-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Wrap SINGA into a Docker image, which can run in a mesos cluster Can run in training and testing modes.
- Loading branch information
Aaron Wuwf
committed
Apr 29, 2016
1 parent
d547a86
commit 1840cb7
Showing
14 changed files
with
620 additions
and
141 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
#!/usr/bin/env python | ||
|
||
#/************************************************************ | ||
#* | ||
#* Licensed to the Apache Software Foundation (ASF) under one | ||
#* or more contributor license agreements. See the NOTICE file | ||
#* distributed with this work for additional information | ||
#* regarding copyright ownership. The ASF licenses this file | ||
#* to you under the Apache License, Version 2.0 (the | ||
#* "License"); you may not use this file except in compliance | ||
#* with the License. You may obtain a copy of the License at | ||
#* | ||
#* http://www.apache.org/licenses/LICENSE-2.0 | ||
#* | ||
#* Unless required by applicable law or agreed to in writing, | ||
#* software distributed under the License is distributed on an | ||
#* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
#* KIND, either express or implied. See the License for the | ||
#* specific language governing permissions and limitations | ||
#* under the License. | ||
#* | ||
#*************************************************************/ | ||
|
||
import os, sys | ||
import numpy as np | ||
|
||
current_path_ = os.path.dirname(__file__) | ||
singa_root_=os.path.abspath(os.path.join(current_path_,'../..')) | ||
sys.path.append(os.path.join(singa_root_,'thirdparty','protobuf-2.6.0','python')) | ||
sys.path.append(os.path.join(singa_root_,'tool','python')) | ||
|
||
from model import neuralnet, updater | ||
from singa.driver import Driver | ||
from singa.layer import * | ||
from singa.model import save_model_parameter, load_model_parameter | ||
from singa.utils.utility import swap32 | ||
|
||
from PIL import Image | ||
import glob,random, shutil, time | ||
from flask import Flask, request, redirect, url_for | ||
from singa.utils import kvstore, imgtool | ||
app = Flask(__name__) | ||
|
||
def train(batchsize,disp_freq,check_freq,train_step,workspace,checkpoint=None): | ||
print '[Layer registration/declaration]' | ||
# TODO change layer registration methods | ||
d = Driver() | ||
d.Init(sys.argv) | ||
|
||
print '[Start training]' | ||
|
||
#if need to load checkpoint | ||
if checkpoint: | ||
load_model_parameter(workspace+checkpoint, neuralnet, batchsize) | ||
|
||
for i in range(0,train_step): | ||
|
||
for h in range(len(neuralnet)): | ||
#Fetch data for input layer | ||
if neuralnet[h].layer.type==kDummy: | ||
neuralnet[h].FetchData(batchsize) | ||
else: | ||
neuralnet[h].ComputeFeature() | ||
|
||
neuralnet[h].ComputeGradient(i+1, updater) | ||
|
||
if (i+1)%disp_freq == 0: | ||
print ' Step {:>3}: '.format(i+1), | ||
neuralnet[h].display() | ||
|
||
if (i+1)%check_freq == 0: | ||
save_model_parameter(i+1, workspace, neuralnet) | ||
|
||
|
||
print '[Finish training]' | ||
|
||
|
||
def product(workspace,checkpoint): | ||
|
||
print '[Layer registration/declaration]' | ||
# TODO change layer registration methods | ||
d = Driver() | ||
d.Init(sys.argv) | ||
|
||
load_model_parameter(workspace+checkpoint, neuralnet,1) | ||
|
||
app.debug = True | ||
app.run(host='0.0.0.0', port=80) | ||
|
||
|
||
@app.route("/") | ||
def index(): | ||
return "Hello World! This is SINGA DLAAS! Please send post request with image=file to '/predict' " | ||
|
||
def allowed_file(filename): | ||
allowd_extensions_ = set(['txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif']) | ||
return '.' in filename and \ | ||
filename.rsplit('.', 1)[1] in allowd_extensions_ | ||
|
||
@app.route('/predict', methods=['POST']) | ||
def predict(): | ||
size_=(32,32) | ||
pixel_length_=3*size_[0]*size_[1] | ||
label_num_=10 | ||
if request.method == 'POST': | ||
file = request.files['image'] | ||
if file and allowed_file(file.filename): | ||
im = Image.open(file).convert("RGB") | ||
im = imgtool.resize_to_center(im,size_) | ||
pixel = floatVector(pixel_length_) | ||
byteArray = imgtool.toBin(im,size_) | ||
data = np.frombuffer(byteArray, dtype=np.uint8) | ||
data = data.reshape(1, pixel_length_) | ||
#dummy data Layer | ||
shape = intVector(4) | ||
shape[0]=1 | ||
shape[1]=3 | ||
shape[2]=size_[0] | ||
shape[3]=size_[1] | ||
|
||
for h in range(len(neuralnet)): | ||
#Fetch data for input layer | ||
if neuralnet[h].is_datalayer: | ||
if not neuralnet[h].is_label: | ||
neuralnet[h].Feed(data,3) | ||
else: | ||
neuralnet[h].FetchData(1) | ||
else: | ||
neuralnet[h].ComputeFeature() | ||
|
||
#get result | ||
#data = neuralnet[-1].get_singalayer().data(neuralnet[-1].get_singalayer()) | ||
#prop =floatArray_frompointer(data.mutable_cpu_data()) | ||
prop = neuralnet[-1].GetData() | ||
print prop | ||
result=[] | ||
for i in range(label_num_): | ||
result.append((i,prop[i])) | ||
|
||
result.sort(key=lambda tup: tup[1], reverse=True) | ||
print result | ||
response="" | ||
for r in result: | ||
response+=str(r[0])+":"+str(r[1]) | ||
|
||
return response | ||
return "error" | ||
|
||
|
||
if __name__=='__main__': | ||
|
||
if sys.argv[1]=="train": | ||
if len(sys.argv) < 6: | ||
print "argv should be more than 6" | ||
exit() | ||
if len(sys.argv) > 6: | ||
checkpoint = sys.argv[6] | ||
else: | ||
checkpoint = None | ||
#training | ||
train( | ||
batchsize = int(sys.argv[2]), | ||
disp_freq = int(sys.argv[3]), | ||
check_freq = int(sys.argv[4]), | ||
train_step = int(sys.argv[5]), | ||
workspace = '/workspace', | ||
checkpoint = checkpoint, | ||
) | ||
else: | ||
if len(sys.argv) < 3: | ||
print "argv should be more than 2" | ||
exit() | ||
checkpoint = sys.argv[2] | ||
product( | ||
workspace = '/workspace', | ||
checkpoint = checkpoint | ||
) | ||
|
Oops, something went wrong.