wave_obj, 0.2, 1.5, n_extra=100 | ||
) | ||
else: | ||
analytical_p = None | ||
analytical_p = comm.comm.bcast(analytical_p, root=0) | ||
|
||
time_vector = np.linspace(0.0, 1.0, 2001) | ||
cutoff = 830 | ||
errors = [] | ||
|
||
for i in range(Wave_obj.number_of_sources): | ||
plt.close() | ||
plt.plot(time_vector[:cutoff], analytical_p[:cutoff], "--",label="analyt") | ||
spyro.io.switch_serial_shot(Wave_obj, i) | ||
rec_out = Wave_obj.forward_solution_receivers | ||
if i == 0: | ||
rec0 = rec_out[:, 0].flatten() | ||
elif i == 1: | ||
rec0 = rec_out[:, 99].flatten() | ||
elif i == 2: | ||
rec0 = rec_out[:, 199].flatten() | ||
plt.plot(time_vector[:cutoff], rec0[:cutoff], label="numerical") | ||
plt.title(f"Source {i}") | ||
plt.legend() | ||
plt.savefig(f"test{i}.png") | ||
error_core = error_calc(rec0[:cutoff], analytical_p[:cutoff], cutoff) | ||
error = COMM_WORLD.allreduce(error_core, op=MPI.SUM) | ||
error /= comm.comm.size | ||
errors.append(error) | ||
print(f"Shot {i} produced error of {error}", flush=True) | ||
|
||
error_all = (errors[0] + errors[1] + errors[2]) / 3 | ||
comm.comm.barrier() | ||
|
||
if comm.comm.rank == 0: | ||
print(f"Combined error for all shots is {error_all} and test has passed equals {np.abs(error_all) < 0.01}", flush=True) | ||
|
||
test = np.abs(error_all) < 0.01 | ||
|
||
assert test | ||
|
||
|
||
if __name__ == "__main__": | ||
test_forward_3_shots() |