Skip to content

Pytorch Implementation of DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction (Xu et al., 2019)

Notifications You must be signed in to change notification settings

cs674/pytorch-DISN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pytorch-DISN

pytorch implementation of DISN

make sure to create info.json, start by making a copy of info_example.json then modify the paths.

To test the dataloader run: python3 test_dataloader.py --img_feat_onestream --category="chair"

To test the model run: python3 test_DISN_3d_V2.py

To train the model run: python3 train_DISN_V2.py

To evaluate the model run: python3 evaluate_V2.py

System Requirements

  • GPU: 2080Ti (Other models can consider decrease the batch size if overflow)
  • Python 3.6 - 3.8
  • Pytorch 1.8.1
  • h5py 3.2.1
  • pymcubes 0.1.2
  • pymesh 1.0.2

Data preperation

Please setup the following file structure to put the datasets in.

Modifying ..\preprocessing\info.json to your desire location for storing data.

"raw_dirs_v1": {
	"mesh_dir": "~/../datasets/ShapeNet/ShapeNetCore.v1/",
        "norm_mesh_dir": "~/../datasets/ShapeNet/march_cube_objs_v1/",
        "norm_mesh_dir_v2": "~/../datasets/ShapeNet/march_cube_objs/",
        "sdf_dir": "~/../datasets/ShapeNet/SDF_v1/",
        "sdf_dir_v2": "~/../datasets/ShapeNet/SDF_v2/",
        "rendered_dir": "~/../datasets/ShapeNet/ShapeNetRendering/",
        "renderedh5_dir": "~/../datasets/ShapeNet/ShapeNetRenderingh5_v1/",
        "renderedh5_dir_v2": "~/../datasets/ShapeNet/ShapeNetRenderingh5_v2/",
        "renderedh5_dir_est": "~/../datasets/ShapeNet/ShapeNetRenderingh5_v1_pred_3d/",
        "3dnnsdf_dir": "~/../datasets/ShapeNet/SDF_full/"
}

The following datasets are need to run the DISN to train a model.

  • ShapeNet Core V1 download the dataset following the instruction of https://www.shapenet.org/account/ (about 30GB)

  • SDF ground truth download from here then place it at your "sdf_dir" in json.

  • Marching cube reconstructed ground truth models from the sdf file Download from here then place it at your "norm_mesh_dir" in your json.

  • Download and generate 2d image h5 files Download from here from [ run h5 file generation (about 26 GB) :

cd {pytorch-DISN}
nohup python -u preprocessing/create_img_h5.py &> log/create_imgh5.log &

Work distribution:

Hee Hwang: evaluate.py, evaluate_V2.py, eval_util.py, f1_cd_emd.py

Edward Schneeweiss: test_dataloader.py, train_DISN.py, train_DISN_V2.py, test_DISN_3d.py, test_DISN_3d_V2.py

Catherine Huang: sdfnet.py, sdfnet_V2.py

About

Pytorch Implementation of DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction (Xu et al., 2019)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages