This repo contains code that's based on the following repos: robotgradient/grasp_diffusion.
Follow the steps in robotgradient/grasp_diffusion.
To train BRIDGER, run the following:
python train.py --spec_file pcl_si --model_name si
You can modify the objects you want to train by setting 'class_type' in 'PointcloudAcronymAndSDFDataset()'.
To use data-drive source policy, train cvae first and then train BRIDGER
e.g. Please keep the seed and data_size to be the same
python train.py --spec_file pcl_cvae --model_name cvae
python train.py --spec_file pcl_si --model_name si
To generate grasp samples
e.g. python scripts/sample/generate_pcl_si.py --prior_type heuristic
To cite this work, please use:
@article{chen2024behavioral,
title={Don’t Start from Scratch: Behavioral Refinement via Interpolant-based Policy Diffusion},
author={Chen, Kaiqi and Lim, Eugene and Lin, Kelvin and Chen, Yiyang and Soh, Harold},
journal={arXiv preprint arXiv:2402.16075},
year={2024}
}