Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

SINGA-161 DLaaS #155

Open
wants to merge 5 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions include/singa/neuralnet/neuron_layer.h
Original file line number Diff line number Diff line change
Expand Up @@ -112,6 +112,7 @@ class DropoutLayer : public NeuronLayer {
*/
Blob<float> mask_;
};

/**
* This layer is dummy and do no real work.
* It is used for testing purpose only.
Expand All @@ -126,7 +127,7 @@ class DummyLayer: public NeuronLayer {
void Setup(const LayerProto& proto, const vector<Layer*>& srclayers) override;
void ComputeFeature(int flag, const vector<Layer*>& srclayers) override;
void ComputeGradient(int flag, const vector<Layer*>& srclayers) override;
void Feed(int batchsize, vector<float>& data, vector<int>& aux_data);
void Feed(vector<int> shape, vector<float>* data, int op);
Layer* ToLayer() { return this;}

private:
Expand Down Expand Up @@ -278,7 +279,7 @@ class PoolingLayer : public NeuronLayer {
int kernel_x_, pad_x_, stride_x_;
int kernel_y_, pad_y_, stride_y_;
int batchsize_, channels_, height_, width_, pooled_height_, pooled_width_;
PoolingProto_PoolMethod pool_;
PoolMethod pool_;
};
/**
* Use book-keeping for BP following Caffe's pooling implementation
Expand Down
46 changes: 37 additions & 9 deletions src/neuralnet/neuron_layer/dummy.cc
Original file line number Diff line number Diff line change
Expand Up @@ -78,25 +78,53 @@ void DummyLayer::ComputeGradient(int flag, const vector<Layer*>& srclayers) {
Copy(grad_, srclayers[0]->mutable_grad(this));
}

void DummyLayer::Feed(int batchsize, vector<float>& data, vector<int>& aux_data){
void DummyLayer::Feed(vector<int> shape, vector<float>* data, int op){

batchsize_ = batchsize;
// input data
if (data.size() > 0) {
int size = data.size();
//batchsize_ = batchsize;
batchsize_ = shape[0];
// dataset
if (op == 0) {
/*
size_t hdim = 1;
for (size_t i = 1; i < shape.size(); ++i)
hdim *= shape[i];
//data_.Reshape({batchsize, (int)hdim});
//shape.insert(shape.begin(),batchsize);
data_.Reshape(shape);
*/
//reshape data
data_.Reshape(shape);
CHECK_EQ(data_.count(), data->size());

int size = data->size();
float* ptr = data_.mutable_cpu_data();
for (int i = 0; i< size; i++) {
ptr[i] = data.at(i);
ptr[i] = data->at(i);
}
}
// auxiliary data, e.g., label
if (aux_data.size() > 0) {
// label
else {
aux_data_.resize(batchsize_);
for (int i = 0; i< batchsize_; i++) {
aux_data_[i] = static_cast<int>(aux_data.at(i));
aux_data_[i] = static_cast<int>(data->at(i));
}
}

return;

/* Wenfeng's input
batchsize_ = batchsize;
shape.insert(shape.begin(),batchsize);
data_.Reshape(shape);
int size = data_.count() / batchsize_;
CHECK_EQ(size, data->size());
float* ptr = data_.mutable_cpu_data();
for (int i = 0; i< size; i++)
ptr[i] = data->at(i);
return;
*/
}

} // namespace singa
22 changes: 11 additions & 11 deletions src/neuralnet/neuron_layer/pooling.cc
Original file line number Diff line number Diff line change
Expand Up @@ -58,8 +58,8 @@ void PoolingLayer::Setup(const LayerProto& conf,
}

pool_ = conf.pooling_conf().pool();
CHECK(pool_ == PoolingProto_PoolMethod_AVG
|| pool_ == PoolingProto_PoolMethod_MAX)
CHECK(pool_ == PoolMethod::AVG
|| pool_ == PoolMethod::MAX)
<< "Padding implemented only for average and max pooling.";
const auto& srcshape = srclayers[0]->data(this).shape();
int dim = srcshape.size();
Expand All @@ -83,9 +83,9 @@ void PoolingLayer::Setup(const LayerProto& conf,
void PoolingLayer::ComputeFeature(int flag, const vector<Layer*>& srclayers) {
auto src = Tensor4(srclayers[0]->mutable_data(this));
auto data = Tensor4(&data_);
if (pool_ == PoolingProto_PoolMethod_MAX)
if (pool_ == PoolMethod::MAX)
data = expr::pool<red::maximum>(src, kernel_x_, stride_x_);
else if (pool_ == PoolingProto_PoolMethod_AVG)
else if (pool_ == PoolMethod::AVG)
data = expr::pool<red::sum>(src, kernel_x_, stride_x_)
* (1.0f / (kernel_x_ * kernel_x_));
}
Expand All @@ -99,9 +99,9 @@ void PoolingLayer::ComputeGradient(int flag, const vector<Layer*>& srclayers) {
auto gsrc = Tensor4(srclayers[0]->mutable_grad(this));
auto data = Tensor4(&data_);
auto grad = Tensor4(&grad_);
if (pool_ == PoolingProto_PoolMethod_MAX)
if (pool_ == PoolMethod::MAX)
gsrc = expr::unpool<red::maximum>(src, data, grad, kernel_x_, stride_x_);
else if (pool_ == PoolingProto_PoolMethod_AVG)
else if (pool_ == PoolMethod::AVG)
gsrc = expr::unpool<red::sum>(src, data, grad, kernel_x_, stride_x_)
* (1.0f / (kernel_x_ * kernel_x_));
}
Expand All @@ -111,16 +111,16 @@ void PoolingLayer::ComputeGradient(int flag, const vector<Layer*>& srclayers) {
void CPoolingLayer::Setup(const LayerProto& conf,
const vector<Layer*>& srclayers) {
PoolingLayer::Setup(conf, srclayers);
if (pool_ == PoolingProto_PoolMethod_MAX)
if (pool_ == PoolMethod::MAX)
mask_.ReshapeLike(data_);
}
void CPoolingLayer::ComputeFeature(int flag, const vector<Layer*>& srclayers) {
if (pool_ == PoolingProto_PoolMethod_MAX)
if (pool_ == PoolMethod::MAX)
ForwardMaxPooling(srclayers[0]->mutable_data(this)->mutable_cpu_data(),
batchsize_, channels_, height_, width_, kernel_y_, kernel_x_,
pad_y_, pad_y_, stride_y_, stride_x_,
data_.mutable_cpu_data(), mask_.mutable_cpu_data());
else if (pool_ == PoolingProto_PoolMethod_AVG)
else if (pool_ == PoolMethod::AVG)
ForwardAvgPooling(srclayers[0]->mutable_data(this)->mutable_cpu_data(),
batchsize_, channels_, height_, width_, kernel_y_, kernel_x_,
pad_y_, pad_x_, stride_y_, stride_y_, data_.mutable_cpu_data());
Expand All @@ -129,12 +129,12 @@ void CPoolingLayer::ComputeFeature(int flag, const vector<Layer*>& srclayers) {
}

void CPoolingLayer::ComputeGradient(int flag, const vector<Layer*>& srclayers) {
if (pool_ == PoolingProto_PoolMethod_MAX)
if (pool_ == PoolMethod::MAX)
BackwardMaxPooling(grad_.cpu_data(), mask_.cpu_data(), batchsize_,
channels_, height_, width_, kernel_y_, kernel_x_, pad_y_, pad_x_,
stride_y_, stride_y_,
srclayers[0]->mutable_grad(this)->mutable_cpu_data());
else if (pool_ == PoolingProto_PoolMethod_AVG)
else if (pool_ == PoolMethod::AVG)
BackwardAvgPooling(grad_.cpu_data(), batchsize_,
channels_, height_, width_, kernel_y_, kernel_x_, pad_y_, pad_x_,
stride_y_, stride_x_,
Expand Down
12 changes: 6 additions & 6 deletions src/proto/job.proto
Original file line number Diff line number Diff line change
Expand Up @@ -522,15 +522,15 @@ message LRNProto {
// offset
optional float knorm = 34 [default = 1.0];
}

enum PoolMethod {
MAX = 0;
AVG = 1;
}

message PoolingProto {
// The kernel size (square)
optional int32 kernel= 1 [default = 3];
enum PoolMethod {
MAX = 0;
AVG = 1;
}
// The pooling method
// The pooling method
optional PoolMethod pool = 30 [default = MAX];
// The padding size
optional uint32 pad = 31 [default = 0];
Expand Down
16 changes: 8 additions & 8 deletions thirdparty/install.sh
Original file line number Diff line number Diff line change
Expand Up @@ -256,19 +256,19 @@ function install_protobuf()
echo "install protobuf in $1";
./configure --prefix=$1;
make && make install;
#cd python;
#python setup.py build;
#python setup.py install --prefix=$1;
#cd ..;
cd python;
python setup.py build;
python setup.py install --prefix=$1;
cd ..;
elif [ $# == 0 ]
then
echo "install protobuf in default path";
./configure;
make && sudo make install;
#cd python;
#python setup.py build;
#sudo python setup.py install;
#cd ..;
cd python;
python setup.py build;
sudo python setup.py install;
cd ..;
else
echo "wrong commands";
fi
Expand Down
179 changes: 179 additions & 0 deletions tool/dlaas/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
#!/usr/bin/env python

#/************************************************************
#*
#* Licensed to the Apache Software Foundation (ASF) under one
#* or more contributor license agreements. See the NOTICE file
#* distributed with this work for additional information
#* regarding copyright ownership. The ASF licenses this file
#* to you under the Apache License, Version 2.0 (the
#* "License"); you may not use this file except in compliance
#* with the License. You may obtain a copy of the License at
#*
#* http://www.apache.org/licenses/LICENSE-2.0
#*
#* Unless required by applicable law or agreed to in writing,
#* software distributed under the License is distributed on an
#* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
#* KIND, either express or implied. See the License for the
#* specific language governing permissions and limitations
#* under the License.
#*
#*************************************************************/

import os, sys
import numpy as np

current_path_ = os.path.dirname(__file__)
singa_root_=os.path.abspath(os.path.join(current_path_,'../..'))
sys.path.append(os.path.join(singa_root_,'thirdparty','protobuf-2.6.0','python'))
sys.path.append(os.path.join(singa_root_,'tool','python'))

from model import neuralnet, updater
from singa.driver import Driver
from singa.layer import *
from singa.model import save_model_parameter, load_model_parameter
from singa.utils.utility import swap32

from PIL import Image
import glob,random, shutil, time
from flask import Flask, request, redirect, url_for, Response
from singa.utils import kvstore, imgtool
app = Flask(__name__)

def train(batchsize,disp_freq,check_freq,train_step,workspace,checkpoint=None):
print '[Layer registration/declaration]'
# TODO change layer registration methods
d = Driver()
d.Init(sys.argv)

print '[Start training]'

#if need to load checkpoint
if checkpoint:
load_model_parameter(workspace+checkpoint, neuralnet, batchsize)

for i in range(0,train_step):

for h in range(len(neuralnet)):
#Fetch data for input layer
if neuralnet[h].layer.type==kDummy:
neuralnet[h].FetchData(batchsize)
else:
neuralnet[h].ComputeFeature()

neuralnet[h].ComputeGradient(i+1, updater)

if (i+1)%disp_freq == 0:
print ' Step {:>3}: '.format(i+1),
neuralnet[h].display()

if (i+1)%check_freq == 0:
save_model_parameter(i+1, workspace, neuralnet)


print '[Finish training]'


def product(workspace,checkpoint):

print '[Layer registration/declaration]'
# TODO change layer registration methods
d = Driver()
d.Init(sys.argv)

load_model_parameter(workspace+checkpoint, neuralnet,1)

app.debug = True
app.run(host='0.0.0.0', port=80)


@app.route("/")
def index():
return "Hello World! This is SINGA DLAAS! Please send post request with image=file to '/predict' "

def allowed_file(filename):
allowd_extensions_ = set(['txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif'])
return '.' in filename and \
filename.rsplit('.', 1)[1] in allowd_extensions_

@app.route('/predict', methods=['POST'])
def predict():
size_=(32,32)
pixel_length_=3*size_[0]*size_[1]
label_num_=10
if request.method == 'POST':
file = request.files['image']
if file and allowed_file(file.filename):
im = Image.open(file).convert("RGB")
im = imgtool.resize_to_center(im,size_)
pixel = floatVector(pixel_length_)
byteArray = imgtool.toBin(im,size_)
data = np.frombuffer(byteArray, dtype=np.uint8)
data = data.reshape(1, pixel_length_)
#dummy data Layer
shape = intVector(4)
shape[0]=1
shape[1]=3
shape[2]=size_[0]
shape[3]=size_[1]

for h in range(len(neuralnet)):
#Fetch data for input layer
if neuralnet[h].is_datalayer:
if not neuralnet[h].is_label:
neuralnet[h].Feed(data,3)
else:
neuralnet[h].FetchData(1)
else:
neuralnet[h].ComputeFeature()

#get result
#data = neuralnet[-1].get_singalayer().data(neuralnet[-1].get_singalayer())
#prop =floatArray_frompointer(data.mutable_cpu_data())
prop = neuralnet[-1].GetData()
print prop
result=[]
for i in range(label_num_):
result.append((i,prop[i]))

result.sort(key=lambda tup: tup[1], reverse=True)
print result
response=""
for r in result:
response+=str(r[0])+":"+str(r[1])+"\n"
resp = Response(response)
resp.headers['Access-Control-Allow-Origin'] = '*'
return resp
return "error"


if __name__=='__main__':

if sys.argv[1]=="train":
if len(sys.argv) < 6:
print "argv should be more than 6"
exit()
if len(sys.argv) > 6:
checkpoint = sys.argv[6]
else:
checkpoint = None
#training
train(
batchsize = int(sys.argv[2]),
disp_freq = int(sys.argv[3]),
check_freq = int(sys.argv[4]),
train_step = int(sys.argv[5]),
workspace = '/workspace',
checkpoint = checkpoint,
)
else:
if len(sys.argv) < 3:
print "argv should be more than 2"
exit()
checkpoint = sys.argv[2]
product(
workspace = '/workspace',
checkpoint = checkpoint
)

Loading