-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
335 lines (271 loc) · 13.2 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import argparse
from datetime import datetime
import numpy as np
import os
import cv2
import sys
import time
import torch
from sdfnet import sdfnet
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# Evaluation
from eval_util import CD, EMD, obj_data_to_mesh3d, get_normalize_mesh, HTML_rendering, FSCORE
import trimesh
from skimage import measure
import mcubes
# BASE_DIR = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
BASE_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)))
print(os.path.join(BASE_DIR, 'models'))
sys.path.append(BASE_DIR) # model
sys.path.append(os.path.join(BASE_DIR, 'models'))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
sys.path.append(os.path.join(BASE_DIR, 'data'))
sys.path.append(os.path.join(BASE_DIR, 'preprocessing'))
# import model_normalization as model
import data_sdf_h5_queue # as data
# import output_utils
import create_file_lst
# PC : (218,3)
# PC_GT: (2560,3)
OBJ_NO = 0
lst_dir, cats, all_cats, raw_dirs = create_file_lst.get_all_info()
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=str, default='1', help='GPU to use [default: GPU 0]')
parser.add_argument('--category', type=str, default="all", help='Which single class to train on [default: None]')
parser.add_argument('--log_dir', default='checkpoint', help='Log dir [default: log]')
parser.add_argument('--num_points', type=int, default=1, help='Point Number [default: 2048]')
parser.add_argument("--beta1", type=float, dest="beta1",
default=0.5, help="beta1 of adams")
#parser.add_argument('--num_sample_points', type=int, default=256, help='Sample Point Number [default: 2048]')
parser.add_argument('--num_sample_points', type=int, default=2048, help='Sample Point Number [default: 2048]')
#parser.add_argument('--sdf_points_num', type=int, default=32, help='Sample Point Number [default: 2048]')
parser.add_argument('--max_epoch', type=int, default=200, help='Epoch to run [default: 201]')
parser.add_argument('--batch_size', type=int, default=1, help='Batch Size during training [default: 32]')
parser.add_argument('--img_h', type=int, default=137, help='Image Height')
parser.add_argument('--img_w', type=int, default=137, help='Image Width')
parser.add_argument('--sdf_res', type=int, default=256, help='sdf grid')
parser.add_argument('--num_classes', type=int, default=1024, help='vgg dim')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--restore_model', default='', help='restore_model') #checkpoint/sdf_2d3d_sdfbasic2_nowd
parser.add_argument('--restore_modelpn', default='', help='restore_model')#checkpoint/sdf_3dencoder_sdfbasic2/latest.ckpt
parser.add_argument('--restore_modelcnn', default='', help='restore_model')#../../models/CNN/pretrained_model/vgg_16.ckpt
parser.add_argument('--train_lst_dir', default=lst_dir, help='train mesh data list')
parser.add_argument('--valid_lst_dir', default=lst_dir, help='test mesh data list')
parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.9, help='Decay rate for lr decay [default: 0.7]')
parser.add_argument('--mask_weight', type=float, default=4.0)
parser.add_argument('--threedcnn', action='store_true')
parser.add_argument('--volimp', action='store_true')
parser.add_argument('--img_feat_onestream', action='store_true')
parser.add_argument('--img_feat_twostream', action='store_true')
parser.add_argument('--binary', action='store_true')
parser.add_argument('--alpha', action='store_true')
parser.add_argument('--augcolorfore', action='store_true')
parser.add_argument('--augcolorback', action='store_true')
parser.add_argument('--backcolorwhite', action='store_true')
parser.add_argument('--rot', action='store_true')
parser.add_argument('--tanh', action='store_true')
parser.add_argument('--cam_est', action='store_true')
parser.add_argument('--cat_limit', type=int, default=168000, help="balance each category, 1500 * 24 = 36000")
parser.add_argument('--multi_view', action='store_true')
FLAGS = parser.parse_args()
print(FLAGS)
# Shuffle the dataset?
shuffle = False
# Change this to switch between train and test
train = False
if train:
split = 'train'
else:
split = 'test'
two_stream = False
#two_stream = True
TEST_LISTINFO = []
cats_limit = {}
cat_ids = []
if FLAGS.category == "all":
for key, value in cats.items():
cat_ids.append(value)
cats_limit[value] = 0
else:
cat_ids.append(cats[FLAGS.category])
cats_limit[cats[FLAGS.category]] = 0
for cat_id in cat_ids:
test_lst = os.path.join(lst_dir, cat_id+"_{}.lst".format(split))
with open(test_lst, 'r') as f:
lines = f.read().splitlines()
for line in lines:
for render in range(24):
cats_limit[cat_id]+=1
TEST_LISTINFO += [(cat_id, line.strip(), render)]
info = {'rendered_dir': raw_dirs["renderedh5_dir"],
'sdf_dir': raw_dirs['sdf_dir']}
print(info)
with torch.no_grad():
net = sdfnet()
# Here we would like to load a pre trained model
if two_stream:
net.load_state_dict(torch.load('models/sdfmodel_two_stream_99.torch', map_location='cpu'))
else:
net.load_state_dict(torch.load('models/sdfmodel_one_stream_99.torch', map_location='cpu'))
net.eval()
TEST_DATASET = data_sdf_h5_queue.Pt_sdf_img(FLAGS, listinfo=TEST_LISTINFO, info=info, cats_limit=cats_limit, shuffle=shuffle)
TEST_DATASET.start()
# Use fetch to get random, use get_batch for the same everytime
# obj_nm = 953a6c4d742f1e44d1dcc55e36186e4e, viewid=2
batch_data = TEST_DATASET.get_batch(650)
# Generate grid
N = 257
dist = 1
max_dimensions = np.array([dist, dist, dist])
min_dimensions = np.array([-dist, -dist, -dist])
bounding_box_dimensions = max_dimensions - min_dimensions
grid_spacing = max(bounding_box_dimensions)/N
X, Y, Z = np.meshgrid(list(np.arange(min_dimensions[0], max_dimensions[0], grid_spacing)),
list(np.arange(min_dimensions[1], max_dimensions[1], grid_spacing)),
list(np.arange(min_dimensions[2], max_dimensions[2], grid_spacing)))
X = X.reshape(-1)
Y = Y.reshape(-1)
Z = Z.reshape(-1)
points = np.array([X, Y, Z])
print('Load a sample image...')
# Demo Image: comment out below five lines unless you use the specified image
img_file = "./03001627_953a6c4d742f1e44d1dcc55e36186e4e_02.png"
#img_file = "03001627_d72f27e4240bd7d0283b00891f680579_00.png"
img_arr = cv2.imread(img_file, cv2.IMREAD_UNCHANGED).astype(np.uint8)[:, :, :3]
batch_img = np.asarray([img_arr.astype(np.float32) / 255.])
#batch_data = {}
batch_data['img'] = batch_img
print(batch_data.keys())
# 'pc', 'sdf_pt', 'sdf_pt_rot', 'sdf_val', 'norm_params', 'sdf_params',
# 'img', 'trans_mat', 'cat_id', 'obj_nm', 'view_id'
# print(batch_data['obj_nm'])
# print(batch_data['view_id'])
print(batch_data['trans_mat'])
# Prediction & obj generation
print('Predict and generate .obj file...', end=' ')
image = torch.from_numpy(batch_data['img']).permute(0, 3, 1, 2)[OBJ_NO]
points = torch.from_numpy(points.astype('Float32')).permute(1,0)
trans_mat = torch.from_numpy(batch_data['trans_mat'])[OBJ_NO]
# ours_sdf = net(image.unsqueeze(0), points.unsqueeze(0))
max_num_points = 300000
num_chunks = int(np.ceil(points.shape[0]/max_num_points))
points_chunks = torch.chunk(points, num_chunks, dim=0)
pred_sdf = []
for c in range(num_chunks):
if two_stream:
pred_sdf_chunk = net(image.unsqueeze(0), points_chunks[c].unsqueeze(0), trans_mat.unsqueeze(0))
else:
pred_sdf_chunk = net(image.unsqueeze(0), points_chunks[c].unsqueeze(0))
pred_sdf.append(pred_sdf_chunk)
pred_sdf = torch.cat(pred_sdf, dim=1)
ours_sdf = pred_sdf
np_sdf = ours_sdf.numpy()
IF = ours_sdf.reshape(N,N,N)
IF = IF.permute(1,0,2)
verts_ours, simplices_ours = mcubes.marching_cubes(np.asarray(IF), 0)
mcubes.export_obj(verts_ours, simplices_ours, "obj/chair_ours.obj")
print('done.')
# GT (Already Normalized)
print('Collect GT surface samples...', end=' ')
#obj_file_gt = '../ssd1/datasets/ShapeNet/mesh/03001627/953a6c4d742f1e44d1dcc55e36186e4e/isosurf.obj'
obj_file_gt = 'isosurf.obj'
mesh_gt = trimesh.load_mesh(obj_file_gt, process=False)
pc_gt_surf, _ = trimesh.sample.sample_surface(mesh_gt, FLAGS.num_sample_points)
choice_gt = np.random.randint(pc_gt_surf.shape[0], size=FLAGS.num_sample_points)
PC_GT = pc_gt_surf[choice_gt, ...]
print('done.')
# OURS
print('Collect OURS surface samples...', end=' ')
obj_file_ours = 'obj/chair_ours.obj'
obj_file_ours_norm, centroid, m = get_normalize_mesh(obj_file_ours, 'obj/chair_ours_norm.obj')
with open(obj_file_ours_norm, 'r', encoding='utf8') as f_ours:
obj_data_ours = f_ours.read()
pc_ours_surf,_ = obj_data_to_mesh3d(obj_data_ours)
#mesh_ours = trimesh.load_mesh(obj_file_ours_norm, process=False)
#pc_ours_surf, _ = trimesh.sample.sample_surface(mesh_ours, FLAGS.num_sample_points)
choice_ours = np.random.randint(pc_ours_surf.shape[0], size=FLAGS.num_sample_points)
PC_OURS = pc_ours_surf[choice_ours, ...]
print('done.')
# THEIRS
print('Collect OURS surface samples...', end=' ')
# obj_file_theirs = '../DISN_xar/demo/chair_theirs.obj'
obj_file_theirs = './chair_theirs.obj'
#obj_file_theirs_norm, centroid, m = get_normalize_mesh(obj_file_theirs, 'obj/')
obj_file_theirs_norm, centroid, m = get_normalize_mesh(obj_file_theirs, 'obj/chair_theirs_norm.obj')
with open(obj_file_theirs_norm, 'r', encoding='utf8') as f_theirs:
obj_data_theirs = f_theirs.read()
pc_theirs_surf,_ = obj_data_to_mesh3d(obj_data_theirs)
#mesh_theirs = trimesh.load_mesh(obj_file_theirs_norm, process=False)
#pc_theirs_surf, _ = trimesh.sample.sample_surface(mesh_theirs, FLAGS.num_sample_points)
choice_theirs = np.random.randint(pc_theirs_surf.shape[0], size=FLAGS.num_sample_points)
PC_THEIRS = pc_theirs_surf[choice_theirs, ...]
PC_THEIRS[:, [0,2]] = PC_THEIRS[:, [2,0]]
print('done.')
print('Ground Truth')
print(PC_GT[:10])
print('Ours')
print(PC_OURS[:10])
print('Theirs')
print(PC_THEIRS[:10])
print('--------------------------------------------------------------------------------')
print('FSCORE')
SIDE_LEN = 1.4
ratios = [0.01, 0.02, 0.05, 0.10, 0.20]
print('Threshold(%)', end='\t')
for r in ratios:
pr = 100*r
print('%3.1f' % pr, end='\t')
print()
print('--------------------------------------------------------------------------------')
print('OURS ', end='\t')
for r in ratios:
print('%5.3f' % FSCORE(PC_OURS , PC_GT, SIDE_LEN * r), end='\t')
print()
print('THEIRS ', end='\t')
for r in ratios:
print('%5.3f' % FSCORE(PC_THEIRS, PC_GT, SIDE_LEN * r), end='\t')
print('\n--------------------------------------------------------------------------------')
#ours
print('Our Distances:')
cd = CD(PC_OURS, PC_GT)
print('Chamfer Distance : %f' % cd)
emd = EMD(PC_OURS, PC_GT)
print('Earth Mover\'s Distance: %f' % emd)
print('--------------------------------------------------------------------------------')
#Theirs
print('Their Distances:')
cd = CD(PC_THEIRS, PC_GT)
print('Chamfer Distance : %f' % cd)
emd = EMD(PC_THEIRS, PC_GT)
print('Earth Mover\'s Distance: %f' % emd)
print('--------------------------------------------------------------------------------')
# Renderings
with open(obj_file_gt, 'r', encoding='utf8') as f_gt:
obj_data_gt = f_gt.read()
verts_gt , simplices_gt = obj_data_to_mesh3d(obj_data_gt)
print('GT shape')
print(verts_gt.shape)
print(simplices_gt.shape)
with open(obj_file_ours_norm, 'r', encoding='utf8') as f_ours:
obj_data_ours = f_ours.read()
verts_ours , simplices_ours = obj_data_to_mesh3d(obj_data_ours)
print('OURS shape')
print(verts_ours.shape)
print(simplices_ours.shape)
with open(obj_file_theirs_norm, 'r', encoding='utf8') as f_theirs:
obj_data_theirs = f_theirs.read()
verts_theirs, simplices_theirs = obj_data_to_mesh3d(obj_data_theirs)
print('THEIRS shape')
print(verts_theirs.shape)
print(simplices_theirs.shape)
verts_theirs[:, [0,2]] = verts_theirs[:, [2,0]]
HTML_rendering('GT' , verts_gt , simplices_gt )
HTML_rendering('OURS' , verts_ours , simplices_ours )
HTML_rendering('THEIRS', verts_theirs, simplices_theirs)
print('done.')
TEST_DATASET.shutdown()