Co-first authors: Paolo Maria Viceconte and Giulio Romualdi
You can reproduce the experiments using Docker, Conda, or Pixi.
Run the experiments via Docker for an isolated and reproducible environment.
-
Pull the Docker image:
docker pull ghcr.io/ami-iit/dnn-mpc-walking-docker:latest
-
Launch the container:
xhost + docker run -it --rm \ --device=/dev/dri:/dev/dri \ --env="DISPLAY=$DISPLAY" \ --net=host \ ghcr.io/ami-iit/dnn-mpc-walking-docker:latest
-
Wait for
Gazebo
to start and launch the experiment.
⚠️ Known Issue: The Gazebo real-time factor is scaled by a factor of 10 due to the MUMPS linear solver in the IPOPT Docker image. Alternative solvers (e.g., MA97) are available but cannot be redistributed.
Follow these steps to set up the experiments using Conda:
-
Install the environment:
conda env create -f environment.yml
-
Activate the environment:
conda activate dnn-mpc-env
-
Compile the code:
cd paper_romualdi_viceconte_2024_humanoids_dnn-mpc-walking mkdir build && cd build cmake .. make -j make install
-
Run the simulation:
./run_simulation.sh
⚠️ The Gazebo real-time factor is scaled by a factor of 10 due to the MUMPS linear solver.
To run the experiments with Pixi:
-
Clone the repository:
git clone https://github.com/ami-iit/paper_romualdi_viceconte_2024_humanoids_dnn-mpc-walking cd paper_romualdi_viceconte_2024_humanoids_dnn-mpc-walking
-
Run the simulation:
pixi run -e default run_simulation
Using MA97 Solver (Optional): If you have access to the Coin-HSL license, you can use the MA97 solver to improve performance:
- Obtain the Coin-HSL archive (
coinhsl-2023.11.17.zip
) and place it in the./coinhsl_src
folder.- Run:
pixi run -e coinhsl run_simulation
👨💻 Paolo Maria Viceconte |
👨💻 Giulio Romualdi |