Skip to content
This repository has been archived by the owner on Nov 27, 2024. It is now read-only.

Commit

Permalink
Merge pull request #98 from saddam213/UpscaleVideo
Browse files Browse the repository at this point in the history
Video Upscale
  • Loading branch information
saddam213 authored Jan 11, 2024
2 parents 72473e8 + 1a437a5 commit c042de9
Show file tree
Hide file tree
Showing 30 changed files with 805 additions and 518 deletions.
84 changes: 84 additions & 0 deletions OnnxStack.Core/Extensions/TensorExtension.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
using Microsoft.ML.OnnxRuntime.Tensors;
using System;

namespace OnnxStack.Core
{
public static class TensorExtension
{
/// <summary>
/// Concatenates the specified tensors along the specified axis.
/// </summary>
/// <param name="tensor1">The tensor1.</param>
/// <param name="tensor2">The tensor2.</param>
/// <param name="axis">The axis.</param>
/// <returns></returns>
/// <exception cref="System.NotImplementedException">Only axis 0,1,2 is supported</exception>
public static DenseTensor<float> Concatenate(this DenseTensor<float> tensor1, DenseTensor<float> tensor2, int axis = 0)
{
if (tensor1 == null)
return tensor2.ToDenseTensor();

return axis switch
{
0 => ConcatenateAxis0(tensor1, tensor2),
1 => ConcatenateAxis1(tensor1, tensor2),
2 => ConcatenateAxis2(tensor1, tensor2),
_ => throw new NotImplementedException("Only axis 0, 1, 2 is supported")
};
}


private static DenseTensor<float> ConcatenateAxis0(this DenseTensor<float> tensor1, DenseTensor<float> tensor2)
{
var dimensions = tensor1.Dimensions.ToArray();
dimensions[0] += tensor2.Dimensions[0];

var buffer = new DenseTensor<float>(dimensions);
tensor1.Buffer.CopyTo(buffer.Buffer[..(int)tensor1.Length]);
tensor2.Buffer.CopyTo(buffer.Buffer[(int)tensor1.Length..]);
return buffer;
}


private static DenseTensor<float> ConcatenateAxis1(DenseTensor<float> tensor1, DenseTensor<float> tensor2)
{
var dimensions = tensor1.Dimensions.ToArray();
dimensions[1] += tensor2.Dimensions[1];
var concatenatedTensor = new DenseTensor<float>(dimensions);

// Copy data from the first tensor
for (int i = 0; i < dimensions[0]; i++)
for (int j = 0; j < tensor1.Dimensions[1]; j++)
concatenatedTensor[i, j] = tensor1[i, j];

// Copy data from the second tensor
for (int i = 0; i < dimensions[0]; i++)
for (int j = 0; j < tensor1.Dimensions[1]; j++)
concatenatedTensor[i, j + tensor1.Dimensions[1]] = tensor2[i, j];

return concatenatedTensor;
}


private static DenseTensor<float> ConcatenateAxis2(DenseTensor<float> tensor1, DenseTensor<float> tensor2)
{
var dimensions = tensor1.Dimensions.ToArray();
dimensions[2] += tensor2.Dimensions[2];
var concatenatedTensor = new DenseTensor<float>(dimensions);

// Copy data from the first tensor
for (int i = 0; i < dimensions[0]; i++)
for (int j = 0; j < dimensions[1]; j++)
for (int k = 0; k < tensor1.Dimensions[2]; k++)
concatenatedTensor[i, j, k] = tensor1[i, j, k];

// Copy data from the second tensor
for (int i = 0; i < dimensions[0]; i++)
for (int j = 0; j < dimensions[1]; j++)
for (int k = 0; k < tensor2.Dimensions[2]; k++)
concatenatedTensor[i, j, k + tensor1.Dimensions[2]] = tensor2[i, j, k];

return concatenatedTensor;
}
}
}
Loading

0 comments on commit c042de9

Please sign in to comment.