Code for "VI-Net: Boosting Category-level 6D Object Pose Estimation via Learning Decoupled Rotations on the Spherical Representations", ICCV 2023. [Arxiv]
Created by Jiehong Lin, Zewei Wei, Yabin Zhang, Kui Jia.
The code has been tested with
- python 3.7.6
- pytorch 1.9.0
- CUDA 11.3
Other dependencies:
sh dependencies.sh
Please refer to our another work of Self-DPDN.
Train VI-Net for rotation estimation:
python train.py --gpus 0 --dataset ${DATASET} --mode r
Train the network of pointnet++ for translation and size estimation:
python train.py --gpus 0 --dataset ${DATASET} --mode ts
The string "DATASET" could be set as DATASET=REAL275
or DATASET=CAMERA25
.
To test the model, please run:
python train.py --gpus 0 --dataset ${DATASET}
The string "DATASET" could be set as DATASET=REAL275
or DATASET=CAMERA25
.
Our implementation leverages the code from NOCS, DualPoseNet, and SPD.
Our code is released under MIT License (see LICENSE file for details).