Skip to content

Commit

Permalink
Delete select_inducing_point utility function (#480)
Browse files Browse the repository at this point in the history
Summary:
Pull Request resolved: #480

Unnecessary utility function replaced by just calling the Allocator class method.

This diff removes using strings to select allocators.

Differential Revision: D67068021
  • Loading branch information
JasonKChow authored and facebook-github-bot committed Dec 12, 2024
1 parent 50e47b9 commit 41ed1c7
Show file tree
Hide file tree
Showing 7 changed files with 83 additions and 249 deletions.
13 changes: 5 additions & 8 deletions aepsych/models/gp_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@
from aepsych.factory.default import default_mean_covar_factory
from aepsych.models.base import AEPsychModelDeviceMixin
from aepsych.models.inducing_points import AutoAllocator
from aepsych.models.utils import select_inducing_points
from aepsych.utils import get_optimizer_options, promote_0d
from aepsych.utils_logging import getLogger
from botorch.models.utils.inducing_point_allocators import InducingPointAllocator
Expand Down Expand Up @@ -100,9 +99,8 @@ def __init__(
)

self.inducing_point_method = inducing_point_method
inducing_points = select_inducing_points(
allocator=self.inducing_point_method,
inducing_size=self.inducing_size,
inducing_points = self.inducing_point_method.allocate_inducing_points(
num_inducing=self.inducing_size,
covar_module=covar_module or default_covar,
)

Expand Down Expand Up @@ -201,11 +199,10 @@ def _reset_variational_strategy(self) -> None:
if self.train_inputs is not None:
# remember original device
device = self.device
inducing_points = select_inducing_points(
allocator=self.inducing_point_method,
inducing_size=self.inducing_size,
inducing_points = self.inducing_point_method.allocate_inducing_points(
num_inducing=self.inducing_size,
covar_module=self.covar_module,
X=self.train_inputs[0],
inputs=self.train_inputs[0],
).to(device)
variational_distribution = CholeskyVariationalDistribution(
inducing_points.size(0), batch_shape=torch.Size([self._batch_size])
Expand Down
2 changes: 0 additions & 2 deletions aepsych/models/gp_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,6 @@
from aepsych.config import Config
from aepsych.factory.default import default_mean_covar_factory
from aepsych.models.base import AEPsychModelDeviceMixin
from aepsych.models.inducing_points import AutoAllocator
from aepsych.models.utils import select_inducing_points
from aepsych.utils import get_optimizer_options, promote_0d
from aepsych.utils_logging import getLogger
from botorch.models.utils.inducing_point_allocators import InducingPointAllocator
Expand Down
15 changes: 6 additions & 9 deletions aepsych/models/monotonic_rejection_gp.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,6 @@
from aepsych.means.constant_partial_grad import ConstantMeanPartialObsGrad
from aepsych.models.base import AEPsychMixin
from aepsych.models.inducing_points import AutoAllocator, SobolAllocator
from aepsych.models.utils import select_inducing_points
from aepsych.utils import _process_bounds, get_optimizer_options, promote_0d
from botorch.fit import fit_gpytorch_mll
from botorch.models.utils.inducing_point_allocators import InducingPointAllocator
Expand Down Expand Up @@ -100,10 +99,9 @@ def __init__(
# TODO: This allocator *must* be SobolAllocator and not the set one. This
# suggests that this model doesn't actually properly use data for inducing
# points properly.
inducing_points = select_inducing_points(
allocator=SobolAllocator(bounds=torch.stack([lb, ub]), dim=self.dim),
inducing_size=self.inducing_size,
)
inducing_points = SobolAllocator(
bounds=torch.stack([lb, ub]), dim=self.dim
).allocate_inducing_points(num_inducing=self.inducing_size)

inducing_points_aug = self._augment_with_deriv_index(inducing_points, 0)
variational_distribution = CholeskyVariationalDistribution(
Expand Down Expand Up @@ -168,11 +166,10 @@ def fit(self, train_x: torch.Tensor, train_y: torch.Tensor, **kwargs) -> None:
"""
self.set_train_data(train_x, train_y)

self.inducing_points = select_inducing_points(
allocator=self.inducing_point_method,
inducing_size=self.inducing_size,
self.inducing_points = self.inducing_point_method.allocate_inducing_points(
num_inducing=self.inducing_size,
covar_module=self.covar_module,
X=self.train_inputs[0],
inputs=self.train_inputs[0],
)
self._set_model(train_x, train_y)

Expand Down
1 change: 0 additions & 1 deletion aepsych/models/semi_p.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@
from aepsych.likelihoods import BernoulliObjectiveLikelihood, LinearBernoulliLikelihood
from aepsych.models import GPClassificationModel
from aepsych.models.inducing_points.auto import AutoAllocator
from aepsych.models.utils import select_inducing_points
from aepsych.utils import get_optimizer_options, promote_0d
from aepsych.utils_logging import getLogger
from botorch.acquisition.objective import PosteriorTransform
Expand Down
78 changes: 0 additions & 78 deletions aepsych/models/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,84 +61,6 @@ def compute_p_quantile(
return norm.cdf(f_mean + norm.icdf(alpha) * f_std)


def select_inducing_points(
inducing_size: int,
allocator: Union[str, InducingPointAllocator],
covar_module: Optional[torch.nn.Module] = None,
X: Optional[torch.Tensor] = None,
bounds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Select inducing points using a specified allocator instance or legacy method.
Args:
inducing_size (int): Number of inducing points.
allocator (Union[str, InducingPointAllocator]): An inducing point allocator or a legacy string indicating method.
covar_module (torch.nn.Module, optional): Covariance module, required for some allocators.
X (torch.Tensor, optional): Input data tensor, required for most allocators.
bounds (torch.Tensor, optional): Bounds for Sobol sampling in legacy mode.
Returns:
torch.Tensor: Selected inducing points.
"""
# Handle legacy string methods with a deprecation warning
if isinstance(allocator, str):
warnings.warn(
f"Using string '{allocator}' for inducing point method is deprecated. "
"Please use an InducingPointAllocator class instead.",
DeprecationWarning,
)

if allocator == "sobol":
assert (
bounds is not None
), "Bounds must be provided for Sobol inducing points!"
inducing_points = (
draw_sobol_samples(bounds=bounds, n=inducing_size, q=1)
.squeeze()
.to(bounds.device)
)
if inducing_points.ndim == 1:
inducing_points = inducing_points.view(-1, 1)
return inducing_points

assert X is not None, "Must pass X for non-Sobol inducing point selection!"

unique_X = torch.unique(X, dim=0)
if allocator == "auto":
if unique_X.shape[0] <= inducing_size:
return unique_X
else:
allocator = "kmeans++"

if allocator == "pivoted_chol":
inducing_point_allocator = GreedyVarianceReduction(dim=X.shape[1])
inducing_points = inducing_point_allocator.allocate_inducing_points(
inputs=X,
covar_module=covar_module,
num_inducing=inducing_size,
input_batch_shape=torch.Size([]),
).to(X.device)
elif allocator == "kmeans++":
inducing_points = torch.tensor(
kmeans2(unique_X.cpu().numpy(), inducing_size, minit="++")[0],
dtype=X.dtype,
).to(X.device)

return inducing_points

# Call allocate_inducing_points with allocator instance
if isinstance(allocator, InducingPointAllocator):
inducing_points = allocator.allocate_inducing_points(
inputs=X,
covar_module=covar_module,
num_inducing=inducing_size,
input_batch_shape=torch.Size([]),
)

return inducing_points


def get_probability_space(
likelihood: Likelihood, posterior: GPyTorchPosterior
) -> Tuple[torch.Tensor, torch.Tensor]:
Expand Down
140 changes: 0 additions & 140 deletions tests/models/test_utils.py

This file was deleted.

Loading

0 comments on commit 41ed1c7

Please sign in to comment.