This example covers the most basic use-case - collection creation and basic vector search. For additional information please refer to the API documentation.
First - let's create a collection with dot-production metric.
curl -X POST 'http://localhost:6333/collections' \
-H 'Content-Type: application/json' \
--data-raw '{
"create_collection": {
"name": "test_collection",
"vector_size": 4,
"distance": "Dot"
}
}'
Expected response:
{
"result": true,
"status": "ok",
"time": 0.031095451
}
We can ensure that collection was created:
curl 'http://localhost:6333/collections/test_collection'
Expected response:
{
"result": {
"vectors_count": 0,
"segments_count": 5,
"disk_data_size": 0,
"ram_data_size": 0,
"config": {
"vector_size": 4,
"index": {
"type": "plain",
"options": {}
},
"distance": "Dot",
"storage_type": {
"type": "in_memory"
}
}
},
"status": "ok",
"time": 2.1199e-05
}
Let's now add vectors with some payload:
curl -L -X POST 'http://localhost:6333/collections/test_collection?wait=true' \
-H 'Content-Type: application/json' \
--data-raw '{
"upsert_points": {
"points": [
{"id": 1, "vector": [0.05, 0.61, 0.76, 0.74], "payload": {"city": {"type": "keyword", "value": "Berlin"}}},
{"id": 2, "vector": [0.19, 0.81, 0.75, 0.11], "payload": {"city": {"type": "keyword", "value": ["Berlin", "London"] }}},
{"id": 3, "vector": [0.36, 0.55, 0.47, 0.94], "payload": {"city": {"type": "keyword", "value": ["Berlin", "Moscow"] }}},
{"id": 4, "vector": [0.18, 0.01, 0.85, 0.80], "payload": {"city": {"type": "keyword", "value": ["London", "Moscow"]}}},
{"id": 5, "vector": [0.24, 0.18, 0.22, 0.44], "payload": {"count": {"type": "integer", "value": [0]}}},
{"id": 6, "vector": [0.35, 0.08, 0.11, 0.44]}
]
}
}'
Expected response:
{
"result": {
"operation_id": 0,
"status": "completed"
},
"status": "ok",
"time": 0.000206061
}
Let's start with a basic request:
curl -L -X POST 'http://localhost:6333/collections/test_collection/points/search' \
-H 'Content-Type: application/json' \
--data-raw '{
"vector": [0.2,0.1,0.9,0.7],
"top": 3
}'
Expected response:
{
"result": [
{ "id": 4, "score": 1.362 },
{ "id": 1, "score": 1.273 },
{ "id": 3, "score": 1.208 }
],
"status": "ok",
"time": 0.000055785
}
But result is different if we add a filter:
curl -L -X POST 'http://localhost:6333/collections/test_collection/points/search' \
-H 'Content-Type: application/json' \
--data-raw '{
"filter": {
"should": [
{
"key": "city",
"match": {
"keyword": "London"
}
}
]
},
"vector": [0.2, 0.1, 0.9, 0.7],
"top": 3
}'
Expected response:
{
"result": [
{ "id": 4, "score": 1.362 },
{ "id": 2, "score": 0.871 }
],
"status": "ok",
"time": 0.000093972
}