Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Jan 17, 2024
1 parent fbe7bd1 commit 34c7bcf
Show file tree
Hide file tree
Showing 5 changed files with 43 additions and 21 deletions.
22 changes: 22 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,28 @@

### Changed


- in `normedtype.v`:
+ lemmas `vitali_lemma_finite` and `vitali_lemma_finite_cover` now returns
duplicate-free lists of indices

- moved from `lebesgue_integral.v` to `measure.v`:
+ definition `ae_eq`
+ lemmas
`ae_eq0`,
`ae_eq_comp`,
`ae_eq_funeposneg`,
`ae_eq_refl`,
`ae_eq_trans`,
`ae_eq_sub`,
`ae_eq_mul2r`,
`ae_eq_mul2l`,
`ae_eq_mul1l`,
`ae_eq_abse`

- in `topology.v`:
+ lemmas `nbhsx_ballx` and `near_ball` take a parameter of type `R` instead of `{posnum R}`

### Renamed

### Generalized
Expand Down
4 changes: 2 additions & 2 deletions theories/derive.v
Original file line number Diff line number Diff line change
Expand Up @@ -671,7 +671,7 @@ Qed.
Lemma linear_lipschitz (V' W' : normedModType R) (f : {linear V' -> W'}) :
continuous f -> exists2 k, k > 0 & forall x, `|f x| <= k * `|x|.
Proof.
move=> /(_ 0); rewrite linear0 => /(_ _ (nbhsx_ballx 0 1%:pos)).
move=> /(_ 0); rewrite linear0 => /(_ _ (nbhsx_ballx _ _ ltr01)).
move=> /nbhs_ballP [_ /posnumP[e] he]; exists (2 / e%:num) => // x.
have [|xn0] := real_le0P (normr_real x).
by rewrite normr_le0 => /eqP->; rewrite linear0 !normr0 mulr0.
Expand Down Expand Up @@ -740,7 +740,7 @@ Lemma bilinear_schwarz (U V' W' : normedModType R)
(f : {bilinear U -> V' -> W'}) : continuous (fun p => f p.1 p.2) ->
exists2 k, k > 0 & forall u v, `|f u v| <= k * `|u| * `|v|.
Proof.
move=> /(_ 0); rewrite linear0r => /(_ _ (nbhsx_ballx 0 1%:pos)).
move=> /(_ 0); rewrite linear0r => /(_ _ (nbhsx_ballx _ _ ltr01)).
move=> /nbhs_ballP [_ /posnumP[e] he]; exists ((2 / e%:num) ^+2) => // u v.
have [|un0] := real_le0P (normr_real u).
by rewrite normr_le0 => /eqP->; rewrite linear0l !normr0 mulr0 mul0r.
Expand Down
9 changes: 3 additions & 6 deletions theories/lebesgue_measure.v
Original file line number Diff line number Diff line change
Expand Up @@ -1950,7 +1950,7 @@ have finDn n : mu (Dn n) \is a fin_num.
by rewrite le_measure// ?inE//=; [exact: mDn|exact: subIsetl].
have finD : mu D \is a fin_num by rewrite fin_num_abs gee0_abs.
rewrite -[mu D]fineK// => /fine_cvg/(_ (interior (ball (fine (mu D)) eps)))[].
exact/nbhs_interior/(nbhsx_ballx _ (PosNum epspos)).
exact/nbhs_interior/nbhsx_ballx.
move=> n _ /(_ _ (leqnn n))/interior_subset muDN.
exists (-n%:R, n%:R)%R; rewrite measureD//=.
move: muDN; rewrite /ball/= /ereal_ball/= -fineB//=; last exact: finDn.
Expand Down Expand Up @@ -2089,9 +2089,7 @@ have mE k n : measurable (E k n).
have nEcvg x k : exists n, A x -> (~` (E k n)) x.
case : (pselect (A x)); last by move => ?; exists point.
move=> Ax; have [] := fptwsg _ Ax (interior (ball (g x) (k.+1%:R^-1))).
apply: open_nbhs_nbhs; split; first exact: open_interior.
have ki0 : ((0:R) < k.+1%:R^-1)%R by rewrite invr_gt0.
rewrite (_ : k.+1%:R^-1 = (PosNum ki0)%:num ) //; exact: nbhsx_ballx.
by apply: open_nbhs_nbhs; split; [exact: open_interior|exact: nbhsx_ballx].
move=> N _ Nk; exists N.+1 => _; rewrite /E setC_bigcup => i /= /ltnW Ni.
apply/not_andP; right; apply/negP; rewrite /h -real_ltNge // distrC.
by case: (Nk _ Ni) => _/posnumP[?]; apply; exact: ball_norm_center.
Expand All @@ -2108,8 +2106,7 @@ have badn' : forall k, exists n, mu (E k n) < ((eps/2) / (2 ^ k.+1)%:R)%:E.
- by apply: bigcap_measurable => ?.
case/fine_cvg/(_ (interior (ball (0:R) ek))%R).
apply: open_nbhs_nbhs; split; first exact: open_interior.
have ekpos : (0 < ek)%R by rewrite divr_gt0 // divr_gt0.
by move: ek ekpos => _/posnumP[ek]; exact: nbhsx_ballx.
by apply: nbhsx_ballx; rewrite !divr_gt0.
move=> N _ /(_ N (leqnn _))/interior_subset muEN; exists N; move: muEN.
rewrite /ball /= distrC subr0 ger0_norm // -[x in x < _]fineK ?ge0_fin_numE//.
by apply:(le_lt_trans _ finA); apply le_measure; rewrite ?inE// => ? [? _ []].
Expand Down
13 changes: 7 additions & 6 deletions theories/normedtype.v
Original file line number Diff line number Diff line change
Expand Up @@ -1857,7 +1857,7 @@ Lemma dnbhs0_le e : 0 < e -> \forall x \near (0 : V)^', `|x| <= e.
Proof. by move=> e_gt0; apply: cvg_within; apply: nbhs0_le. Qed.

Lemma nbhs_norm_ball x (eps : {posnum R}) : nbhs_norm x (ball x eps%:num).
Proof. rewrite nbhs_nbhs_norm; by apply: nbhsx_ballx. Qed.
Proof. by rewrite nbhs_nbhs_norm; exact: nbhsx_ballx. Qed.

Lemma nbhsDl (P : set V) (x y : V) :
(\forall z \near (x + y), P z) <-> (\near x, P (x + y)).
Expand Down Expand Up @@ -4043,17 +4043,17 @@ have xyab : (edist (x, y) <= edist (x, a) + edist (a, b) + edist (y, b))%E.
rewrite (edist_sym y b) -addeA.
by rewrite (le_trans (@edist_triangle _ a _))// ?lee_add// ?edist_triangle.
have xafin : edist (x, a) \is a fin_num.
by apply/edist_finP; exists 1 =>//; near: a; apply: (nbhsx_ballx _ 1%:pos).
by apply/edist_finP; exists 1 =>//; near: a; exact: nbhsx_ballx.
have ybfin : edist (y, b) \is a fin_num.
by apply/edist_finP; exists 1 =>//; near: b; apply: (nbhsx_ballx _ 1%:pos).
by apply/edist_finP; exists 1 =>//; near: b; exact: nbhsx_ballx.
have abfin : edist (a, b) \is a fin_num.
by rewrite ge0_fin_numE// (le_lt_trans abxy) ?lte_add_pinfty// -ge0_fin_numE.
have xyabfin: (edist (x, y) - edist (a, b))%E \is a fin_num
by rewrite fin_numB abfin efin.
rewrite -fineB// -fine_abse// -lee_fin fineK ?abse_fin_num//.
rewrite (@le_trans _ _ (edist (x, a) + edist (y, b))%E)//; last first.
by rewrite [eps%:num]splitr/= EFinD lee_add//; apply: edist_fin => //=;
[near: a | near: b]; apply: (nbhsx_ballx _ (_ / _)%:pos).
[near: a | near: b]; exact: nbhsx_ballx.
have [ab_le_xy|/ltW xy_le_ab] := leP (edist (a, b)) (edist (x, y)).
by rewrite gee0_abs ?subre_ge0// lee_subl_addr// addeAC.
rewrite lee0_abs ?sube_le0// oppeB ?fin_num_adde_defr//.
Expand Down Expand Up @@ -4145,7 +4145,7 @@ have fwfin : \forall w \near z, edist_inf w \is a fin_num.
rewrite fin_numD fz_fin andbT; apply/edist_finP; exists 1 => //.
exact/ball_sym.
split => //; apply/cvgrPdist_le => _/posnumP[eps].
have : nbhs z (ball z eps%:num) by apply: nbhsx_ballx.
have : nbhs z (ball z eps%:num) by exact: nbhsx_ballx.
apply: filter_app; near_simpl; move: fwfin; apply: filter_app.
near=> t => tfin /= /[dup] ?.
have ztfin : edist (z, t) \is a fin_num by apply/edist_finP; exists eps%:num.
Expand Down Expand Up @@ -5614,7 +5614,8 @@ move=> x clAx; have abx : x \in `[a, b].
by apply: interval_closed; have /closureI [] := clAx.
split=> //; have /sabUf [i Di fx] := abx.
have /fop := Di; rewrite openE => /(_ _ fx) [_ /posnumP[e] xe_fi].
have /clAx [y [[aby [E sD [sayUf _]]] xe_y]] := nbhsx_ballx x e.
have /clAx [y [[aby [E sD [sayUf _]]] xe_y]] :=
nbhsx_ballx x e%:num ltac:(by []).
exists (i |` E)%fset; first by move=> j /fset1UP[->|/sD] //; rewrite inE.
split=> [z axz|]; last first.
exists i; first by rewrite /= !inE eq_refl.
Expand Down
16 changes: 9 additions & 7 deletions theories/topology.v
Original file line number Diff line number Diff line change
Expand Up @@ -5154,13 +5154,13 @@ Lemma ball_triangle (y x z : M) (e1 e2 : R) :
ball x e1 y -> ball y e2 z -> ball x (e1 + e2) z.
Proof. exact: PseudoMetric.ball_triangle. Qed.

Lemma nbhsx_ballx (x : M) (eps : {posnum R}) : nbhs x (ball x eps%:num).
Proof. by apply/nbhs_ballP; exists eps%:num => /=. Qed.
Lemma nbhsx_ballx (x : M) (eps : R) : 0 < eps -> nbhs x (ball x eps).
Proof. by move=> e0; apply/nbhs_ballP; exists eps. Qed.

Lemma open_nbhs_ball (x : M) (eps : {posnum R}) : open_nbhs x ((ball x eps%:num)^°).
Proof.
split; first exact: open_interior.
by apply: nbhs_singleton; apply: nbhs_interior; apply:nbhsx_ballx.
by apply: nbhs_singleton; apply: nbhs_interior; exact: nbhsx_ballx.
Qed.

Lemma le_ball (x : M) (e1 e2 : R) : e1 <= e2 -> ball x e1 `<=` ball x e2.
Expand All @@ -5175,8 +5175,7 @@ apply: Build_ProperFilter; rewrite -entourage_ballE => A [_/posnumP[e] sbeA].
by exists (point, point); apply: sbeA; apply: ballxx.
Qed.

Lemma near_ball (y : M) (eps : {posnum R}) :
\forall y' \near y, ball y eps%:num y'.
Lemma near_ball (y : M) (eps : R) : 0 < eps -> \forall y' \near y, ball y eps y'.
Proof. exact: nbhsx_ballx. Qed.

Lemma dnbhs_ball (a : M) (e : R) : (0 < e)%R -> a^' (ball a e `\ a).
Expand Down Expand Up @@ -5234,6 +5233,9 @@ End pseudoMetricType_numDomainType.
#[global] Hint Resolve close_refl : core.
Arguments close_cvg {T} F1 F2 {FF2} _.

Arguments nbhsx_ballx {R M} x eps.
Arguments near_ball {R M} y eps.

#[deprecated(since="mathcomp-analysis 0.6.0", note="renamed `cvg_ball`")]
Notation app_cvg_locally := cvg_ball (only parsing).

Expand Down Expand Up @@ -6252,8 +6254,8 @@ Lemma Rhausdorff (R : realFieldType) : hausdorff_space R.
Proof.
move=> x y clxy; apply/eqP; rewrite eq_le.
apply/in_segment_addgt0Pr => _ /posnumP[e].
rewrite in_itv /= -ler_distl; set he := (e%:num / 2)%:pos.
have [z [zx_he yz_he]] := clxy _ _ (nbhsx_ballx x he) (nbhsx_ballx y he).
rewrite in_itv /= -ler_distl; have he : 0 < (e%:num / 2) by [].
have [z [zx_he yz_he]] := clxy _ _ (nbhsx_ballx x _ he) (nbhsx_ballx y _ he).
have := ball_triangle yz_he (ball_sym zx_he).
by rewrite -mulr2n -mulr_natr divfK // => /ltW.
Qed.
Expand Down

0 comments on commit 34c7bcf

Please sign in to comment.