Skip to content

Commit

Permalink
Merge pull request #711 from agnesnatasya/squeezenet
Browse files Browse the repository at this point in the history
Implement Squeezenet using Squeezenet1.1
  • Loading branch information
nudles authored May 31, 2020
2 parents e4082c6 + 1f88218 commit a00a23b
Showing 1 changed file with 118 additions and 0 deletions.
118 changes: 118 additions & 0 deletions examples/onnx/squeezenet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under th

import os
import numpy as np
from PIL import Image

from singa import device
from singa import tensor
from singa import autograd
from singa import sonnx
import onnx
from utils import download_model, update_batch_size, check_exist_or_download

import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(message)s')


def preprocess(img):
img = img.resize((224, 224))
img = img.crop((0, 0, 224, 224))
img = np.array(img).astype(np.float32) / 255.
img = np.rollaxis(img, 2, 0)
for channel, mean, std in zip(range(3), [0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]):
img[channel, :, :] -= mean
img[channel, :, :] /= std
img = np.expand_dims(img, axis=0)
return img


def get_image_label():
# download label
label_url = 'https://s3.amazonaws.com/onnx-model-zoo/synset.txt'
with open(check_exist_or_download(label_url), 'r') as f:
labels = [l.rstrip() for l in f]

# download image
image_url = 'https://s3.amazonaws.com/model-server/inputs/kitten.jpg'
img = Image.open(check_exist_or_download(image_url))
return img, labels


class Infer:

def __init__(self, sg_ir):
self.sg_ir = sg_ir
for idx, tens in sg_ir.tensor_map.items():
# allow the tensors to be updated
tens.requires_grad = True
tens.stores_grad = True
sg_ir.tensor_map[idx] = tens

def forward(self, x):
return sg_ir.run([x])[0]


if __name__ == "__main__":

url = 'https://github.com/onnx/models/raw/master/vision/classification/squeezenet/model/squeezenet1.1-7.tar.gz'
download_dir = '/tmp/'
model_path = os.path.join(download_dir, 'squeezenet1.1',
'squeezenet1.1.onnx')

logging.info("onnx load model...")
download_model(url)
onnx_model = onnx.load(model_path)

# set batch size
onnx_model = update_batch_size(onnx_model, 1)

# prepare the model
logging.info("prepare model...")
dev = device.create_cuda_gpu()
sg_ir = sonnx.prepare(onnx_model, device=dev)
autograd.training = False
model = Infer(sg_ir)

# verify the test
# from utils import load_dataset
# inputs, ref_outputs = load_dataset(
# os.path.join('/tmp', 'squeezenet1.1', 'test_data_set_0'))
# x_batch = tensor.Tensor(device=dev, data=inputs[0])
# outputs = model.forward(x_batch)
# for ref_o, o in zip(ref_outputs, outputs):
# np.testing.assert_almost_equal(ref_o, tensor.to_numpy(o), 4)

# inference
logging.info("preprocessing...")
img, labels = get_image_label()
img = preprocess(img)

logging.info("model running...")
x_batch = tensor.Tensor(device=dev, data=img)
y = model.forward(x_batch)

logging.info("postprocessing...")
y = tensor.softmax(y)
scores = tensor.to_numpy(y)
scores = np.squeeze(scores)
a = np.argsort(scores)[::-1]
for i in a[0:5]:
logging.info('class=%s ; probability=%f' % (labels[i], scores[i]))

0 comments on commit a00a23b

Please sign in to comment.