-
Notifications
You must be signed in to change notification settings - Fork 119
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
docs-preview
committed
Dec 15, 2023
1 parent
f6165d4
commit e82f3d6
Showing
207 changed files
with
62,911 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
Large diffs are not rendered by default.
Oops, something went wrong.
193 changes: 193 additions & 0 deletions
193
review/pr-1085/_downloads/08d85fba77615657906f6b1c7d98e7fd/train.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
# | ||
# Copyright (c) 2022, NVIDIA CORPORATION. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
import argparse | ||
import json | ||
import logging | ||
import os | ||
import sys | ||
import tempfile | ||
|
||
# We can control how much memory to give tensorflow with this environment variable | ||
# IMPORTANT: make sure you do this before you initialize TF's runtime, otherwise | ||
# TF will have claimed all free GPU memory | ||
os.environ["TF_MEMORY_ALLOCATION"] = "0.7" # fraction of free memory | ||
|
||
import merlin.io | ||
import merlin.models.tf as mm | ||
import nvtabular as nvt | ||
import tensorflow as tf | ||
from merlin.schema.tags import Tags | ||
from merlin.systems.dag.ops.workflow import TransformWorkflow | ||
from merlin.systems.dag.ops.tensorflow import PredictTensorflow | ||
from merlin.systems.dag.ensemble import Ensemble | ||
import numpy as np | ||
from nvtabular.ops import * | ||
|
||
|
||
logger = logging.getLogger(__name__) | ||
logger.setLevel(logging.DEBUG) | ||
logger.addHandler(logging.StreamHandler(sys.stdout)) | ||
|
||
|
||
def parse_args(): | ||
""" | ||
Parse arguments passed from the SageMaker API to the container. | ||
""" | ||
|
||
parser = argparse.ArgumentParser() | ||
|
||
# Hyperparameters sent by the client are passed as command-line arguments to the script | ||
parser.add_argument("--epochs", type=int, default=1) | ||
parser.add_argument("--batch_size", type=int, default=1024) | ||
|
||
# Data directories | ||
parser.add_argument( | ||
"--train_dir", type=str, default=os.environ.get("SM_CHANNEL_TRAIN") | ||
) | ||
parser.add_argument( | ||
"--valid_dir", type=str, default=os.environ.get("SM_CHANNEL_VALID") | ||
) | ||
|
||
# Model directory: we will use the default set by SageMaker, /opt/ml/model | ||
parser.add_argument("--model_dir", type=str, default=os.environ.get("SM_MODEL_DIR")) | ||
|
||
return parser.parse_known_args() | ||
|
||
|
||
def create_nvtabular_workflow(train_path, valid_path): | ||
user_id = ["user_id"] >> Categorify() >> TagAsUserID() | ||
item_id = ["item_id"] >> Categorify() >> TagAsItemID() | ||
targets = ["click"] >> AddMetadata(tags=[Tags.BINARY_CLASSIFICATION, "target"]) | ||
|
||
item_features = ( | ||
["item_category", "item_shop", "item_brand"] | ||
>> Categorify() | ||
>> TagAsItemFeatures() | ||
) | ||
|
||
user_features = ( | ||
[ | ||
"user_shops", | ||
"user_profile", | ||
"user_group", | ||
"user_gender", | ||
"user_age", | ||
"user_consumption_2", | ||
"user_is_occupied", | ||
"user_geography", | ||
"user_intentions", | ||
"user_brands", | ||
"user_categories", | ||
] | ||
>> Categorify() | ||
>> TagAsUserFeatures() | ||
) | ||
|
||
outputs = user_id + item_id + item_features + user_features + targets | ||
|
||
workflow = nvt.Workflow(outputs) | ||
|
||
return workflow | ||
|
||
|
||
def create_ensemble(workflow, model): | ||
serving_operators = ( | ||
workflow.input_schema.column_names | ||
>> TransformWorkflow(workflow) | ||
>> PredictTensorflow(model) | ||
) | ||
ensemble = Ensemble(serving_operators, workflow.input_schema) | ||
return ensemble | ||
|
||
|
||
def train(): | ||
""" | ||
Train the Merlin model. | ||
""" | ||
train_path = os.path.join(args.train_dir, "*.parquet") | ||
valid_path = os.path.join(args.valid_dir, "*.parquet") | ||
|
||
workflow = create_nvtabular_workflow( | ||
train_path=train_path, | ||
valid_path=valid_path, | ||
) | ||
|
||
train_dataset = nvt.Dataset(train_path) | ||
valid_dataset = nvt.Dataset(valid_path) | ||
|
||
output_path = tempfile.mkdtemp() | ||
workflow_path = os.path.join(output_path, "workflow") | ||
|
||
workflow.fit(train_dataset) | ||
workflow.transform(train_dataset).to_parquet( | ||
output_path=os.path.join(output_path, "train") | ||
) | ||
workflow.transform(valid_dataset).to_parquet( | ||
output_path=os.path.join(output_path, "valid") | ||
) | ||
|
||
workflow.save(workflow_path) | ||
logger.info(f"Workflow saved to {workflow_path}.") | ||
|
||
train_data = merlin.io.Dataset(os.path.join(output_path, "train", "*.parquet")) | ||
valid_data = merlin.io.Dataset(os.path.join(output_path, "valid", "*.parquet")) | ||
|
||
schema = train_data.schema | ||
target_column = schema.select_by_tag(Tags.TARGET).column_names[0] | ||
|
||
model = mm.DLRMModel( | ||
schema, | ||
embedding_dim=64, | ||
bottom_block=mm.MLPBlock([128, 64]), | ||
top_block=mm.MLPBlock([128, 64, 32]), | ||
prediction_tasks=mm.BinaryClassificationTask(target_column), | ||
) | ||
|
||
model.compile("adam", run_eagerly=False, metrics=[tf.keras.metrics.AUC()]) | ||
|
||
batch_size = args.batch_size | ||
epochs = args.epochs | ||
logger.info(f"batch_size = {batch_size}, epochs = {epochs}") | ||
|
||
model.fit( | ||
train_data, | ||
validation_data=valid_data, | ||
batch_size=args.batch_size, | ||
epochs=epochs, | ||
verbose=2, | ||
) | ||
|
||
model_path = os.path.join(output_path, "dlrm") | ||
model.save(model_path) | ||
logger.info(f"Model saved to {model_path}.") | ||
|
||
# We remove the label columns from its inputs. | ||
# This removes all columns with the TARGET tag from the workflow. | ||
# We do this because we need to set the workflow to only require the | ||
# features needed to predict, not train, when creating an inference | ||
# pipeline. | ||
label_columns = workflow.output_schema.select_by_tag(Tags.TARGET).column_names | ||
workflow.remove_inputs(label_columns) | ||
|
||
ensemble = create_ensemble(workflow, model) | ||
ensemble_path = args.model_dir | ||
ensemble.export(ensemble_path) | ||
logger.info(f"Ensemble graph saved to {ensemble_path}.") | ||
|
||
|
||
if __name__ == "__main__": | ||
args, _ = parse_args() | ||
train() |
Oops, something went wrong.