-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #711 from agnesnatasya/squeezenet
Implement Squeezenet using Squeezenet1.1
- Loading branch information
Showing
1 changed file
with
118 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under th | ||
|
||
import os | ||
import numpy as np | ||
from PIL import Image | ||
|
||
from singa import device | ||
from singa import tensor | ||
from singa import autograd | ||
from singa import sonnx | ||
import onnx | ||
from utils import download_model, update_batch_size, check_exist_or_download | ||
|
||
import logging | ||
logging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(message)s') | ||
|
||
|
||
def preprocess(img): | ||
img = img.resize((224, 224)) | ||
img = img.crop((0, 0, 224, 224)) | ||
img = np.array(img).astype(np.float32) / 255. | ||
img = np.rollaxis(img, 2, 0) | ||
for channel, mean, std in zip(range(3), [0.485, 0.456, 0.406], | ||
[0.229, 0.224, 0.225]): | ||
img[channel, :, :] -= mean | ||
img[channel, :, :] /= std | ||
img = np.expand_dims(img, axis=0) | ||
return img | ||
|
||
|
||
def get_image_label(): | ||
# download label | ||
label_url = 'https://s3.amazonaws.com/onnx-model-zoo/synset.txt' | ||
with open(check_exist_or_download(label_url), 'r') as f: | ||
labels = [l.rstrip() for l in f] | ||
|
||
# download image | ||
image_url = 'https://s3.amazonaws.com/model-server/inputs/kitten.jpg' | ||
img = Image.open(check_exist_or_download(image_url)) | ||
return img, labels | ||
|
||
|
||
class Infer: | ||
|
||
def __init__(self, sg_ir): | ||
self.sg_ir = sg_ir | ||
for idx, tens in sg_ir.tensor_map.items(): | ||
# allow the tensors to be updated | ||
tens.requires_grad = True | ||
tens.stores_grad = True | ||
sg_ir.tensor_map[idx] = tens | ||
|
||
def forward(self, x): | ||
return sg_ir.run([x])[0] | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
url = 'https://github.com/onnx/models/raw/master/vision/classification/squeezenet/model/squeezenet1.1-7.tar.gz' | ||
download_dir = '/tmp/' | ||
model_path = os.path.join(download_dir, 'squeezenet1.1', | ||
'squeezenet1.1.onnx') | ||
|
||
logging.info("onnx load model...") | ||
download_model(url) | ||
onnx_model = onnx.load(model_path) | ||
|
||
# set batch size | ||
onnx_model = update_batch_size(onnx_model, 1) | ||
|
||
# prepare the model | ||
logging.info("prepare model...") | ||
dev = device.create_cuda_gpu() | ||
sg_ir = sonnx.prepare(onnx_model, device=dev) | ||
autograd.training = False | ||
model = Infer(sg_ir) | ||
|
||
# verify the test | ||
# from utils import load_dataset | ||
# inputs, ref_outputs = load_dataset( | ||
# os.path.join('/tmp', 'squeezenet1.1', 'test_data_set_0')) | ||
# x_batch = tensor.Tensor(device=dev, data=inputs[0]) | ||
# outputs = model.forward(x_batch) | ||
# for ref_o, o in zip(ref_outputs, outputs): | ||
# np.testing.assert_almost_equal(ref_o, tensor.to_numpy(o), 4) | ||
|
||
# inference | ||
logging.info("preprocessing...") | ||
img, labels = get_image_label() | ||
img = preprocess(img) | ||
|
||
logging.info("model running...") | ||
x_batch = tensor.Tensor(device=dev, data=img) | ||
y = model.forward(x_batch) | ||
|
||
logging.info("postprocessing...") | ||
y = tensor.softmax(y) | ||
scores = tensor.to_numpy(y) | ||
scores = np.squeeze(scores) | ||
a = np.argsort(scores)[::-1] | ||
for i in a[0:5]: | ||
logging.info('class=%s ; probability=%f' % (labels[i], scores[i])) |