Skip to content

Commit

Permalink
Adapt to coq/coq#18590
Browse files Browse the repository at this point in the history
  • Loading branch information
proux01 committed Jan 31, 2024
1 parent f9712ba commit 1cac896
Show file tree
Hide file tree
Showing 21 changed files with 181 additions and 180 deletions.
3 changes: 2 additions & 1 deletion implementations/fast_rationals.v
Original file line number Diff line number Diff line change
@@ -1,8 +1,9 @@
Require
MathClasses.theory.rings
MathClasses.theory.shiftl MathClasses.theory.int_pow.
Require Import
Coq.QArith.QArith Bignums.BigQ.BigQ
MathClasses.interfaces.abstract_algebra
MathClasses.interfaces.orders MathClasses.interfaces.abstract_algebra MathClasses.interfaces.naturals
MathClasses.interfaces.integers MathClasses.interfaces.rationals MathClasses.interfaces.additional_operations
MathClasses.implementations.fast_naturals MathClasses.implementations.fast_integers MathClasses.implementations.field_of_fractions MathClasses.implementations.stdlib_rationals.
Require Export
Expand Down
142 changes: 71 additions & 71 deletions interfaces/abstract_algebra.v
Original file line number Diff line number Diff line change
Expand Up @@ -6,9 +6,9 @@ For various structures we omit declaration of substructures. For example, if we
say:
Class Setoid_Morphism :=
{ setoidmor_a :> Setoid A
; setoidmor_b :> Setoid B
; sm_proper :> Proper ((=) ==> (=)) f }.
{ setoidmor_a :: Setoid A
; setoidmor_b :: Setoid B
; sm_proper :: Proper ((=) ==> (=)) f }.
then each time a Setoid instance is required, Coq will try to prove that a
Setoid_Morphism exists. This obviously results in an enormous blow-up of the
Expand All @@ -20,14 +20,14 @@ Setoid_Morphism as a substructure, setoid rewriting will become horribly slow.
*)

(* An unbundled variant of the former CoRN RSetoid *)
Class Setoid A {Ae : Equiv A} : Prop := setoid_eq :> Equivalence (@equiv A Ae).
Class Setoid A {Ae : Equiv A} : Prop := setoid_eq :: Equivalence (@equiv A Ae).

(* An unbundled variant of the former CoRN CSetoid. We do not
include a proof that A is a Setoid because it can be derived. *)
Class StrongSetoid A {Ae : Equiv A} `{Aap : Apart A} : Prop :=
{ strong_setoid_irreflexive :> Irreflexive (≶)
; strong_setoid_symmetric :> Symmetric (≶)
; strong_setoid_cotrans :> CoTransitive (≶)
{ strong_setoid_irreflexive :: Irreflexive (≶)
; strong_setoid_symmetric :: Symmetric (≶)
; strong_setoid_cotrans :: CoTransitive (≶)
; tight_apart : ∀ x y, ¬x ≶ y ↔ x = y }.

Arguments tight_apart {A Ae Aap StrongSetoid} _ _.
Expand All @@ -38,7 +38,7 @@ Section setoid_morphisms.
Class Setoid_Morphism :=
{ setoidmor_a : Setoid A
; setoidmor_b : Setoid B
; sm_proper :> Proper ((=) ==> (=)) f }.
; sm_proper :: Proper ((=) ==> (=)) f }.

Class StrongSetoid_Morphism :=
{ strong_setoidmor_a : StrongSetoid A
Expand Down Expand Up @@ -70,80 +70,80 @@ Section upper_classes.
Context A {Ae : Equiv A}.

Class SemiGroup {Aop: SgOp A} : Prop :=
{ sg_setoid :> Setoid A
; sg_ass :> Associative (&)
; sg_op_proper :> Proper ((=) ==> (=) ==> (=)) (&) }.
{ sg_setoid :: Setoid A
; sg_ass :: Associative (&)
; sg_op_proper :: Proper ((=) ==> (=) ==> (=)) (&) }.

Class CommutativeSemiGroup {Aop : SgOp A} : Prop :=
{ comsg_setoid :> @SemiGroup Aop
; comsg_ass :> Commutative (&) }.
{ comsg_setoid :: @SemiGroup Aop
; comsg_ass :: Commutative (&) }.

Class SemiLattice {Aop : SgOp A} : Prop :=
{ semilattice_sg :> @CommutativeSemiGroup Aop
; semilattice_idempotent :> BinaryIdempotent (&)}.
{ semilattice_sg :: @CommutativeSemiGroup Aop
; semilattice_idempotent :: BinaryIdempotent (&)}.

Class Monoid {Aop : SgOp A} {Aunit : MonUnit A} : Prop :=
{ monoid_semigroup :> SemiGroup
; monoid_left_id :> LeftIdentity (&) mon_unit
; monoid_right_id :> RightIdentity (&) mon_unit }.
{ monoid_semigroup :: SemiGroup
; monoid_left_id :: LeftIdentity (&) mon_unit
; monoid_right_id :: RightIdentity (&) mon_unit }.

Class CommutativeMonoid {Aop Aunit} : Prop :=
{ commonoid_mon :> @Monoid Aop Aunit
; commonoid_commutative :> Commutative (&) }.
{ commonoid_mon :: @Monoid Aop Aunit
; commonoid_commutative :: Commutative (&) }.

Class Group {Aop Aunit} {Anegate : Negate A} : Prop :=
{ group_monoid :> @Monoid Aop Aunit
; negate_proper :> Setoid_Morphism (-)
; negate_l :> LeftInverse (&) (-) mon_unit
; negate_r :> RightInverse (&) (-) mon_unit }.
{ group_monoid :: @Monoid Aop Aunit
; negate_proper :: Setoid_Morphism (-)
; negate_l :: LeftInverse (&) (-) mon_unit
; negate_r :: RightInverse (&) (-) mon_unit }.

Class BoundedSemiLattice {Aop Aunit} : Prop :=
{ bounded_semilattice_mon :> @CommutativeMonoid Aop Aunit
; bounded_semilattice_idempotent :> BinaryIdempotent (&)}.
{ bounded_semilattice_mon :: @CommutativeMonoid Aop Aunit
; bounded_semilattice_idempotent :: BinaryIdempotent (&)}.

Class AbGroup {Aop Aunit Anegate} : Prop :=
{ abgroup_group :> @Group Aop Aunit Anegate
; abgroup_commutative :> Commutative (&) }.
{ abgroup_group :: @Group Aop Aunit Anegate
; abgroup_commutative :: Commutative (&) }.

Context {Aplus : Plus A} {Amult : Mult A} {Azero : Zero A} {Aone : One A}.

Class SemiRing : Prop :=
{ semiplus_monoid :> @CommutativeMonoid plus_is_sg_op zero_is_mon_unit
; semimult_monoid :> @CommutativeMonoid mult_is_sg_op one_is_mon_unit
; semiring_distr :> LeftDistribute (.*.) (+)
; semiring_left_absorb :> LeftAbsorb (.*.) 0 }.
{ semiplus_monoid :: @CommutativeMonoid plus_is_sg_op zero_is_mon_unit
; semimult_monoid :: @CommutativeMonoid mult_is_sg_op one_is_mon_unit
; semiring_distr :: LeftDistribute (.*.) (+)
; semiring_left_absorb :: LeftAbsorb (.*.) 0 }.

Context {Anegate : Negate A}.

Class Ring : Prop :=
{ ring_group :> @AbGroup plus_is_sg_op zero_is_mon_unit _
; ring_monoid :> @CommutativeMonoid mult_is_sg_op one_is_mon_unit
; ring_dist :> LeftDistribute (.*.) (+) }.
{ ring_group :: @AbGroup plus_is_sg_op zero_is_mon_unit _
; ring_monoid :: @CommutativeMonoid mult_is_sg_op one_is_mon_unit
; ring_dist :: LeftDistribute (.*.) (+) }.

(* For now, we follow CoRN/ring_theory's example in having Ring and SemiRing
require commutative multiplication. *)

Class IntegralDomain : Prop :=
{ intdom_ring : Ring
; intdom_nontrivial : PropHolds (1 ≠ 0)
; intdom_nozeroes :> NoZeroDivisors A }.
; intdom_nozeroes :: NoZeroDivisors A }.

(* We do not include strong extensionality for (-) and (/) because it can de derived *)
Class Field {Aap: Apart A} {Arecip: Recip A} : Prop :=
{ field_ring :> Ring
; field_strongsetoid :> StrongSetoid A
; field_plus_ext :> StrongSetoid_BinaryMorphism (+)
; field_mult_ext :> StrongSetoid_BinaryMorphism (.*.)
{ field_ring :: Ring
; field_strongsetoid :: StrongSetoid A
; field_plus_ext :: StrongSetoid_BinaryMorphism (+)
; field_mult_ext :: StrongSetoid_BinaryMorphism (.*.)
; field_nontrivial : PropHolds (1 ≶ 0)
; recip_proper :> Setoid_Morphism (//)
; recip_proper :: Setoid_Morphism (//)
; recip_inverse : ∀ x, `x // x = 1 }.

(* We let /0 = 0 so properties as Injective (/), f (/x) = / (f x), / /x = x, /x * /y = /(x * y)
hold without any additional assumptions *)
Class DecField {Adec_recip : DecRecip A} : Prop :=
{ decfield_ring :> Ring
{ decfield_ring :: Ring
; decfield_nontrivial : PropHolds (1 ≠ 0)
; dec_recip_proper :> Setoid_Morphism (/)
; dec_recip_proper :: Setoid_Morphism (/)
; dec_recip_0 : /0 = 0
; dec_recip_inverse : ∀ x, x ≠ 0 → x / x = 1 }.
End upper_classes.
Expand All @@ -159,7 +159,7 @@ Hint Extern 5 (PropHolds (1 ≠ 0)) => eapply @decfield_nontrivial : typeclass_i
(*
For a strange reason Ring instances of Integers are sometimes obtained by
Integers -> IntegralDomain -> Ring and sometimes directly. Making this an
instance with a low priority instead of using intdom_ring:> Ring forces Coq to
instance with a low priority instead of using intdom_ring:: Ring forces Coq to
take the right way
*)
#[global]
Expand All @@ -174,29 +174,29 @@ Section lattice.
Context A `{Ae: Equiv A} {Ajoin: Join A} {Ameet: Meet A} `{Abottom : Bottom A}.

Class JoinSemiLattice : Prop :=
join_semilattice :> @SemiLattice A Ae join_is_sg_op.
join_semilattice :: @SemiLattice A Ae join_is_sg_op.
Class BoundedJoinSemiLattice : Prop :=
bounded_join_semilattice :> @BoundedSemiLattice A Ae join_is_sg_op bottom_is_mon_unit.
bounded_join_semilattice :: @BoundedSemiLattice A Ae join_is_sg_op bottom_is_mon_unit.
Class MeetSemiLattice : Prop :=
meet_semilattice :> @SemiLattice A Ae meet_is_sg_op.
meet_semilattice :: @SemiLattice A Ae meet_is_sg_op.

Class Lattice : Prop :=
{ lattice_join :> JoinSemiLattice
; lattice_meet :> MeetSemiLattice
; join_meet_absorption :> Absorption (⊔) (⊓)
; meet_join_absorption :> Absorption (⊓) (⊔)}.
{ lattice_join :: JoinSemiLattice
; lattice_meet :: MeetSemiLattice
; join_meet_absorption :: Absorption (⊔) (⊓)
; meet_join_absorption :: Absorption (⊓) (⊔)}.

Class DistributiveLattice : Prop :=
{ distr_lattice_lattice :> Lattice
; join_meet_distr_l :> LeftDistribute (⊔) (⊓) }.
{ distr_lattice_lattice :: Lattice
; join_meet_distr_l :: LeftDistribute (⊔) (⊓) }.
End lattice.

Class Category O `{!Arrows O} `{∀ x y: O, Equiv (x ⟶ y)} `{!CatId O} `{!CatComp O}: Prop :=
{ arrow_equiv :> ∀ x y, Setoid (x ⟶ y)
; comp_proper :> ∀ x y z, Proper ((=) ==> (=) ==> (=)) (comp x y z)
; comp_assoc :> ArrowsAssociative O
; id_l :> ∀ x y, LeftIdentity (comp x y y) cat_id
; id_r :> ∀ x y, RightIdentity (comp x x y) cat_id }.
{ arrow_equiv :: ∀ x y, Setoid (x ⟶ y)
; comp_proper :: ∀ x y z, Proper ((=) ==> (=) ==> (=)) (comp x y z)
; comp_assoc :: ArrowsAssociative O
; id_l :: ∀ x y, LeftIdentity (comp x y y) cat_id
; id_r :: ∀ x y, RightIdentity (comp x x y) cat_id }.
(* note: no equality on objects. *)

(* todo: use my comp everywhere *)
Expand All @@ -208,46 +208,46 @@ Section morphism_classes.
Class SemiGroup_Morphism {Aop Bop} (f : A → B) :=
{ sgmor_a : @SemiGroup A Ae Aop
; sgmor_b : @SemiGroup B Be Bop
; sgmor_setmor :> Setoid_Morphism f
; sgmor_setmor :: Setoid_Morphism f
; preserves_sg_op : ∀ x y, f (x & y) = f x & f y }.

Class JoinSemiLattice_Morphism {Ajoin Bjoin} (f : A → B) :=
{ join_slmor_a : @JoinSemiLattice A Ae Ajoin
; join_slmor_b : @JoinSemiLattice B Be Bjoin
; join_slmor_sgmor :> @SemiGroup_Morphism join_is_sg_op join_is_sg_op f }.
; join_slmor_sgmor :: @SemiGroup_Morphism join_is_sg_op join_is_sg_op f }.

Class MeetSemiLattice_Morphism {Ameet Bmeet} (f : A → B) :=
{ meet_slmor_a : @MeetSemiLattice A Ae Ameet
; meet_slmor_b : @MeetSemiLattice B Be Bmeet
; meet_slmor_sgmor :> @SemiGroup_Morphism meet_is_sg_op meet_is_sg_op f }.
; meet_slmor_sgmor :: @SemiGroup_Morphism meet_is_sg_op meet_is_sg_op f }.

Class Monoid_Morphism {Aunit Bunit Aop Bop} (f : A → B) :=
{ monmor_a : @Monoid A Ae Aop Aunit
; monmor_b : @Monoid B Be Bop Bunit
; monmor_sgmor :> SemiGroup_Morphism f
; monmor_sgmor :: SemiGroup_Morphism f
; preserves_mon_unit : f mon_unit = mon_unit }.

Class BoundedJoinSemiLattice_Morphism {Abottom Bbottom Ajoin Bjoin} (f : A → B) :=
{ bounded_join_slmor_a : @BoundedJoinSemiLattice A Ae Ajoin Abottom
; bounded_join_slmor_b : @BoundedJoinSemiLattice B Be Bjoin Bbottom
; bounded_join_slmor_monmor :> @Monoid_Morphism bottom_is_mon_unit bottom_is_mon_unit join_is_sg_op join_is_sg_op f }.
; bounded_join_slmor_monmor :: @Monoid_Morphism bottom_is_mon_unit bottom_is_mon_unit join_is_sg_op join_is_sg_op f }.

Class SemiRing_Morphism {Aplus Amult Azero Aone Bplus Bmult Bzero Bone} (f : A → B) :=
{ semiringmor_a : @SemiRing A Ae Aplus Amult Azero Aone
; semiringmor_b : @SemiRing B Be Bplus Bmult Bzero Bone
; semiringmor_plus_mor :> @Monoid_Morphism zero_is_mon_unit zero_is_mon_unit plus_is_sg_op plus_is_sg_op f
; semiringmor_mult_mor :> @Monoid_Morphism one_is_mon_unit one_is_mon_unit mult_is_sg_op mult_is_sg_op f }.
; semiringmor_plus_mor :: @Monoid_Morphism zero_is_mon_unit zero_is_mon_unit plus_is_sg_op plus_is_sg_op f
; semiringmor_mult_mor :: @Monoid_Morphism one_is_mon_unit one_is_mon_unit mult_is_sg_op mult_is_sg_op f }.

Class Lattice_Morphism {Ajoin Ameet Bjoin Bmeet} (f : A → B) :=
{ latticemor_a : @Lattice A Ae Ajoin Ameet
; latticemor_b : @Lattice B Be Bjoin Bmeet
; latticemor_join_mor :> JoinSemiLattice_Morphism f
; latticemor_meet_mor :> MeetSemiLattice_Morphism f }.
; latticemor_join_mor :: JoinSemiLattice_Morphism f
; latticemor_meet_mor :: MeetSemiLattice_Morphism f }.

Context {Aap : Apart A} {Bap : Apart B}.
Class StrongSemiRing_Morphism {Aplus Amult Azero Aone Bplus Bmult Bzero Bone} (f : A → B) :=
{ strong_semiringmor_sr_mor :> @SemiRing_Morphism Aplus Amult Azero Aone Bplus Bmult Bzero Bone f
; strong_semiringmor_strong_mor :> StrongSetoid_Morphism f }.
{ strong_semiringmor_sr_mor :: @SemiRing_Morphism Aplus Amult Azero Aone Bplus Bmult Bzero Bone f
; strong_semiringmor_strong_mor :: StrongSetoid_Morphism f }.
End morphism_classes.

Section jections.
Expand All @@ -267,8 +267,8 @@ Section jections.
; surjective_mor : Setoid_Morphism f }.

Class Bijective : Prop :=
{ bijective_injective :> Injective
; bijective_surjective :> Surjective }.
{ bijective_injective :: Injective
; bijective_surjective :: Surjective }.
End jections.

#[global]
Expand Down
4 changes: 2 additions & 2 deletions interfaces/additional_operations.v
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ Instance: Params (@shiftl) 3 := {}.

Class ShiftLSpec A B (sl : ShiftL A B) `{Equiv A} `{Equiv B} `{One A} `{Plus A} `{Mult A} `{Zero B} `{One B} `{Plus B} := {
shiftl_proper : Proper ((=) ==> (=) ==> (=)) (≪) ;
shiftl_0 :> RightIdentity (≪) 0 ;
shiftl_0 :: RightIdentity (≪) 0 ;
shiftl_S : ∀ x n, x ≪ (1 + n) = 2 * x ≪ n
}.

Expand Down Expand Up @@ -71,7 +71,7 @@ Instance: Params (@shiftr) 3 := {}.

Class ShiftRSpec A B (sl : ShiftR A B) `{Equiv A} `{Equiv B} `{One A} `{Plus A} `{Mult A} `{Zero B} `{One B} `{Plus B} := {
shiftr_proper : Proper ((=) ==> (=) ==> (=)) (≫) ;
shiftr_0 :> RightIdentity (≫) 0 ;
shiftr_0 :: RightIdentity (≫) 0 ;
shiftr_S : ∀ x n, x ≫ n = 2 * x ≫ (1 + n) ∨ x ≫ n = 2 * x ≫ (1 + n) + 1
}.

Expand Down
10 changes: 5 additions & 5 deletions interfaces/canonical_names.v
Original file line number Diff line number Diff line change
Expand Up @@ -405,12 +405,12 @@ Notation "f ⁻¹" := (inverse f) (at level 30) : mc_scope.
Class Idempotent `{ea : Equiv A} (f: A → A → A) (x : A) : Prop := idempotency: f x x = x.
Arguments idempotency {A ea} _ _ {Idempotent}.

Class UnaryIdempotent `{Equiv A} (f: A → A) : Prop := unary_idempotent :> Idempotent (@compose A A A) f.
Class UnaryIdempotent `{Equiv A} (f: A → A) : Prop := unary_idempotent :: Idempotent (@compose A A A) f.

Lemma unary_idempotency `{Equiv A} `{!Reflexive (=)} `{!UnaryIdempotent f} x : f (f x) = f x.
Proof. firstorder. Qed.

Class BinaryIdempotent `{Equiv A} (op: A → A → A) : Prop := binary_idempotent :> ∀ x, Idempotent op x.
Class BinaryIdempotent `{Equiv A} (op: A → A → A) : Prop := binary_idempotent :: ∀ x, Idempotent op x.

Class LeftIdentity {A} `{Equiv B} (op : A → B → B) (x : A): Prop := left_identity: ∀ y, op x y = y.
Class RightIdentity `{Equiv A} {B} (op : A → B → A) (y : B): Prop := right_identity: ∀ x, op x y = x.
Expand All @@ -428,7 +428,7 @@ Class Commutative `{Equiv B} `(f : A → A → B) : Prop := commutativity: ∀ x
Class HeteroAssociative {A B C AB BC} `{Equiv ABC}
(fA_BC: A → BC → ABC) (fBC: B → C → BC) (fAB_C: AB → C → ABC) (fAB : A → B → AB): Prop
:= associativity : ∀ x y z, fA_BC x (fBC y z) = fAB_C (fAB x y) z.
Class Associative `{Equiv A} f := simple_associativity:> HeteroAssociative f f f f.
Class Associative `{Equiv A} f := simple_associativity:: HeteroAssociative f f f f.
Notation ArrowsAssociative C := (∀ {w x y z: C}, HeteroAssociative (◎) (comp z _ _ ) (◎) (comp y x w)).

Class Involutive `{Equiv A} (f : A → A) := involutive: ∀ x, f (f x) = x.
Expand All @@ -451,8 +451,8 @@ Class LeftHeteroDistribute {A B} `{Equiv C} (f : A → B → C) (g_r : B → B
:= distribute_l : ∀ a b c, f a (g_r b c) = g (f a b) (f a c).
Class RightHeteroDistribute {A B} `{Equiv C} (f : A → B → C) (g_l : A → A → A) (g : C → C → C) : Prop
:= distribute_r: ∀ a b c, f (g_l a b) c = g (f a c) (f b c).
Class LeftDistribute`{Equiv A} (f g: A → A → A) := simple_distribute_l :> LeftHeteroDistribute f g g.
Class RightDistribute `{Equiv A} (f g: A → A → A) := simple_distribute_r :> RightHeteroDistribute f g g.
Class LeftDistribute`{Equiv A} (f g: A → A → A) := simple_distribute_l :: LeftHeteroDistribute f g g.
Class RightDistribute `{Equiv A} (f g: A → A → A) := simple_distribute_r :: RightHeteroDistribute f g g.

Class HeteroSymmetric {A} {T : A → A → Type} (R : ∀ {x y}, T x y → T y x → Prop) : Prop :=
hetero_symmetric `(a : T x y) (b : T y x) : R a b → R b a.
Expand Down
12 changes: 6 additions & 6 deletions interfaces/finite_sets.v
Original file line number Diff line number Diff line change
Expand Up @@ -42,9 +42,9 @@ Class FSetExtend A `{t : SetType A} :=
Class FSet A `{At : SetType A} `{Ae : Equiv A} `{Ate : SetEquiv A}
`{Aempty : EmptySet A} `{Ajoin : SetJoin A} `{Asingle : SetSingleton A}
`{∀ a₁ a₂ : A, Decision (a₁ = a₂)} `{U : !FSetExtend A} :=
{ fset_bounded_sl :> BoundedJoinSemiLattice (set_type A)
; singleton_mor :> Setoid_Morphism singleton
; fset_extend_mor `{BoundedJoinSemiLattice B} `{!Setoid_Morphism (f : A → B)} :>
{ fset_bounded_sl :: BoundedJoinSemiLattice (set_type A)
; singleton_mor :: Setoid_Morphism singleton
; fset_extend_mor `{BoundedJoinSemiLattice B} `{!Setoid_Morphism (f : A → B)} ::
BoundedJoinSemiLattice_Morphism (fset_extend f)
; fset_extend_correct `{BoundedJoinSemiLattice B} (f : A → B) `{!Setoid_Morphism f} :
f = fset_extend f ∘ singleton
Expand All @@ -63,15 +63,15 @@ freely use orders.lattices.alt_Build_JoinSemiLatticeOrder.

Class FSetContainsSpec A `{At : SetType A} `{Ae : Equiv A} `{Ate : SetEquiv A}
`{SetLe A} `{SetContains A} `{Ajoin : SetJoin A} `{Asingle : SetSingleton A} :=
{ fset_join_sl_order :> JoinSemiLatticeOrder (≤)
{ fset_join_sl_order :: JoinSemiLatticeOrder (≤)
; fset_in_singleton_le : ∀ x X, x ∈ X ↔ {{ x }} ≤ X }.

(*
Unfortunately, properties as meet and the differences cannot be uniquely
defined in an algebraic way, therefore we just use set inclusion.
*)
Class FullFSet A {car Ae conAe conAle Acontains Aempty Ajoin Asingle U Adec} `{Adiff : SetDifference A} `{Ameet : SetMeet A} :=
{ full_fset_fset :> @FSet A car Ae conAe Aempty Ajoin Asingle U Adec
; full_fset_contains :> @FSetContainsSpec A car Ae conAe conAle Acontains Ajoin Asingle
{ full_fset_fset :: @FSet A car Ae conAe Aempty Ajoin Asingle U Adec
; full_fset_contains :: @FSetContainsSpec A car Ae conAe conAle Acontains Ajoin Asingle
; fset_in_meet : ∀ X Y x, x ∈ X ⊓ Y ↔ (x ∈ X ∧ x ∈ Y)
; fset_in_difference : ∀ X Y x, x ∈ X∖ Y ↔ (x ∈ X ∧ x ∉ Y) }.
6 changes: 3 additions & 3 deletions interfaces/functors.v
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ Section functor_class.
Class Functor `(Fmap): Prop :=
{ functor_from: Category C
; functor_to: Category D
; functor_morphism:> ∀ a b: C, Setoid_Morphism (@fmap _ a b)
; functor_morphism:: ∀ a b: C, Setoid_Morphism (@fmap _ a b)
; preserves_id: `(fmap (cat_id: a ⟶ a) = cat_id)
; preserves_comp `(f: y ⟶ z) `(g: x ⟶ y): fmap (f ◎ g) = fmap f ◎ fmap g }.
End functor_class.
Expand Down Expand Up @@ -123,8 +123,8 @@ Class SFmap (M : Type → Type) := sfmap: ∀ `(A → B), (M A → M B).

Class SFunctor (M : TypeType)
`{∀ `{Equiv A}, Equiv (M A)} `{SFmap M} : Prop :=
{ sfunctor_setoid `{Setoid A} :> Setoid (M A)
; sfmap_proper `{Setoid A} `{Setoid B} :>
{ sfunctor_setoid `{Setoid A} :: Setoid (M A)
; sfmap_proper `{Setoid A} `{Setoid B} ::
Proper (((=) ==> (=)) ==> ((=) ==> (=))) (@sfmap M _ A B)
; sfmap_id `{Setoid A} : sfmap id = id
; sfmap_comp `{Equiv A} `{Equiv B} `{Equiv C} `{!Setoid_Morphism (f : B → C)} `{!Setoid_Morphism (g : A → B)} :
Expand Down
Loading

0 comments on commit 1cac896

Please sign in to comment.