Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adapt to https://github.com/coq/coq/pull/18590 #42

Merged
merged 1 commit into from
Jan 31, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 9 additions & 9 deletions theories/Classes.v
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ Class Graph := {
T: Type;
X: T -> T -> Type;
equal: forall A B, relation (X A B);
equal_:> forall A B, Equivalence (equal A B)
equal_:: forall A B, Equivalence (equal A B)
}.

(*Arguments equal : simpl never.*)
Expand Down Expand Up @@ -91,31 +91,31 @@ Section Structures.
Context {Mo: Monoid_Ops G} {SLo: SemiLattice_Ops G} {Ko: Star_Op G} {Co: Converse_Op G}.

Class Monoid := {
dot_compat:> forall A B C, Proper (equal A B ==> equal B C ==> equal A C) (dot A B C);
dot_compat:: forall A B C, Proper (equal A B ==> equal B C ==> equal A C) (dot A B C);
dot_assoc: forall A B C D (x: X A B) y (z: X C D), x*(y*z) == (x*y)*z;
dot_neutral_left: forall A B (x: X A B), 1*x == x;
dot_neutral_right: forall A B (x: X B A), x*1 == x
}.

Class SemiLattice := {
plus_compat:> forall A B, Proper (equal A B ==> equal A B ==> equal A B) (plus A B);
plus_compat:: forall A B, Proper (equal A B ==> equal A B ==> equal A B) (plus A B);
plus_neutral_left: forall A B (x: X A B), 0+x == x;
plus_idem: forall A B (x: X A B), x+x == x;
plus_assoc: forall A B (x y z: X A B), x+(y+z) == (x+y)+z;
plus_com: forall A B (x y: X A B), x+y == y+x
}.

Class IdemSemiRing := {
ISR_Monoid :> Monoid;
ISR_SemiLattice :> SemiLattice;
ISR_Monoid :: Monoid;
ISR_SemiLattice :: SemiLattice;
dot_ann_left: forall A B C (x: X B C), zero A B * x == 0;
dot_ann_right: forall A B C (x: X C B), x * zero B A == 0;
dot_distr_left: forall A B C (x y: X A B) (z: X B C), (x+y)*z == x*z + y*z;
dot_distr_right: forall A B C (x y: X B A) (z: X C B), z*(x+y) == z*x + z*y
}.

Class KleeneAlgebra := {
KA_ISR :> IdemSemiRing;
KA_ISR :: IdemSemiRing;
star_make_left: forall A (a:X A A), 1 + a#*a == a#;
star_destruct_left: forall A B (a: X A A) (c: X A B), a*c <== c -> a#*c <== c;
star_destruct_right: forall A B (a: X A A) (c: X B A), c*a <== c -> c*a# <== c
Expand All @@ -127,12 +127,12 @@ Section Structures.
(* TODO: introduce an intermediate ConverseMonoid class *)

Class ConverseIdemSemiRing := {
CISR_SL :> SemiLattice;
CISR_SL :: SemiLattice;
dot_compat_c: forall A B C, Proper (equal A B ==> equal B C ==> equal A C) (dot A B C);
dot_assoc_c: forall A B C D (x: X A B) y (z: X C D), x*(y*z) == (x*y)*z;
dot_neutral_left_c: forall A B (x: X A B), 1*x == x;

conv_compat:> forall A B, Proper (equal A B ==> equal B A) (conv A B);
conv_compat:: forall A B, Proper (equal A B ==> equal B A) (conv A B);
conv_invol: forall A B (x: X A B), x`` == x;
conv_dot: forall A B C (x: X A B) (y: X B C), (x*y)` == y`*x`;
conv_plus: forall A B (x y: X A B), (x+y)` == y`+x`;
Expand All @@ -141,7 +141,7 @@ Section Structures.
}.

Class ConverseKleeneAlgebra := {
CKA_CISR :> ConverseIdemSemiRing;
CKA_CISR :: ConverseIdemSemiRing;
star_make_left_c: forall A (a:X A A), 1 + a#*a == a#;
star_destruct_left_c: forall A B (a: X A A) (c: X A B), a*c <== c -> a#*c <== c
}.
Expand Down
2 changes: 1 addition & 1 deletion theories/DKA_DFA_Equiv.v
Original file line number Diff line number Diff line change
Expand Up @@ -182,7 +182,7 @@ Section correctness.

Class invariant tarjan : Prop :=
{
i_wf_tarjan :> DS.WF tarjan ;
i_wf_tarjan :: DS.WF tarjan ;
i_final : forall x y, {{tarjan}} x y -> final x = final y
}.

Expand Down
10 changes: 5 additions & 5 deletions theories/Functors.v
Original file line number Diff line number Diff line change
Expand Up @@ -36,13 +36,13 @@ Section Defs.
forall A B y, exists x, F A B x == y.

Class monoid_functor {Mo1: Monoid_Ops G1} {Mo2: Monoid_Ops G2} (F: functor G1 G2) := {
monoid_graph_functor :> graph_functor F;
monoid_graph_functor :: graph_functor F;
functor_dot : forall A B C x y, F A C (x*y) == F A B x * F B C y;
functor_one : forall A, F A A 1 == 1
}.

Class semilattice_functor {SLo1: SemiLattice_Ops G1} {SL2: SemiLattice_Ops G2} (F: functor G1 G2) := {
semilattice_graph_functor :> graph_functor F;
semilattice_graph_functor :: graph_functor F;
functor_plus : forall A B x y, F A B (x+y) == F A B x + F A B y;
functor_zero : forall A B, F A B 0 == 0
}.
Expand Down Expand Up @@ -71,8 +71,8 @@ Section Defs.
{Ko1: Star_Op G1} {Ko2: Star_Op G2}.

Class semiring_functor (F: functor G1 G2) := {
semiring_monoid_functor :> monoid_functor F;
semiring_semilattice_functor :> semilattice_functor F
semiring_monoid_functor :: monoid_functor F;
semiring_semilattice_functor :: semilattice_functor F
}.

Lemma functor_star_leq {KA1: KleeneAlgebra G1} {KA2: KleeneAlgebra G2}
Expand All @@ -88,7 +88,7 @@ Section Defs.
Qed.

Class kleene_functor (F: functor G1 G2) := {
kleene_semiring :> semiring_functor F;
kleene_semiring :: semiring_functor F;
functor_star: forall A a, F A A (a#) == (F A A a) #
}.

Expand Down
4 changes: 2 additions & 2 deletions theories/StrictKleeneAlgebra.v
Original file line number Diff line number Diff line change
Expand Up @@ -41,9 +41,9 @@ Delimit Scope SA_scope with SA.

(** Strict Kleene Algebras axioms *)
Class StrictKleeneAlgebra {G: Graph} {Ops: SKA_Ops G} := {
dot_compat:>
dot_compat::
forall A B C, Proper (equal A B ==> equal B C ==> equal A C) (dot A B C);
plus_compat:>
plus_compat::
forall A B, Proper (equal A B ==> equal A B ==> equal A B) (plus A B);
dot_assoc: forall A B C D (x: X A B) y (z: X C D), x*(y*z) == (x*y)*z;
dot_neutral_left: forall A B (x: X A B), 1*x == x;
Expand Down
Loading